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Abstract. This work investigates learning pixel-wise semantic image
segmentation in urban scenes without any manual annotation, just from
the raw non-curated data collected by cars which, equipped with cameras
and LiDAR sensors, drive around a city. Our contributions are threefold.
First, we propose a novel method for cross-modal unsupervised learning
of semantic image segmentation by leveraging synchronized LiDAR and
image data. The key ingredient of our method is the use of an object
proposal module that analyzes the LiDAR point cloud to obtain pro-
posals for spatially consistent objects. Second, we show that these 3D
object proposals can be aligned with the input images and reliably clus-
tered into semantically meaningful pseudo-classes. Finally, we develop
a cross-modal distillation approach that leverages image data partially
annotated with the resulting pseudo-classes to train a transformer-based
model for image semantic segmentation. We show the generalization ca-
pabilities of our method by testing on four different testing datasets
(Cityscapes, Dark Zurich, Nighttime Driving and ACDC) without any
finetuning, and demonstrate significant improvements compared to the
current state of the art on this problem.

Keywords: autonomous driving - unsupervised semantic segmentation

1 Introduction

In this work, we investigate whether it is possible to learn pixel-wise semantic
image segmentation of urban scenes without the need for any manual annotation,
just from the raw non-curated data collected by cars equipped with cameras and
LiDAR sensors while driving in town. This topic is important as current methods
require large amounts of pixel-wise annotations over various driving conditions
and situations. Such a manual segmentation of images on a large scale is very
expensive, time-consuming, and prone to biases.

Currently, the best methods for unsupervised learning of semantic segmenta-
tion assume that images contain centered objects [50] rather than full scenes or
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Fig. 1. Proposed fully-unsupervised approach. From uncurated images and Li-
DAR data, our Drive&Segment approach learns a semantic image segmentation model
with no manual annotations. The resulting model performs unsupervised semantic seg-
mentation of new unseen datasets without any human labeling. It can segment complex
scenes with many objects, including thin structures such as people, bicycles, poles or
traffic lights. Black color denotes the ignored/missing label.

use spatial self-supervision available in the image domain [15]. They do not lever-
age additional modalities, such as the LiDAR data, available for urban scenes in
the autonomous driving set-ups. In this work, we develop an approach for unsu-
pervised semantic segmentation that learns to segment complex scenes contain-
ing many objects, including thin structures such as pedestrians or traffic lights,
without the need for any manual annotation. Instead, it leverages cross-modal
information available in (aligned) LiDAR point clouds and images, see Fig. 1.
Exploiting point clouds as a form of supervision is, however, not straightforward:
data from LiDAR and camera are rarely perfectly synchronized; moreover, point
clouds are unstructured and of much lower resolution compared to images; fi-
nally, extracting useful semantic information from LiDAR is still a very hard
problem. In this work, we overcome these issues and show that it is nevertheless
possible to extract useful pixel-wise semantic supervision from LiDAR data.

The contributions of our work are threefold. First, we propose a novel method
for unsupervised cross-modal learning of semantic image segmentation by lever-
aging synchronized LiDAR and image data. The key ingredient is a module that
analyzes the LiDAR point cloud to obtain proposals for spatially consistent ob-
jects that can be clearly separated from each other and the ground plane in the
3D scene. Second, we show that these 3D object proposals can be aligned with
input images and reliably clustered into semantically meaningful pseudo-classes
by using image features from a network trained without supervision. We demon-
strate that this approach is robust to noise in point clouds and delivers, without
the need for any manual annotation, pseudo-classes with pixel-wise segmentation
for various objects present in driving scenes. These classes include objects such
as pedestrians or traffic lights that are notoriously hard to segment automat-
ically in the image domain. Third, we develop a novel cross-modal distillation
approach that first trains a teacher network with the available partial pseudo
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Fig.2. Overview of Drive&Segment. We first perform

on training dataset by exploiting raw LiDAR point clouds P and raw images
Z. This yields segments S projected onto the image space (§3.1). By clustering their
self-supervised features, we obtain an unsupervised labeling of these segments (§3.2)
and, as a consequence, of their pixels. This provides pixel-wise pseudo ground truth
for the next learning step. Finally, given the pseudo-labels and the segments, we per-
form distillation with cross-modal constraints (§3.3) that conjugates information of
the LiDAR and the images to learn a final segmentation model using a teacher-student
architecture. The learnt segmentation model S —highlighted in the figure— is used for
inference on unseen datasets, yielding compelling results (§4).

