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Abstract. Query-based transformer has shown great potential in con-
structing long-range attention in many image-domain tasks, but has
rarely been considered in LiDAR-based 3D object detection due to the
overwhelming size of the point cloud data. In this paper, we propose
CenterFormer, a center-based transformer network for 3D object de-
tection. CenterFormer first uses a center heatmap to select center candi-
dates on top of a standard voxel-based point cloud encoder. It then uses
the feature of the center candidate as the query embedding in the trans-
former. To further aggregate features from multiple frames, we design
an approach to fuse features through cross-attention. Lastly, regression
heads are added to predict the bounding box on the output center feature
representation. Our design reduces the convergence difficulty and compu-
tational complexity of the transformer structure. The results show signif-
icant improvements over the strong baseline of anchor-free object detec-
tion networks. CenterFormer achieves state-of-the-art performance for a
single model on the Waymo Open Dataset, with 73.7% mAPH on the val-
idation set and 75.6% mAPH on the test set, significantly outperforming
all previously published CNN and transformer-based methods. Our code
is publicly available at https://github.com/TuSimple/centerformer

Keywords: LiDAR point cloud, 3D Object detection, Transformer, Multi-
frame fusion

1 Introduction

LiDAR is an important sensing and perception tool in autonomous driving due
to its ability to provide highly accurate 3D point cloud data of the scanned envi-
ronment. LiDAR-based 3D object detection aims to detect the bounding boxes
of the objects in the LiDAR point cloud. Compared to image-domain object de-
tection, the scanned points in LiDAR data may be sparse and irregularly spaced
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Fig. 1: The comparison of CenterFormer with RCNN-style detector.
RCNN aggregates point or grid features in RoI, while CenterFormer can learn
object-level contextual information and long range features through an attention
mechanism.

depending on the distance from the sensor. Most recent methods rely on dis-
cretizing the point clouds into voxels [58,47] or projected bird’s eye view (BEV)
feature maps [18] to use 2D or 3D convolution networks. Sometimes, it requires
a second stage RCNN [11]-style refinement network to compensate for the infor-
mation loss in the voxelization. However, current two-stage networks [34,51] lack
contextual and global information learning. They only use the local features of
the proposal (RoI) to refine the results. The features in other boxes or neigh-
boring positions that could also be beneficial to the refinement are neglected.
Moreover, the environment of the autonomous driving scene is not stationary.
The local feature learning has more limitations when using a sequence of scans.

In the image domain, transformer encoder-decoder structure has become a
competitive method for the detection [4,62] and segmentation [42,2] tasks. The
transformer is able to capture long-range contextual information in the whole
feature map and different feature domains. One of the most representative meth-
ods is DETR [4], which uses the parametric query to directly learn object infor-
mation from an encoder-decoder transformer. DETR is trained end-to-end as a
set matching problem to avoid any handcrafting processes like non-maximum
suppression (NMS). However, there are two major problems in the DETR-
style encoder-decoder transformer network: First, the computational complexity
grows quadratically as the input size increases. This limits the transformer to
take only low-dimensional features as input which leads to low performance on
small objects. Second, the query embedding is learned through the network so
that the training is hard to converge.

Can we design a transformer encoder-decoder network for the LiDAR point
cloud in order to better perceive the global connection of point cloud data?
Considering the sheer size of LiDAR point cloud data, and the relatively small
sizes of objects to be detected, voxel or BEV feature map representations need
to be large enough to keep the features for such objects to be separable. As a
result, it is impractical to use the transformer encoder structure on the feature
map due to the large input size. In addition, if we use a large feature map for the
transformer decoder, the query embedding is also difficult to focus on meaningful



CenterFormer: Center-based Transformer for 3D Object Detection 3

attention during training. To mitigate these converging problems, one solution
is to provide the transformer with a good initial query embedding and confine
the attention learning region to a smaller range. In the center-based 3D object
detection network [51], the feature at the center of an object is used to capture
all object information, hence the center feature is a good substitute for the object
feature embedding. Multi-scale image pyramid and deformable convolution [16]
are two common methods to increase the receptive field of the feature learning
without significantly increasing the complexity. Some recent works [62,15] apply
these two methods in the transformer networks.

