
RCLane: Relay Chain Prediction for Lane
Detection

Shenghua Xu1⋆, Xinyue Cai2⋆, Bin Zhao1, Li Zhang1⋆⋆, Hang Xu2,
Yanwei Fu1, and Xiangyang Xue1

1 Fudan University
2 Huawei Noah’s Ark Lab

1 Experimental setting for step length d

Step length d is the distance between the two neighbors when encoding the
lane, which is fixed as 10 for all the experiments in our method. LaneATT [7]
sets the line width as 30 for calculating IoU. We set it as 15 according to the
resolution scale initially. And d should be at least half of the line width to ensure
all foreground points find neighbors sited at the center line. Thus we set d as 7,
8, 9, 10, 11 and 12 and conduct a series of experiments on CurveLanes [12]. The
quantitative results are shown in Tab. 1. We find that F1-score decreases as d
increases since small step length can describe the local variable shape of lanes
more precisely while increasing decoding time. 10 is chosen as the final setting
considering the performance-speed trade-off.

Table 1. Ablation study on step length on CurveLanes.

Step length Precision(%) Recall(%) F1(%)

7 94.29 88.87 91.50
8 94.26 88.84 91.47
9 94.28 88.79 91.45
10 93.96 89.03 91.43
11 93.93 88.97 91.38
12 94.16 88.93 91.31

2 Attention mechanisms

We consider the recent attention mechanism is suitable for information process-
ing and do ablation experiments on CurveLanes. Results are shown in Tab. 2.
Adding self-attention [9] to U-Net [6], which operated on the deepest feature
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map, makes F1-score increase from 89.41% and reaches 89.49%. In the third
row, we replace it with axial attention [10] and further improves the perfor-
mance considering the row-column style attention adapts to the long and thin
characteristics of lanes. Finally, we utilize the efficient transformer-based network
SegFormer as backbone and achieve the best result. From the above results, we
can find attention mechanism can help our model focus on local location and
global shape information simultaneously.

Table 2. Comparison among different settings of attention on the CurveLanes. The
attention module is just added to the feature map of the smallest resolution.

Backbone Precision(%) Recall(%) F1(%)

Unet [6] 93.11 86.00 89.41

Unet [6] + self-attention [9] 92.95 86.27 89.49+0.08

Unet [6] + axial-attention [10] 92.79 88.41 90.55+1.14

SegFormer-B2 [11] 93.96 89.03 91.43+2.02

3 Generalization

This section aims to verify the generalization capacity of our RCLane following
FOLOLane [5]. We utilize the model trained on the CULane [3] training set
to evaluate on the TuSimple [8] test set. The results are shown in Tab. 3. Our
RCLane surpasses FOLOLane [5] by 2.88% , with smaller FP and FN indicating
that our method is more robust than previous lane detection methods.

Table 3. Evaluation of generalization ability of different methods from CULane train-
ing set to TuSimple testing set.

Method Accuracy(%) FP(%) FN(%)

PINet [2] 36.31 48.86 89.88
UFNet [4] 65.53 56.80 65.46
FOLOLane [5] 84.36 39.64 38.41

RCLane (Ours) 87.24 22.06 21.56

4 Visualization results on CULane and CurveLanes

The visualizations of detection results on CULane [3] and CurveLanes [12] are
shown in Fig. 1. Our RCLane can perform well not only in easy scenes, but also
in some complex scenes, for example, Fork-shape lanes and dense curve lanes.
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Fig. 1. Visualization results of our RCLane. The first two rows are of CULane
and the last two rows are of CurveLanes. Our model can detect curve lanes, dense lanes
and Y-shape lanes in different scenarios.