labels and then exploits its predictions for training the student with pixel-wise
pseudo annotations that cover the whole image. Additionally, our approach ex-
ploits geometric constraints extracted from the LiDAR point cloud during the
teacher-student learning process to refine teacher predictions that are distilled
into the student network. Implemented with transformer-based networks, this
cross-modal distillation approach results in a trained student model that per-
forms well in various challenging conditions such as day, night, fog, or rain,
outside the domain of the original training dataset, as shown in Fig. 1.

We train our proposed unsupervised semantic segmentation method on two
datasets, Waymo Open [47] and nuScenes [8] (nuScenes results are in the ap-
pendix available in the extended version of the paper [52]), and test it on four
different datasets in the autonomous driving domain, Cityscapes [16], Dark-
Zurich [44], Nighttime driving [17] and ACDC [45] dataset. We demonstrate
significant improvements compared to the current state of the art on this prob-
lem, improving the current best published unsupervised semantic segmentation
results on Cityscapes from 15.8 to 21.8 and from 4.6 to 14.2 on Dark Zurich,
measured by mean intersection over union.

2 Related work

Image semantic segmentation. Semantic segmentation is a challenging key
visual perception task, especially for autonomous driving [16,39,45,51,58]. Cur-
rent top-performing models are based on fully convolutional networks [36] with
encoder-decoder structures and a large diversity of designs [12,14,35,43,54,63].
Recent progress in vision transformers (ViT) [19] opened the door to a new wave
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of decoders [46,56,59,64] with appealing predictive performance. These methods
attain impressive performance by exploiting large amounts of pixel-wise labeled
data. Yet, urban scenes are expensive to annotate manually (1.5h-3.3h per im-
age [16,45]). This motivates recent works to rely less on pixel-wise supervision.

Reducing supervision for semantic segmentation. A popular strategy
when dealing with limited labeled data is to pre-train some of the blocks of
the architecture, e.g., the encoder, on related auxiliary tasks with plentiful la-
bels [18,60]. Pre-training encoder for ImageNet [18] classification has been shown
to be a successful recipe for both convnets [12] and ViT-based models [46]. Pre-
training can be conducted even without any human annotations on artificially-
designed self-supervised pretext tasks [9,22,23,24,26,28] with impressive results
on a variety of downstream tasks. Some works also make use of synthetically gen-
erated data for pre-training [20,34,53]. Fully unsupervised semantic segmenta-
tion [6,13,15,29,31,32,40,50,61] has been recently addressed via generative mod-
els to generate object masks [6,13,40] or self-supervised clustering [15,31]. Prior
methods are limited to segmenting foreground objects of a single class [6,13]
or to stuff pixels that far outnumber things pixels [31,40]. Others assume that
images contain centered objects [50], rely on weak spatial cues from the image
domain [13,15,31] or require instance masks during pre-training and annotated
data at test time [29]. On the contrary, our approach exploits cross-modal super-
vision from aligned LiDAR point clouds and images. We show that leveraging
this information can considerably improve segmentation performance in complex
autonomous driving scenes with multiple classes and strong class imbalance, out-
performing PiCIE [15], the current state of the art in unsupervised segmentation.
Concurrent work STEGO [25] develops a contrastive formulation for unsuper-
vised semantic segmentation but does not use LiDAR during training.

Cross-modal self-supervised learning. Leveraging language, vision, and/or
audio, self-supervised representation learning has seen tremendous progress in
recent years [2,3,4,38,41,42,62]. Besides learning useful representations, these
approaches show that signals from one modality can help train object detectors
in the other, e.g., detecting instruments that sound in a scene [11,41,62], and
even other object types [1]. In autonomous driving, a vehicle is equipped with
diverse sensors (e.g., camera, LIDAR, radar), and cross-modal self-supervision
is often used to generate labels from a sensor for augmenting the perception
of another [5,30,48,55]. LiDAR clues [48] have been recently shown to boost
unsupervised object detection (for things classes). Both our work and [48] use
the same prior method [7] to extract object proposals from LiDAR scans. How-
ever, we consider a different problem of dense pixel-wise unsupervised semantic
segmentation (for both things and stuff) and design a new approach for both
extraction and learning with pixel-level pseudo labels.

