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1 Implementation Details of Auto Meta Labeling

The Auto Meta Labeling pipeline has the following components: object proposal
by clustering, multi-object tracking and amodal box refinement based on shape
registration. In the object proposal step, we use DBSCAN for both clustering
by point locations and by scene flows. Both clustering methods use Euclidean
distance as the distance metric. The neighborhood thresholds εp and εf are set
to be 1.0 and 0.1, respectively. The minimum flow magnitude |f |min is set to
1m/s, so as to include meaningful motions without introducing too much back-
ground noise. Our tracker follows the implementation as in [3]. We use bird’s
eye view (BEV) boxes for data association and use Hungarian matching with an
IoU threshold of 0.1. In shape registration, we use a constrained ICP [1] which
limits the rotation to be only around the z-axis. We have compared the effect of
contrained and unconstrained ICP in AML ablation study. The search grid for
translation initialization is decided by the target box dimensions on the xy-plane,
i.e. the length lbtgt and the width wbtgt of the target bounding box. We enu-
merate translation initialization Tj in a 5× 5 grid covering the target bounding
box region with a list Tx of strides as [−lbtgt

/2,−lbtgt
/4, 0, lbtgt

/4, lbtgt
/2] and a

list Ty of strides [−wbtgt
/2,−wbtgt

/4, 0, wbtgt
/4, wbtgt

/2]. Each computation of
ICP outputs an error εj , which is defined as the mean of the Euclidean distances
among matched points between the source and the target point sets.

2 Ablation Study on Unsupervised Flow Estimation

In this section we provide additional ablation studies focusing on our unsuper-
vised flow estimation method, NSFP++.

Static point removal As mentioned in Section 3.1 of the main paper, we
apply static point removal prior to unsupervised flow estimation. This step is
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Table A1. Ablation study on different components in the proposed local flow estima-
tion. BQ stands for the proposed box query strategy, which contains two steps, the
first being expansion and the second being pruning. Local consistency represents the
local consistency loss among flow predictions within each point cluster.

Variants of NSFP++
EPE3D ↓ θ (rad) ↓ mIoU ↑

BQ w. Expansion BQ w. Pruning Local Consistency

0.020 0.515 0.404
X 0.023 0.560 0.552
X X 0.018 0.504 0.571
X X X 0.017 0.474 0.586

Table A2. Flow comparison with the fully supervised model.

Method EPE3D (m) ↓ θ (rad) ↓ mIoU ↑

Fully Supervised Network 0.005 0.062 0.826

Unsupervised NSFP++ (ours) 0.017 0.474 0.586

designed to achieve a high precision to avoid removing dynamic points in the
early stages of our pipeline. Here, we compute the precision/recall of this step
on the WOD [4] validation set. We define ground-truth dynamic/static labels
based on the available ground-truth bounding boxes [2]. Dynamic points are
defined as those with a ground-truth flow magnitude larger than |f |min, and the
remaining points belonging to any ground-truth box are assigned to the static
class. Our static point removal step has a precision of 97.2%, and a recall of
62.2%, validating the high precision of this step in determining the static points.

Local flow estimation We also conduct ablation study to validate the effec-
tiveness of the proposed components in the local flow estimation step, i.e., box
query with expansion followed by pruning and local consistency loss. As illus-
trated in Table A1, box query with expansion (second row) effectively boosts
mIoU from 0.404 to 0.552 but suffers from higher 3D end-point error (EPE3D)
and mean angle error (θ), compared to the method without using box query (first
row). This is due to the fact that the expanded query region can capture more
matching points but at the cost of including irrelevant points. With the proposed
pruning scheme (third row), all metrics are significantly improved compared to
the previous two rows. Finally, by adding local consistency loss (fourth row), we
obtain the best performance across the board.

Comparison with the fully supervised model In this subsection, we com-
pare our unsupervised flow estimation method with the fully supervised scene
flow model used in Section 4 of the main paper. Table A2 shows the compari-
son. As expected, the supervised model outperforms our unsupervised NSFP++
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Table A3. Comparisons of different variants of components in the AML pipeline. All
methods are evaluated on the WOD validation set.

AML Variants
3D mAP 2D mAP

L1 L2 L1 L2

Filtered by flow + Clustering by position 25.5 24.6 32.4 31.2
Spatio-temporal clustering 30.4 29.2 36.7 35.3

Regis. w/o init. 32.2 31.0 36.6 35.3
Regis. w/ R init. by flow heading 33.2 31.9 37.4 36.0
Regis. w/ T init. by grid search 35.2 33.8 39.3 37.9
Regis. w/ Unconstrained ICP 34.3 33.0 38.5 37.1

Regis. w/ RT init. & constrained ICP [1] (Full AML) 36.9 35.5 40.5 39.0

method which does not use any human annotations. However, as shown in Ta-
ble 2 of the main paper, the AML pipeline can robustly use our unsupervised
NSFP++ predictions and eventually achieves comparable results to the coun-
terpart using a supervised flow model on downstream tasks (e.g., L1 mAP of
42.1 for unsupervised v.s. 49.9 for supervised in the object detection task).