Taking the aforementioned aspects into consideration, we propose a center-
based transformer network, named Center Transformer (CenterFormer),
for 3D object detection. Specifically, we first use a standard voxel-based backbone
network to encode the point cloud into a BEV feature representation. Next, we
employ a multi-scale center proposal network to convert the feature into different
scales and predict the initial center locations. The feature at the proposed center
is fed into a transformer decoder as the query embedding. In each transformer
module, we use a deformable cross attention layer to efficiently aggregate the
features from the multi-scale feature map. The output object representation
then regresses to other object properties to create the final object prediction.
As shown in Figure 1, our method can model object-level connection and long-
range feature attention. To further explore the ability of the transformer, we also
propose a multi-frame design to fuse features from different frames through cross-
attention. We test CenterFormer on the large scale Waymo Open Dataset [38]
and the nuScenes dataset [3]. Our method outperforms the popular center-based
3D object detection networks which are dominant on public benchmarks by
a large margin, achieving state-of-the-art performance, with 73.7% and 75.6%
mAPH on the waymo validation and test sets, respectively. The contributions of
our method can be summarised as follows:

– We introduce a center-based transformer network for 3D object detection.
– We use the center feature as the initial query embedding to facilitate learning

of the transformer.
– We propose a multi-scale cross-attention layer to efficiently aggregate neigh-

boring features without significantly increasing the computational complex-
ity.

– We propose using the cross-attention transformer to fuse object features
from different frames.

– Our method outperforms all previously published methods by a large margin,
setting a new state-of-the-art performance on the Waymo Open Dataset.

2 Related Work

2.1 LiDAR-based 3D Object Detection

Compared to the well-established point cloud processing networks like Point-
Net [31] and PointNet++ [32], most recent LiDAR detection and segmentation
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methods [58,18,54,59,61] voxelize the point cloud in a fixed 3D space into a
BEV/voxel representation and use conventional 2D/3D convolutional networks
to predict the 3D bounding boxes. Other methods [44,1,39,9] detect the objects
on a projected range image. There are also some methods that use hybrid fea-
tures along with the voxel network [34,30,49], and combine multi-view features
in the voxel feature representation [34]. VoxelNet [58] uses a PointNet inside
each voxel to encode all points into a voxel feature. This feature encoder later
became an essential method in voxel-based point cloud networks. PointPillar [18]
proposes the pillar feature encoder to directly encode the point cloud into the
BEV feature map so that only 2D convolution is needed in the network.

Similar to image object detection, 3D object detection methods can be di-
vided into anchor-based [36,34,18,47] and anchor-free [51,10] methods. Anchor-
based methods detect objects through a classification of all predefined object
anchors, while anchor-free methods generally consider objects as keypoints and
find those keypoints at the local heatmap maxima. Even though anchor-based
methods can achieve a good performance, they rely heavily on hyper-parameter
tuning. On the other hand, as the anchor-free methods become more prevailing in
image-domain tasks, many 3D and LiDAR works have adopted the same design
and show a more efficient and competitive performance. Many works [34,20,6,24]
also require an RCNN-style second stage refinement. Feature maps for each
bounding box proposal are aggregated through RoIAlign or RoIPool. Center-
Point [51] detects objects using center heatmap and regresses other bounding
box information using center feature representation.

Most methods directly concatenate points from different frames based on
the ego-motion estimation to use the multi-frame information. This assumes the
model can align object features from different frames. However, independently
moving objects cause misalignment of features across frames. Recent multi-frame
methods [14,50] use an LSTM or a GNNmodule to fuse the previous state feature
with the current feature map. 3D-MAN [48] uses a multi-frame alignment and
aggregation module to learn the temporal attention of predictions from multiple
frames. The feature of each box is generated from the RoI pooling.

2.2 Vision Transformer

Originally proposed in the Natural Language Processing (NLP) community,
transformer [40] is becoming a competitive feature learning module in computer
vision. Compared to traditional CNN, the transformer has a bigger receptive
field, and feature aggregation is based on the response learned directly from pair-
wise features. A transformer encoder [7,52,15] usually serves as a replacement for
the convolution layer in the backbone network. Meanwhile, the transformer de-
coder uses high-level query feature embedding as the input and extracts features
from feature encoding through cross-attention, which is more common in detec-
tion and segmentation tasks [4,62,57,42]. DETR [4] uses a transformer encoder-
decoder structure to predict objects from learned query embedding. Deformable
DETR [62] improves the DETR training through a deformable attention layer.
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Some recent methods [22,26,53] show that DETR is easier to converge using
guidance like anchor boxes.