3 Proposed unsupervised semantic segmentation

Our goal is to train an image segmentation model with no human annotation,
by exploiting easily-available aligned LiDAR and image data. To that end, we
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Fig. 3. Cross-modal segment extraction. Input raw point cloud (a) is first seg-
mented with [7] into object segment candidates (b), which are then projected into
the image (c¢); Projected segments are densified to get pixel-level pseudo-labels, with
missed pixels being labeled as “ignore”, as shown in black (d).

propose a novel method, Drive&Segment, that consists of three major steps and
is illustrated in Figure 2. First, as discussed in Section 3.1, we extract segment
proposals for the objects of interest from 3D LiDAR point clouds and project
them to the aligned RGB images. In the second step (Section 3.2), we build
pseudo-labels by clustering self-supervised image features corresponding to these
segments. Finally, in Section 3.3, we propose a new teacher-student training
scheme that incorporates spatial constraints from the LIDAR data and learns an
unsupervised segmentation model from the noisy and partial pseudo-annotations
generated in the previous two steps.

3.1 Cross-modal segment extraction

Throughout the next sections, we consider a dataset composed of a set P of 3D
point clouds and a set Z of images aligned with the point clouds. In this section,
we detail the process of extracting segments of interest in an image I € 7 using
the corresponding aligned LiDAR point cloud P € P. The process, illustrated
in Fig. 3, consists of three steps. We start by segmenting the LiDAR point cloud
P using its geometrical properties. Then, we project the resulting 3D segments
into the image I, and densify the output to obtain pixel-level segments.

Geometric point cloud segmentation. We first extract J non-overlapping
object segmentation proposals (segments), from the LIiDAR point cloud P. Let
SP:{3§D 3]:1 be this set, where each segment sf is a subset of the 3D point
cloud P and Vj # j/, sf N sf, = @. Additionally, we refer to the set of segments
across the entire data set as S*, with S ¢ S”. The J segments detected in one
point cloud should ideally correspond to J individual objects in the scene. To
get them, we use the unsupervised 3D point cloud segmentation proposed in [7],
which exploits the geometrical properties of point clouds and range images.' It
is a two-stage process that segments the ground plane and objects using greedy
labeling by breadth-first search in the range image domain. Urban scenes are
particularly suited to this purely geometry-based method as most objects are
spatially well separated and the ground plane is relatively easy to segment out.

! Range images are depth maps corresponding to the raw LiDAR measurements. Valid
measurements are back-projected to the 3D space to form a point cloud.
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Fig. 4. Segment-wise unsupervised pseudo-labeling. First, given object segments
S7 obtained in the segment extraction stage (left), we take crops around all N objects
and feed them to a feature extractor to get a set of N feature vectors. Then, we use the
k-means algorithm to cluster the feature vectors into k clusters. Finally, we assign pixel-
wise pseudo-labels to all pixels belonging to each segment based on the corresponding
cluster id. Pixels not covered by a segment are assigned the label “ignore” (black).

Point-cloud-to-image transfer. The next step of the segment extraction is to
transfer the set S” of point cloud segments to the image I, producing the set S’.
Although LiDAR data and camera images are captured at the same time, one-
to-one matching is not straightforward. Indeed, among other difficulties, LIDAR
data only covers a fraction of the image plane because of its different field of
view, its lower density, and its lack of usable measurements on far away objects or
on the sky for instance. To overcome the mismatch between the two modalities,
we proceed as follows. First, we project the points from the point cloud to the
image using the known sensors’ calibration. This gives us the locations of 3D
points from the point cloud in the image. We also identify locations with invalid
measurements in the LIDAR range image, e.g., reflective surfaces or the sky, and
assign an “ignore” label to the respective locations.

Densify & pad. Next, we perform nearest-neighbor interpolation to propagate
the J+1 segment labels to all pixels, where J is the number of segments (ideally
corresponding to objects) and +1 denotes the additional “ignore” label. Last,
we pad the image with “ignore” label to the input image size.