3 Ablation Study on Auto Meta Labeling

To examine the design choices in the AML pipeline, we compute the detection
metrics on the auto labels generated by our full AML pipeline and several base-
lines (Table A3). Note that the numbers reported in Table A3 are from evaluation
on auto labels, rather than on the predictions by trained detectors. Filtered by
flow + Clustering by position is a baseline where we generate auto labels only us-
ing this clustering method. Compared to our spatial-temporal clustering method
described in Algorithm 1 in the main paper, this baseline does not perform clus-
tering on the estimated flows and as a result it leads to under-segmentation and
lower performance.

We also carry out experiments on variants of shape registration. Regis. w/o
init. is a baseline where we have no initialization when performing constrained
ICP. Adding either rotation initialization by flow heading (Regis. w/ R init.
by flow heading) or translation initialization by grid search (Regis. w/ T init.
by grid search) improves the quality of auto labels. Another baseline, Regis.
w/ Unconstrained ICP, is applying both R and T initializations but uses an
unconstrained ICP such that 3D rotations are allowed when aligning the source
and the target point sets. We find that limiting the rotation to be only around
z-axis generates auto labels with a higher quality. Finally, our full AML (Regis.
w/ RT init. & constrained ICP) outperforms all other variants. Compared to
the 3D detection results in the main paper (see Table 2 in the main paper),
we find that the object detector achieves higher mAP than the auto labels it
is trained on. The reason is that auto labels by design pursue high recall while
contain some false positives in the background due to inaccurate flow or noise
in the environment. As these false positive labels do not form a consistent data
pattern, the object detector learns to focus only on auto labels with common
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patterns, such as vehicles and VRUs, and assign high confidence scores to these
objects at inference time.

4 Qualitative Analysis

4.1 Auto Meta Labeling and Unsupervised Object Detection

Fig. A1 shows four examples from the WOD validation set comparing ground
truth, auto labels and unsupervised object detection results. In our unsupervised
setting, both the auto labels and object detectors localize objects in a class-
agnostic manner and are not limited by certain categories. In example (a) we
show that auto labels and object detectors capture both pedestrians and vehicles.

In example (b), we demonstrate that even though there is false positive non-
zero flow estimation, in AML we filter out many of these clusters during tracking
and post-processing where very short tracks are dropped. The resulting detector
has also learned to ignore clusters of false positive flows. This example also shows
that both auto labels and object detectors can infer the amodal boxes of some
objects with only partial views.

Sometimes the unsupervised flow estimation captures true positive motion
on points that are beyond the predefined categories in the ground truth. In
example (c), a pedestrian is walking with a stroller while stroller is not a class
included in the ground truth labels and therefore no bounding box is annotated
around the stroller. NSFP++ has estimated the flow on the stroller, enabling
AML and detectors to localize it. Since the stroller is held by the pedestrian with
a similar speed, the clustering by design does not separate them apart. Clearly,
it is safety-critical for autonomous vehicles to understand such moving objects
in the open-set environment.

Example (d) shows a failure case where the detector could not confidently
detect a cyclist. Although the auto labels have captured it, cyclists are less
common than pedestrians and vehicles in the training set, which leads to inferior
performance. We encourage future work to tackle the data imbalance issue under
the unsupervised setting. Another failure pattern is that bounding boxes in auto
labels tend to be larger than the actual size, due to the fact that temporal
aggregation can include noise points. More advanced shape registration methods
may help reduce noise and we leave it for future work.

4.2 Open-set Trajectory Prediction

Fig. A2 and A3 show behavior prediction qualitative results on the WOD vali-
dation set. For each example scenario, we show the trajectory predictions of two
models, i.e., one trained only with a human-labeled category (the first column)
and the other one trained with the combination of available human-labels and
our AML auto labels for all other moving objects (the second column). The
red and magenta trajectories represent the ground-truth routes taken by the
autonomous vehicle and by an agent of interest, respectively. The blue and yel-
low trajectories are the possible predictions for the agent of interest and other



Motion Inspired Unsupervised Perception and Prediction 5

(a) (b)

(c)
(d)

Predictions

Ground Truth

Auto Labels

Ground Truth

Auto Labels

Predictions

Ground Truth

Auto Labels

Predictions

Ground Truth

Auto Labels

Predictions

false positive 
flows

missing 
stroller

Fig.A1. Visualization of auto labels and detection predictions compared with the
ground truth of moving objects. Points are colored by flow magnitudes and directions.
Dark points are static. (a) The class-agnostic auto labels and unsupervised object
detectors capture objects of multiple categories. (b) Although false positive flows occur,
AML filters out many of them if they are inconsistent, and the detector learns to ignore
these false positive flows. (c) Although the ground truth does not cover categories
beyond vehicle, pedestrian, and cyclist, auto labels and our detector can capture open-
set moving objects, such as the stroller. (d) An failure case that the detector may not
be confident on objects with limited data amount, such as cyclists.
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Trained with 
human labeled VRU