2.3 3D Transformer

An important design in transformer structure is the position embedding due to
permutation invariance of the transformer input. However, 3D point clouds al-
ready have position information in them, which leads to deviance in the design
of 3D transformers. Point transformer [56] proposes a point transformer layer in
the PointNet structure, where the position embedding in the transformer is the
pairwise point distances. 3DETR [27] and [23] use a DETR-style transformer
decoder in the point cloud except that the query embedding in the decoder is
sampled from Farthest Point Sampling (FPS) and learned through classification.
Voxel Transformer [25] introduces a voxel transformer layer to replace the sparse
convolution layer in the voxel-based point cloud backbone network. SST [8] uses
a Single-stride Sparse Transformer as the backbone network to prevent infor-
mation loss in downsampling of the previous 3D object detector. CT3D [33]
uses a transformer to learn a refinement of the initial prediction from local
points. In contrast to the above methods, our CenterFormer tailors the DETR
to work on LiDAR point clouds with lower memory usage and faster conver-
gence. Moreover, CenterFormer can learn both object-level self-attentions and
local cross-attentions without requiring a first-stage bounding box prediction.

3 Method

3.1 Preliminaries

Center-based 3D Object Detection is motivated by the recent anchor-free
image-domain object detection methods [19,17]. It detects each object as a center
keypoint by predicting a heatmap on the BEV feature map. Given the output
of a common voxel point cloud feature encoder M ∈ Rh∗w∗c, where h and w are
the BEV map size and c is the feature dimension, center-based LiDAR object
detection predicts both a center heatmap H ∈ Rh∗w∗l and the box regression
B ∈ Rh∗w∗8 through two separated heads. Center heatmap H has l channels,
one for each object class. In training, the ground truth is generated from the
Gaussian heatmap of the annotated box center. Box regression B contains 8
object properties: the grid offset from the predicted grid center to the real box
center, the height of the object, the 3D size, and the yaw rotation angle. During
the evaluation, it takes the class and regression predictions at the top N highest
heatmap scores and uses NMS to predict the final bounding box.

Transformer Decoder aggregates features from the source representation
to each query based on the query-key pairwise attention. Each transformer mod-
ule consists of three layers: A multi-head self-attention layer, a multi-head cross-
attention layer, and a feed-forward layer. In each layer, there is also a skip con-
nection that connects the input and the output features and layer normalization.
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Fig. 2: The overall architecture of CenterFormer. The network consists of four
parts: a voxel feature encoder that encodes the raw point cloud into a BEV
feature representation, a multi-scale center proposal network (CPN), the center-
based transformer decoder, and a regression head to predict the bounding box.

Let fq and fk be the query feature and key feature. The multi-head attention
can be formulated as:

fout
i =

M∑
m=1

Wm[
∑
j∈Ωj

σ(
QiKj√

d
) · Vj ] (1)

Qi = fq
i Wq + Epos

i ,Kj = fk
j Wk + Epos

j , Vj = fk
j Wv (2)

where i and j are the indices of query feature and source feature respectively,
m is the head index, Ωj is the set of attending key features, σ is the softmax
function, d is the feature dimension, Epos is the position embedding and W
is the learnable weight. In the self-attention layer, the query feature and the
key feature come from the same set of query feature embedding, while in the
cross-attention layer, the set of key features is the source feature representation.

3.2 Center Transformer

The architecture of our model is illustrated in Figure 2. We use a standard
sparse voxel-based backbone network [51] to process each point cloud into a
BEV feature representation. We then encode the BEV feature into a multi-scale
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Fig. 3: Illustration of the cross-attention layer. (Left) Multi-scale cross-
attention. (Right) Multi-scale deformable cross-attention.

feature map and predict the center proposals. The proposed centers are then
used as the query feature embedding in a transformer decoder to aggregate
features from other centers and from multi-scale feature maps. Finally, we use
a regression head to predict the bounding box at each enhanced center feature.
In our multi-frame CenterFormer, the last BEV features of frames are fused
together in both the center prediction stage and the cross-attention transformer.