3.2 Segment-wise unsupervised labeling

Next, we produce pseudo-labels for all extracted segments in the image space
without using any supervision. To that end, we leverage the recent ViT [19]
model pre-trained in a fully unsupervised fashion [10] which has shown impres-
sive results on various downstream tasks. We use this representation for unsu-
pervised learning of pseudo-labels as described next and illustrated in Figure 4.

Considering the image I, we crop a tight rectangular region in the image
around each segment sjl € S’ obtained using the proposal mechanism described
in the previous section. We resize it and feed it to the ViT model to extract
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the feature f; corresponding to the output features of the CLS token. To limit
the influence of pixels outside the object segment, which may correspond to
other objects or the background, we mask out these pixels before computing
the features. We repeat this operation for all segments in each image I in the
training dataset and cluster the CLS token features using k-means algorithm,
thus discovering k clusters of visually similar segments. Therefore, each feature
f; and its corresponding segment s§ , is assigned a cluster id /; in 1, k].

To obtain a dense segmentation map M corresponding to the image I, we
assign discovered cluster ids to each pixel belonging to a segment in the image.
Additionally, we assign a predefined ignore label to pixels not covered by seg-
ments, which correspond to missing annotations. This allows us to construct a
set M of dense maps of pseudo-annotations, which we later use as a pseudo-
ground-truth. Examples of resulting segmentation maps are shown in Figure 4.

3.3 Distillation with cross-modal spatial constraints

After previous steps have a set of pseudo-annotated segmentation maps M € M,
one for every image I in the training dataset. However, as explained above, the
pseudo-annotations are only partial, since the segments that were used to con-
struct them do not cover all pixels of an image. Furthermore, due to imperfections
in the segment extraction process or the segment clustering step, these annota-
tions are noisy. Using them to train an image segmentation model directly might
be sub-optimal. Instead, we propose a new teacher-student training approach
with cross-modal distillation, which is able to learn more accurate unsupervised
segmentation models under such partial and noisy pseudo-annotations.

Training the teacher. The first step of our teacher-student approach is to train
the teacher T to make pixel-wise predictions only on the pixels for which pseudo-
annotations are available, i.e., only for the pixels that belong to a segment. We
denote Y1 = T (I) € RZXW the segmentation predictions made by the teacher
model on image I with a resolution of H x W pixels. We train the teacher T
using loss L1 (I) and image I:

1
L) = Z CE (Y1, (h,w)s M(h,w)) Bw) (1)

Zhﬂu B(hxw) h,w

where CE is the cross-entropy loss measuring the discrepancy between the pre-
dicted labels Y and target pseudo-labels M for each pixel (h,w), and B is a
H x W binary mask for filtering out pixels without pseudo-annotations. The loss
is normalized by the number of pseudo-labeled pixels in the image. The trained
teacher T is then able to predict pixel-wise segmentation for all pixels in an
image, even if they do not belong to a segment. Moreover, since the teacher T
is trained on a large set of pseudo-annotated segments, it learns to smooth out
some of the noise in the raw pseudo-annotations.

Integrating spatial constraints. Considering this smoothing property, we can
exploit the trained teacher T for generating new, complete (instead of partial)
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Fig.5. Teacher prediction refinement using spatial constraints. First, the
teacher T is trained using loss £1 on images in Z together with segmentation maps in
M obtained from segment-wise unsupervised pseudo-labeling. The teacher predictions
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and smooth pseudo-segmentation maps for training images. In addition, we pro-
pose to refine these teacher-generated pseudo-segmentation maps by using the
projected LiDAR segments; indeed, these segments encode useful 3D spatial
constraints as they often correspond to complete 3D objects, thus respecting
the depth discontinuities and occlusion boundaries. In particular, for each image
segment, sg in image I, we apply majority voting to pixel-wise teacher predictions
Y inside the segment. Then we annotate each pixel belonging to the segment
with its most frequently predicted label, giving us a new refined segmentation
map Y € REXW  This procedure is illustrated in Figure 5.