Trained with AML (ours) 
+ human labeled VRU

Fig.A2. Behavior prediction qualitative analysis. Trajectory predictions on three ex-
ample scenarios for a model trained with human labeled VRUs v.s. a model trained
with a combination of human labeled VRUs and our generated autolabels. Red and
magenta dotted trajectories represent the ground-truth routes of the autonomous ve-
hicle and agents, respectively. Blue and yellow trajectories are the predictions for the
agent of interest and other agents, respectively.
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Trained with 
human labeled vehicles

Trained with AML (ours) 
+ human labeled vehicles

Fig.A3. Behavior prediction qualitative analysis. Trajectory predictions on three ex-
ample scenarios for a model trained with human labeled vehicles v.s. a model trained
with a combination of human labeled vehicles and our generated autolabels.
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Fig.A4. Error distributions. y axis is probability density.

agents in the scene. Fig. A2 shows three examples where human labels are avail-
able for the VRU category. As can be seen in all three examples, without using
our unsupervised auto labels, the model tends to erroneously underestimate the
speed (e.g. the first row), have difficulty in predicting trajectories consistent
with the underlying roadgraph (e.g. the second row), and generating dangerous
pedestrian-like trajectories along the pedestrian crosswalk (e.g. the third row).
Fig. A3 shows the results when human labels are available only for the vehicle
category. Similarly, when the model is only trained on the human labels (the
first column), it cannot generalize well to the VRU class, predicting fast speeds
and vehicle-like trajectories for VRUs. However, in both scenarios, adding auto
labels (the second columns in Fig. A2 and A3) satisfactorily overcomes these er-
rors, showing the effectiveness of our auto labels for training behavior prediction
models in the open-set environment.

5 Failure Analysis

In this section, we analyze the factors causing failure cases. Under threshold
IoU=0.4, the precision/recall of our auto meta labels is 0.69/0.50. Part of the
failure cases come from (1) false positive predictions that do not match any
ground truth boxes; (2) false negatives where ground truth boxes are entirely
missed. Moreover, there are predicted boxes overlapping with ground truth boxes
while their IoUs are lower than the threshold. To have a better understanding,
we breakdown 3D bounding box dimensions into three groups: localization (box
center x, y, z), size (box length l, width w, height h), and orientation (BEV
box heading r). Then, we summarize the distributions of localization, size, and
orientation errors of the generated bounding boxes which overlap with at least
one ground truth box (Fig. A4). The errors are computed between each pair of
a predicted box and the ground truth box that has the highest IoU with the
predicted box.

Localization. The localization error is defined as

εlocalization =
√

(xpr − xgt)2 + (ypr − ygt)2 + (zpr − zgt)2. (1)

As shown in Fig. A4, most of the localization errors are within 1.0 meter.
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Table A4. Comparison between an oracle with GT box coordinates and baselines
switching localization/size/orientation coordinates into AML predictions in turn. The
performance drops show that the localization and size errors are dominant.

3D mAPH@IoU=0.4

(Oracle) GT localization + GT size + GT orientation 46.1
Predicted localization + GT size + GT orientation 39.7 (-6.4)
GT localization + Predicted size + GT orientation 39.7 (-6.4)
GT localization + GT size + Predicted orientation 44.5 (-1.6)

Size. The size error is defined as

εsize = max{|lpr − lgt|+ |wpr − wgt|+ |hpr − hgt|}. (2)

Many predictions have relatively high size errors. This is often caused by inclu-
sion of noisy points in the registration step or missing parts of an object if the
parts are always invisible throughout the object track.

Orientation. The orientation error is defined as

εorientation = rpr − rgt (3)

The orientation errors are generally small, as the orientation of each object is
determined by the direction of the scene flows averaged over all points within
the object bounding box. This error distribution verifies the quality of the un-
supervised scene flows.

To find out the dominant factors leading to wrong auto meta labels, we
construct several baselines by modifying the predictions and measure their label
quality. The baselines are as follows:

1. (Oracle) GT localization + GT size + GT orientation: we replace the 7D
values (x, y, z, l, w, h, r) of each predicted box with the values of its best
matched ground truth box if any;

2. Predicted localization + GT size + GT orientation: we replace the (l, w, h, r)
of each predicted box with the ground truth values. Comparison with the
oracle will show the impact of localization errors;

3. GT localization + Predicted size + GT orientation: we replace the (x, y, z, r)
of each predicted box with the ground truth values. Comparison with the
oracle will show the impact of size errors;

4. GT localization + GT size + Predicted orientation: we replace the
(x, y, z, l, w, h) of each predicted box with the ground truth values. Com-
parison with the oracle will show the impact of orientation errors.

We report the 3D mAPH@IoU=0.4 on the above baselines as mAPH addi-
tionally reflect the quality of heading prediction. We found that localization and
size errors are dominant factors and future work may focus on improving the
quality of auto labels on these fronts.
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