Multi-scale Center Proposal Network A DETR-style transformer encoder
requires the feature map to be compressed into a small size so that the compu-
tation cost is acceptable. This makes the network lose fine-grained features that
are crucial for the detection of small objects, which typically occupy < 1% of
the space in the BEV map. Therefore, we propose a multi-scale center proposal
network (CPN) to replace the transformer encoder for the BEV feature. In or-
der to prepare a multi-scale feature map, we use a feature pyramid network to
process the BEV feature representation into three different scales. At the end
of each scale, we add a convolutional block attention module (CBAM) [43] to
enhance the feature via channel-wise and spatial attention.

We use a center head on the highest scale feature map C to predict an l-
channel heatmap of object centers. Each channel contains the heatmap score of
one class. The location of the top N heatmap scores will be taken out as the
center proposals. We used N = 500 in our experiments empirically.

Multi-scale Center Transformer Decoder We extract the features at the
proposed center locations as the query embedding for the transformer decoder.
We use a linear layer to encode the location of the centers into a position embed-
ding. Traditional DETR decoder initializes the query with a learnable parameter.
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Consequently, the attention weights acquired in the decoder are almost the same
among all features. By using the center feature as the initial query embedding,
we can guide the training to focus on the feature that contains meaningful ob-
ject information. We use the same self-attention layer in the vanilla Transformer
decoder to learn contextual attention between objects. The complexity of com-
puting the cross-attention of a center query to all multi-scale BEV features is
O(

∑S
s=1 HsWsK). Since the BEV map resolution needs to be relatively large to

maintain the fine-grained features for small objects, it is impractical to use all
BEV features as the attending keypoints. Alternatively, we confine the attending
keypoints to a small 3×3 window near the center location at each scale, as illus-
trated in Figure 3. The complexity of this cross-attention is O(9SK), which is
more efficient than the normal implementation. Because of multi-scale features,
we are able to capture a wide range of features around proposed centers. The
Multi-scale cross-attention can be formulated as:

MSCA(p) =

M∑
m=1

Wm[

S∑
s=1

∑
j∈Ωj

σ(
QiK

s
j√

d
) · V s

j ], (3)

where p denotes the center proposal, Ωj here is the window around the center,
and s is the index of the scale. The feed-forward layer is also kept unchanged.

Multi-scale Deformable Cross-attention layer Inspired by [62], we also
used a deformable cross-attention layer to sample the attending keypoints auto-
matically. Figure 3 shows the structure of the deformable cross-attention layer.
Compared to the normal multi-head cross-attention layer, deformable cross-
attention uses a linear layer to learn 2D offsets∆p of the reference center location
p at all heads and scales. The feature at p +∆p will be extracted as the cross-
attention attending feature through bilinear sampling. We use a linear layer to
directly learn the attention scores from the query embedding. Features from
multiple scales are aggregated together to form the cross-attention layer output:

MSDCA(p) =

M∑
m=1

Wm[

S∑
s=1

K∑
k=1

σ(WmskC(p))xs(p+∆pmsk)], (4)

where xs is the multi-scale BEV feature, C(p) is the center feature, and σ(WmskC(p))
is the attention weight. We used K = 15 in our experiments.

3.3 Multi-frame CenterFormer

Multi-frame is commonly used in 3D detection to improve performance. Current
CNN-based detectors cannot effectively fuse features from a fast-moving object,
while the transformer structure is more suitable for the fusion due to the atten-
tion mechanism. To further explore the potential of CenterFormer, we propose
a multi-frame feature fusing method using the cross-attention transformer. As
shown in Figure 2, we process each frame individually using the same backbone
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Fig. 4: The network structure of spatial-aware fusion. To focus on the
current centers, we use current BEV feature as the reference to learn attention.

network. The last BEV feature of the previous frames is transformed to current
coordinates and fused with the current BEV feature in both the center head and
cross-attention layer.