Training the student. Having computed these complete, teacher-generated,
and spatially refined pseudo-segmentation maps YT, we train a student net-
work S using the following loss

1 R
Laistin(I) = W Z CE (YT,(h,w),YS,(h,w)) ; (2)

h,w

where the cross-entropy is computed between Y1 and the segmentation map
Ys € RTXW predicted by the student at the same resolution as the teacher. The
outputs of the trained student are our final unsupervised image segmentation
predictions. Further details about our training can be found in Section 4.1.

4 Experiments

In this section, we give the implementation details, compare our results with the
state-of-the-art unsupervised semantic segmentation methods on four different
datasets, and ablate the key components of our approach.



Drive&Segment 9

Methods and architectures. We investigate the benefits of our approach us-
ing two different semantic segmentation models to demonstrate the generality of
our method. We implement Drive&Segment with both a classical convolutional
model and a transformer-based architecture. For the convolutional architecture,
we follow [15] and use a ResNet18 [27] backbone followed by an FPN [35] de-
coder. For the transformer-based architecture, we use the state-of-the-art Seg-
menter [46] model. We use the ViT-S/16 [19] model as the Segmenter’s encoder
and use a single layer of the mask transformer [46] as a decoder. We compare
our method to three recent unsupervised segmentation models: IIC [31], mod-
ified version of DeepCluster [9] (DC), and PiCIE [15]. Please refer to [15] for
implementation details of ITC and DC.

Training. In the following, we first discuss how we obtain segment labels by k-
means clustering, then we talk about details of pre-training the model backbones,
which is followed by the discussion of the datasets for actual training of the
models. Finally, we give details of the training procedure.

K-means. We use k = 30 in the k-means algorithm (the ablation of the
value of k is in the appendix [52]. To extract segment-wise features used for k-
means clustering, we use CLS token features of the DINO-trained [10] ViT-S [19]
model. Obtained segment-wise labels serve as pseudo-annotations for training
the ResNet18-FPN and Segmenter models, as discussed in Section 3.2.

Pre-training data and networks. To be comparable to [15], in our experiments
with the ResNet18+FPN model, we initialize its backbone with a ResNet18
trained with supervision on the ImageNet-1k [18] classification task, exactly as
all the compared prior methods (PiCIE, DC, and IIC). However, as we aim for
a completely unsupervised setup, we initialize the ViT-S backbone of the Seg-
menter model with weights learned with the self-supervised approach DINO [10]
on ImageNet-1k [18]. The decoders of our models are randomly initialized.

Training datasets. We train our models on about 7k images from the Waymo
Open [47] dataset, which has both image and LiDAR data available. For the
baseline methods (IIC [31], modified DC [9] and PiCIE [15]), we take models
from PiCIE [15] codebase, i.e., models that are trained on all available images of
Cityscapes [16], meaning the 24.5k images from the train, test, and train_extra
splits. Note that those models then do not face the problem of domain gap when
evaluated on the Cityscapes [16] dataset. To be directly comparable with our
approach, we also train a variant of modified DC [9] and PiCIE [15] on the same
subset of the Waymo Open [47] dataset as used in our approach. Furthermore,
to test the generalizability of our method to other training datasets, we provide
results when training on the nuScenes [8] dataset in the appendix [52].

Optimization. To train IIC [31], modified DC [9], and PiCIE [15], we use the
setup provided in [15]. For our Drive&Segment, we train the teacher and student
models with batches of size 32 and with a learning rate of 2e—4 with a polynomial
schedule on a single V100 GPU. During training, we perform data augmentation
consisting of random image resizing in the (0.5,2.0) range, random cropping to
512 x 512 pixels, random horizontal flipping, and photometric distortions.
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Evaluation protocol. Mapping. To evaluate our models in the unsupervised
setup, we run trained models on every image, thus getting segmentation predic-
tions with values from 1 to k. Then, we compute the confusion matrix between
the C ground-truth classes of the target dataset and the k > C pseudo-classes.
We map the C ground-truth classes to C' out of the k pseudo-classes using
Hungarian matching [33]. The pixel predictions for the k — C' unmapped pseudo-
classes are considered as false negatives.