5 Visualization results on Tusimple and LLAMAS

The qualitative results on TuSimple [8] and LLAMAS [1] are shown in Fig. 2.
TuSimple and LLAMAS are two benchmarks taken from the highway driving
scenarios and are easier compared with CULane [3] and CurveLanes [12]. In
some scenarios such as curve lanes or the far end of lanes, our RCLane even
shows better performance than ground truths, as is shown in the last row and
forth column in Fig. 2.
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Fig. 2. Visualization on Tusimple and LLAMAS. The first two rows are the
ground truth and our predictions on LLAMAS and the last two rows are the ground
truth and our predictions on Tusimple.
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6 Comparison of results on complex scenes

We choose some complex scenes of CurveLanes [12] and show the visualizations
of different methods on Fig. 3. It shows the capacity of our RCLane on complex
topologies with the global shape and local location information learning, while
other methods fail to detect all lane instances when meeting Fork-shape lanes and
Y-shape lanes. Moreover, we additionally visualize more results of our RCLane
on other hard cases in Fig. 4 and achieve good performance.
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Fig. 3. Comparison of visualization results between our RCLane and other lane
detection methods. Our method performs better in different scenarios such as occluded,
curved and Y-shape lanes.

G
T

O
u
rs

Fig. 4. Visualization of detection results for complex topologies, such as fork-
shape, Y-shape and nearly horizontal lanes, shows the capacity of RCLane.

7 Pseudo code

7.1 Pseudo code for lane encoder

Algorithm·1 details the process of lane encoder, which aims to generate the
ground truth of the transfer map and distance map to supervise the training
process.
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Algorithm 1 Lane encoder

Input: d: the step length
S: the foreground point set in segmentation map
L: the set of lanes in the image I
g1(·): the function to compute the distance between a point and a lane
g2(·): the function to compute the distance between two points

Output: T f : the forward transfer map
T b: the backward transfer map
Df : the forward distance map
Db: the backward distance map

1: for all pi = (xi, yi) ∈ S do
2: l = argminγ∈L g1(pi, γ)
3: if g1(pi, l) < d then
4: find the forward and backward end points of l:

pfend = (xf
end, y

f
end) = argmax(x,y)∈l(y),

pbend = (xb
end, y

b
end) = argmin(x,y)∈l(y)

5: compute the forward and backward distance scalars:

Df (pi) =
√

(xi − xf
end)

2 + (yi − yf
end)

2,

Db(pi) =
√

(xi − xb
end)

2 + (yi − yb
end)

2

6: find the forward and backward point for pi on lane l:
pfi = (xf , yf ) = argmaxg2((x,y),pi)=d(y),

pbi = (xf , yf ) = argming2((x,y),pi)=d(y)
7: compute the two transfer vectors:

T f (pi) = (xf
i − xi, y

f
i − yi),

T b(pi) = (xb
i − xi, y

b
i − yi)

8: end if
9: end for
10: return T f ,T b,Df and Db
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7.2 Pseudo code for lane decoder

Algorithm 2 introduces the detail process for lane decoder, showing how to re-
cover all possible lanes based on the predicted segmentation map, transfer map
and distance map.

Algorithm 2 Lane decoder

Input: d : the step length
r: the minimal distance between two foreground points in key point map
f(·, r): the function to perform Point-NMS on segmentation map to get a sparse
key point map
h(·): the function to perform IOU-NMS on the predict set of lanes
S: the predicted segmentation map
T : the predicted transfer map
D : the predicted distance map

Output: L: the set of lanes in the image I
1: key point map K = f(S, r)
2: initialize L′ as an empty set
3: for all key point p ∈ K do
4: initialize two point sets: G1 = {p} and G2 = {p}
5: initialize two points: p1 = p and p2 = p

6: for i = 1 to
Df (p)

d
do

7: get the forward transfer vector Tf (p1) from Tf

8: update p1: p1 = p1 + Tf (p1)
9: update G1: G1 = G1 ∪ {p1}
10: end for
11: for i = 1 to Db(p)

d
do

12: get the backward transfer vector Tb(p2) from Tb

13: update p2: p2 = p2 + Tb(p2)
14: update G2: G2 = G2 ∪ {p2}
15: end for
16: get the lane lp = {G1} ∪ {G2}
17: update L′: L′ = L′ ∪ {lp}
18: end for
19: the final results of predicted lanes L = h(L′)
20: return the set of lanes L
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