Due to object movements, the center of an object may shift in different
frames. Since we only need to predict the center in the current frame, we use a
spatial-aware fusion in the center head to alleviate the misalignment error. As
shown in Figure 4, the spatial-aware module uses a similar spatial attention layer
as CBAM [43] to calculate pixel-wise attention based on the current BEV feature.
We concatenate the current BEV feature and weighted previous BEV feature and
use an additional convolution layer to fuse them together. We also add the time
embedding to the BEV features based on their relative time. Finally, we feed
the output fused features to the center head to predict the center candidates.

In the cross-attention layer, we use the location of the center proposal to find
the corresponding features in the aligned previous frames. The extracted features
will be added to the attending keys. Since our normal cross-attention design uses
features in a small window close to the center location, it has limited learnability
if the object was out of the window area due to fast movement. Meanwhile, our
deformable cross-attention is able to model any level of movement, and is more
suitable for the long time-range case. Because our multi-frame model only needs
the final BEV feature of the previous frame, it is easy to be deployed to the
online prediction by saving the BEV feature in a memory bank.

3.4 Loss Functions

Besides the general classification and regression loss functions, we add two ad-
ditional loss functions to better account for the center-based object detection.
First, Inspired by the design in CIA-SSD [45], we move the IoU-aware confidence
rectification module from the second stage of other methods to the regression
head. More specifically, we predict an IoU score iou for each bounding box pro-
posal, which is supervised with the highest IoU between the prediction and all
ground truth annotations in a smooth L1 loss. During the evaluation, we rectify
the confidence score with the predicted IoU score using α′ = α ∗ iouβ , where
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α is the confidence score and β is a hyperparameter controlling the degree of
rectification. Second, similar to [55,13], we also added a corner heatmap head
alongside the center heatmap head as auxiliary supervision. For each box, we
generate the corner heatmap of four bounding box edge centers and the object
center using the same methods to draw the center heatmap except that the
Gaussian radius is half size. During training, we supervise the corner prediction
with an MSE loss on the region where the ground truth heatmap score is above
0.

The final loss used in our model is the weighted combination of the following
four parts: L = whmLhm+wregLreg+wiouLiou+wcorLcor. We use focal loss [21]
and L1 loss for the heatmap classification and box regression. The weights of
heatmap classification loss, box regression loss, IoU rectification loss, and corner
classification loss are [1, 2, 1, 1], respectively, in our experiment.

4 Experiments

We present our experimental results on two large-scale LiDAR object detection
benchmarks: Waymo Open Dataset [38] and nuScenes dataset [3]. Due to page
limitation, the experimental results on the nuScenes dataset, more analysis as
well as the details on the choice of network parameters, and additional visual-
izations are included in the supplementary material.

4.1 Dataset

Waymo Open Dataset (WOD) is a large-scale LiDAR point cloud dataset for
the autonomous driving environment. It contains 700, 150, and 150 sequences
for training, validation, and testing, respectively. Each sequence is 20-second
long, captured by a 10 FPS LiDAR sensor with 64 lines in 360◦. WOD provides
bounding box annotations for three classes: vehicles, pedestrians, and cyclists.
The evaluation metrics used in WOD are mean average precision (mAP) and
mAP weighted by heading accuracy (mAPH). The evaluation is split into two
levels of difficulty, where LEVEL 1 denotes that there are at least 5 points on
the object and LEVEL 2 denotes that there is at least 1 point on the object. We
set the range of the 3D voxel space as [−75.2m, 75.2m] for the X and Y axes, and
[−2m, 4m] for the Z axis. The size of each voxel is set to (0.1m, 0.1m, 0.15m).

4.2 Implementation Details

We follow the same VoxelNet backbone network design as [60,51,34]. In our cen-
ter proposal network, we process the output of the BEV feature into three scales
through one upsample layer and one downsample layer. We set the transformer
layer/head numbers to 3/4 when using the normal cross-attention, and to 2/6
when using the deformable cross-attention. During evaluation, we use the NMS
IoU threshold of [0.8, 0.55, 0.55] and β = [1, 1, 4] for vehicle, pedestrian and cy-
clist. For our 8 frames model, we use β = [1, 1, 1] to get a better result for the
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Table 1: The detection results on WOD validation set. †: Deformable Center-
Former. ‡ Reported by PVRCNN++.