Test datasets. We evaluate our fully-unsupervised models on the full-resolution
images of Cityscapes [16], Dark Zurich [44], Nighttime driving [17] and ACDC [45]
datasets, without any finetuning (no samples from these datasets are ever seen
during training). Cityscapes [16] is a well-established dataset with 500 validation
images that we use for evaluation. Dark Zurich [44] and Nighttime driving [17] are
two nighttime datasets, each with 50 validation images annotated for semantic
segmentation that we use for evaluation. ACDC [45] is a recent dataset providing
four different adverse weather conditions with 400 training and 100 validation
samples per weather condition. We test our approach on the validation images
annotated for semantic segmentation. The Cityscapes dataset defines 30 differ-
ent semantic classes for the pixel-wise semantic segmentation task. Unless stated
otherwise, we follow prior work and evaluate our approach on the pre-defined
subset of 19 classes [16] for all datasets.

Metrics. Using the mapping, we evaluate the results using two standard met-
rics for the semantic segmentation task, the mean Intersection over Union, mloU,
and the pixel accuracy, PA, as done in prior work [15]. The mIoU is the mean
intersection over union averaged over all classes, while PA defines the percentage
of pixels in the image that are segmented correctly, averaged over all images.

4.1 Comparison to state of the art

Here we evaluate our trained models in the unsupervised setup using the eval-
uation protocol described above. We compare our method using both the Seg-
menter [46] and ResNet18+FPN models to three recent unsupervised segmen-
tation models: IIC [31], modified version of DeepCluster [9] (mod. DC), and
PiCIE [15]. In the appendix [52], we assess the utility of the features learned by
our model in other settings, such as k-NN pixel-wise classification, and linear
probing and fine-tuning for semantic segmentation.

We provide results on the Cityscapes, Dark Zurich, and Nighttime Driving
datasets in Table 1, and show qualitative results in Figure 6. As shown in the first
two columns of Table 1, our approach (D&S) outperforms [15] on the Cityscapes
dataset by a large margin in both the 19-class and 27-class set-ups. Improvements
are visible for both architectures, but the best results are usually obtained with
the distilled Segmenter architecture using the ViT-S/16 backbone. Our models
again outperform [15] in all setups. In addition, we observe a better performance
of our models compared to [15] when evaluating on the nighttime scenes. For
example, on the Dark Zurich [44] dataset, the mIoU of PiCIE [15] decreases by
71% compared to the results on Cityscapes (15.8 — 4.6), while the mIoU of our
Segmenter-based model decreases only by 35% (21.8 — 14.2). This suggests that
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Table 1. Comparison to the state of the art for unsupervised semantic seg-
mentation on Cityscapes [16] (CS), DarkZurich [44] (DZ) and Nighttime driving [17]
(ND) datasets measured by the mean IoU (mloU). The colored differences are reported
w.r.t. the SOTA approach of [15] denoted by &. The sup. init. abbreviation stands for
supervised initialization of the encoder, and the column train. data indicates whether
Cityscapes (CS) or Waymo Open (WO) dataset was used for training.

sup. train.| CS19 [16] | CS27 [16] | DZ [44] ND [17]
architecture, method init. data mloU mloU mloU mloU
RN18+FPN

1CT [31] yes CS | - 6.4 (-4.8) - -

Modified DC* [9] yes CS |11.3 (-4.5)| 7.9 (-3.3)| 7.5 (+2.9)] 8.2 (-1.3)
& PiCIE* [15] yes CS |15.8 11.2 4.6 9.5

Modified DC* yes WO |11.4 (-4.4)| 7.0 (-4.1)| 5.9 (+1.3)| 82 (-1.3)

PiCIE* ves WO |13.7 (-2.1)| 9.7 (-1.5)| 4.9 (+0.3)| 9.3 (-0.2)

D&S (Ours, S)  yes WO |19.5 (+3.7)[16.2 (+5.1)[10.9 (+6.3)|14.4 (+4.9)
Segmenter, ViT-S/16

D&S (Ours, S)  no WO |21.8 (+6.0)[15.3 (+4.1)|14.2 (+9.6)|18.9 (+9.3)

T Results reported in [15]
* Trained by PiCIE code base.

. ¥ Models provided by the PiCIE [15] authors.

Table 2. Comparison to the state-of-the-art for unsupervised semantic segmen-
tation on the ACDC [45] dataset. Please refer to Table 1 for the used symbols.

sup.train.| night fog rain snow average

arch., method init. data| mloU mloU mloU mloU mloU
RN18+FPN

mod. DC* [9] yes CS | 8.1 (+3.7)| 8.3 (-4.0)| 6.9 (-5.6)| 7.4 (-4.7)|| 7.7 (-2.6)
LPIiCIE* [15]  yes CS | 4.4 12.2 12.5 12.1 10.3

mod. DC* yes WO | 5.9 (+1.5)]11.7 (-0.5)| 9.6 (-2.9)] 9.8 (-2.3)|| 9.2 (-1.0)

PiCIE* yes WO | 4.7 (+0.3)]14.4 (+2.1)[13.7 (+1.2)|14.3 (+2.2)||{11.7 (+1.5)

D&S (Ours,S) yes WO [11.2 (+6.8)[14.5 (+2.3)14.9 (+2.5)[14.6 (+2.6)|[13.8 (+3.5)
Segmenter, ViT-S/16

D&S (Ours,S) no WO (13.8(+9.4)[18.1(+5.9)(16.4 (+3.9)[18.7 (+6.6)|[16.7 (+6.5)

our models generalize significantly better to out-of-distribution scenes. These
findings hold for PiCIE models trained on both Cityscapes and on Waymo Open.

Finally, Table 2 shows results on the ACDC dataset in four different weather
conditions. Results follow a similar trend as in Table 1 and show the superiority
of our approach measured by mloU compared to the current SoTA unsupervised
semantic segmentation method of [15] on images out of the training distribution,
such as images at night or in snow. Please see the appendix available in the
extended version of the paper [52] for the complete set of results, including
results using nuScenes, pixel accuracy, per-class results, and confusion matrices.
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Input Ground Truth Drive&Segment (Ours)

M road [l car [l verson [l sidewalk [l on rails [l vegetation | terrain [ buiding [l wall [ fence [l pole [l bicycle [l sky [ traffic sign || traffic light [l ignore

Fig.6. Qualitative results for unsupervised semantic segmentation using our
Drive&Segment approach. To obtain the matching between our pseudo-classes and
the set of ground-truth classes, we use the Hungarian algorithm. The first two rows
show samples from Cityscapes [16], and the three bottom rows show samples from the
night and fog splits of the ACDC [45] dataset. See appendix in [52] for more results.

4.2 Ablations

In this section, we ablate the main components of our approach, which we present
in Table 3, and discuss them in more detail below.

Segment extraction approach. To evaluate the benefits of our cross-modal
segment extraction module, we investigate using segment proposals generated
with a purely image-based segmentation approach by Felzenszwalb and Hut-
tenlocher (FH) [21]. It groups pixels into segments based on similar color and
texture properties. We use the same set of hyperparameters as [28]. The results
are shown in Table 3a and demonstrate clear benefits of our LiDAR-based cross-
modal segment extraction method despite the difficulties of using LiDAR data
discussed in Section 3.1. We attribute the better results of our approach to the
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Table 3. Ablations on the Cityscapes dataset. (a) Benefits of our segment
extraction method over segment proposals from [21]. (b) Benefits of our distillation
approach showing an improvement of the student (S) over the the teacher (T) and
benefits of our LiDAR cross-modal spatial constraints (LiD). (c¢) Ablation of different
feature extractors for the k-means clustering.

(a) Segment extraction (b) Distillation (c) Feature extractors
arch. model LiD.| mIoU PA arch.
seg. prop. mloU PA RN18+FPN method mloU PA
RN18+FPN PiCIE (T) 13.7 48.6 ViT-S/16
FH [21] 15.5 52.8 PiCIE (S) 14.8 (1.1) 64.1 (15.5) DeiT [49] 21.773.0
Ours 17.4 (+1.9)55.9 (s.1) PiCIE (S) V' [15.1 (+1.4) 68.4 (s19.8) DINO [10] 20.264.4
Segmenter Ours (T) 17.4 55.9 ResNet18
FH [21] |158 51.8 Ours (S) 18.8 (10) 634 75 supervised [27]| 19.670.0
Ours 20.4 (+4.8) 65.4 (+13.86) Ours (S) / 19.5 (:2.1) 66.4 (+10.5) ResNet50
Segmenter supervised [27]| 21.367.6
Ours (T) 20.4 65.4 OBOW [22] | 20.765.9
Ours (S) 20.8 :0.1) 68.5  (+3.1) PixPro [57] 20.7 65.9
Ours (S) v [21.8(:1.4)69.5 (-a.1) MaskCon. [50]| 19.168.0