Method Frame
Vehicle L1

(mAP/APH)
Vehicle L2

(mAP/APH)
Pedestrain L1
(mAP/APH)

Pedestrain L2
(mAP/APH)

Cyclist L1
(mAP/APH)

Cyclist L2
(mAP/APH)

Mean L2
mAPH

StarNet [28] 1 55.1/54.6 48.7/48.3 68.3/60.9 59.3/52.8 - / - - / - -

SECOND‡ [47] 1 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.1 57.2
LiDAR R-CNN [20] 1 73.5/73.0 64.7/64.2 71.2/58.7 63.1/51.7 68.6/66.9 66.1/64.4 60.1
Part-A2 [37] 1 77.1/76.5 68.5/68.0 75.2/66.9 66.2/58.6 68.6/67.4 66.1/64.9 63.8
3D-MAN [48] 16 74.5/74.0 67.6/67.2 71.7/67.7 62.6/59.9 - / - - / - -
PVRCNN++ [35] 1 78.8/78.2 70.3/69.7 76.7/67.2 68.5/59.7 69.0/67.6 66.5/65.2 64.9
CenterPoint [51] 1 - / - - /67.9 - / - - /65.6 - / - - /68.6 67.4
CenterPoint [51] 2 - / - - /69.7 - / - - /70.3 - / - - /70.9 70.3

CenterFormer 1 75.0/74.4 69.9/69.4 78.0/72.4 73.1/67.7 73.8/72.7 71.3/70.2 69.1

CenterFormer† 1 75.2/74.7 70.2/69.7 78.6/73.0 73.6/68.3 72.3/71.3 69.8/68.8 69.0
CenterFormer 2 77.1/76.6 72.2/71.7 80.9/77.6 76.2/73.0 76.0/75.1 73.6/72.7 72.5

CenterFormer† 2 77.0/76.5 72.1/71.6 81.4/78.0 76.7/73.4 76.6/75.7 74.2/73.3 72.8

CenterFormer† 4 78.1/77.6 73.4/72.9 81.7/78.6 77.2/74.2 75.6/74.8 73.4/72.6 73.2

CenterFormer† 8 78.8/78.3 74.3/73.8 82.1/79.3 77.8/75.0 75.2/74.4 73.2/72.3 73.7

cyclist. We also increase the center proposal number N to 1000 in evaluation.
We trained our model using AdamW optimizer with the one-cycle policy. We
trained the single-frame and multi-frame models on 8 Nvidia A100 GPUs with
batch sizes 32 and 16. Due to the memory limitation, 4 frames and 8 frames are
first split into two 2 frames and 4 frames mini-batch. The points from frames
in each mini-batch will be first concatenated together. Hence our multi-frame
model only needs to fuse two BEV features together. We apply the object copy
& paste augmentation during training with the same fade strategy in [41]. More
details are included in the supplementary material.

4.3 Object Detection Results

In Table 1, we show the results on the validation set. Anchor-free center-based
method CenterPoint achieves better performance than the anchor-based meth-
ods. PVRCNN++ is the best anchor-based method so far, yet shows weak per-
formance on small objects. This demonstrates the limitation of using manually
designed anchors for the detection of objects that have large size variations. Our
single frame model outperforms CenterPoint by 1.7%. Using a multi-frame model
can significantly increase the mAPH performance. Our 2/4/8 frames model
reaches the mAPH of 72.8%, 73.2% and 73.7%, respectively, becoming the new
state-of-the-art. The pedestrian class benefits most from the multi-frame since
the pedestrian point cloud suffers most from the occlusion and noise, as well
as its small size. The overall better performance verifies the effectiveness of our
proposed transformer model.

In Table 2, we show the single model results on the test set. The prediction
result is submitted to the online server for evaluation. Our method outperforms
all the previous methods by a large margin. The result on vehicle and pedestrian
classes have significant improvements (+3.8% and +3.1% on L2 mAPH) as a
result of the long-range contextual information learning of the transformer.

To fairly compare with more recent methods [25,6,24,33] that train the model
and report the result on only the vehicle class, we train the single frame Cen-
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Table 2: The single-model detection result on WOD testing set.