fact that LiDAR data segmentation operates with range information, which is
much stronger at separating objects from the background and from each other
compared to the purely image-based approach of FH [21]. Indeed, FH relies only
on color/texture and is therefore much more likely to join multiple objects into
one segment or separate a single object into multiple segments. The benefits of
our cross-modal segment extraction are observed for both studied architectures.

Distillation with cross-modal spatial constraints. To evaluate the benefits
of our teacher-student distillation method with cross-modal spatial constraints
(Section 3.3), we compare the predictions of the teacher T (before distillation)
and the student S (after distillation). Table 3b presents results on the Cityscapes
dataset using both convolutional- and transformer-based architectures. The re-
sults show consistent improvements using our distillation technique, particularly
regarding the pixel accuracy metric. We believe that this could be attributed to
improvements in predictions for classes such as vegetation and buildings. They
often occupy large areas of the image and benefit most from the distillation as
they are usually not well covered by the LiDAR scans. Furthermore, the re-
sults show clear benefits of using this distillation step both with and without
cross-modal spatial constraints (LiD) by Student S outperforming Teacher T in
both scenarios. Please also note that our distillation technique works well even
in combination with another training approach (PiCIE [15]).

Sensitivity to the initialization. To study the influence of initialization, we
take the features extracted by DINO [10] and run the k-means clustering (Sec-
tion 3.2) four times. For each k-means clustering outcome, we run the segmen-
tation model training four times with different initializations. The variance over
all k-means and training runs is only 0.5 for mIoU and 1.5 for pixel accuracy
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(i.e., 20.4 £ 0.5/65.4 £ 1.5). These results clearly show that our method is not
very sensitive to k-means initialization or to the network initialization.

Feature extractors. An ablation of different convolutional and ViT feature ex-
tractors for the task of segment-wise unsupervised labelling is shown in Table 3c.
The results on the Cityscapes [16] dataset using our Segmenter model demon-
strate that our approach works well with several different feature extractors.

LiDAR resolution and number of clusters. Ablation of the influence of
LiDAR resolution is in the appendix [52] and demonstrates that our method is
robust to LiDAR’s sparsity. Furthermore, we study the choice of the number of
clusters for the k-means clustering in the appendix [52].

4.3 Limitations and failure modes

Our approach has the following three main limitations. First, LiDAR point
clouds do not provide information about very distant or even infinitely dis-
tant objects, e.g., the sky, which our approach cannot learn to segment. Second,
LiDAR point clouds paired with geometric segmentation can not correctly dis-
tinguish road from sidewalk or grass, when all surfaces are similarly flat. Both
the above limitations might be possibly tackled by pairing our LiDAR-based
segment proposals with an unsupervised image-based method such as [21], or by
introducing simple heuristics. Also, the LiDAR points must not be too sparse
(e.g., only 4 beams), since otherwise the LiDAR-based segments would be of poor
quality. However, this is not an overly restricting requirement as it is common to
use LiDAR sensors with sufficient beam resolution, e.g., as in the recent Waymo
Open [47] or ONCE [37] datasets. Finally, we encounter semantically similar
objects appearing in multiple pseudo-classes, a natural side effect of clustering.
This issue may be mitigated by using different feature clustering methods that
would allow the measurement of similarities on manifolds in the feature space.

5 Conclusion

We have developed Drive&Segment, a fully unsupervised approach for semantic
image segmentation in urban scenes. The approach relies on novel modules for
(i) cross-modal segment extraction and (ii) distillation with cross-modal con-
straints that leverage LiDAR point clouds aligned with images. We evaluate our
approach on four different autonomous driving datasets in challenging weather
and illumination conditions and demonstrate major gains over prior work. This
work opens up the possibility of large-scale autonomous learning of embodied
perception models without explicit human supervision.
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