Method
Vehicle L1

(mAP/APH)
Vehicle L2

(mAP/APH)
Pedestrain L1
(mAP/APH)

Pedestrain L2
(mAP/APH)

Cyclist L1
(mAP/APH)

Cyclist L2
(mAP/APH)

Mean L2
mAPH

StarNet [28] 61.5/61.0 54.9/54.5 67.8/59.9 61.1/54.0 - / - - / - -
PPBA [5] 64.6/64.1 56.2/55.8 69.7/61.7 63.0/55.8 - / - - / - -
M3DETR [12] 77.7/77.1 70.5/70.0 68.2/58.5 60.6/52.0 67.3/65.7 65.3/63.8 61.9
3D-MAN [48] 78.7/78.2 70.4/70.0 70.0/66.0 64.0/60.3 - / - - / - -
RSN [1] 80.7/80.3 71.9/71.6 78.9/75.6 70.7/67.8 - / - - / - -
PVRCNN++ [35] 81.1/80.6 73.7/73.2 80.3/76.3 74.0/70.2 75.1/73.8 72.4/71.2 71.5
CenterPoint [51] 81.1/80.6 73.4/73.0 80.5/77.3 74.6/71.5 74.6/73.7 72.2/71.3 71.9
SST 3f [8] 81.0/80.6 73.1/72.7 83.3/79.7 76.9/73.5 75.7/74.6 73.2/72.2 72.8
AFDetV2 [13] 81.7/81.2 74.3/73.9 81.3/78.1 75.5/72.4 76.4/75.4 74.1/73.0 73.1

CenterFormer 84.7/84.4 78.1/77.7 84.6/81.8 79.4/76.6 75.5/74.5 73.3/72.4 75.6

Table 3: The comparison of single-frame CenterFormer (trained on vehicle only)
with other methods on WOD validation set for vehicle class.

Method Ref L2 mAP L2 mAPH

C
N

N

RSN [1] CVPR 2021 66.0 65.5
Voxel R-CNN [25] AAAI 2021 66.6 -

Pyramid R-CNN [24] ICCV 2021 67.2 66.7
LiDAR R-CNN [20] CVPR 2021 68.3 67.9

CenterPoint [51] CVPR 2021 - 67.9
AFDetV2 [13] AAAI 2022 69.7 69.2

BtcDet [46] AAAI 2022 70.1 69.6
PVRCNN++ [35] arXiv 2021 70.3 69.7

T
ra

n
sf

o
rm

er

BoxeR-3D [29] CVPR 2022 63.9 63.7
Voxel transformer [25] ICCV 2021 65.9 65.3

M3DETR [12] WACV 2022 66.6 66.0
3D-MAN [48] CVPR 2021 67.6 67.1

SST 1f [8] CVPR 2022 68.0 67.6
CT3D [33] ICCV 2021 69.0 -

CenterFormer ECCV 2022 70.5 70.0

terFormer only on Vehicle class too. We show the results in Table 3. As shown
in the table, even with the simplest design, CenterFormer outperforms both the
recent transformer-based methods and CNN-based baselines.

4.4 Ablation Study

In Table 4, we investigate the effect of each added component in our method on
a single frame. We use the previous center-based method as the baseline. After
changing the RPN to multi-scale CPN and separating the detection into the
center proposal and box regression, our method reaches a similar performance
despite we flatten the regression head to 1D. The transformer self-attention layer
and cross-attention layer both can improve the results, and when used together,
the result reaches 67.0%. This indicates that the self-attention layer and the
cross-attention layer learn features separately. Corner auxiliary supervision can
additionally improve the result by 0.1%. On the other hand, deformable cross-
attention achieves a better result of 67.3%. When trained with IoU rectification,
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Table 4: The ablation of the LEVEL 2 mAPH result improvement of each com-
ponent on the validation set using single frame. SA, CA and DCA denote the
self-attention layer, cross-attention layer and deformable cross-attention layer.
IoU and Corner denote IoU rectification and Corner auxiliary supervision. Fade
denotes the fade augmentation strategy.

CPN SA CA Corner DCA IoU Fade Vehicle Pedstrain Cyclist Mean

66.4 63.4 67.8 65.9
✓ 68.5 62.7 67.0 66.1
✓ ✓ 68.7 64.5 67.3 66.8
✓ ✓ 68.7 64.2 66.7 66.5
✓ ✓ ✓ 69.3 64.8 66.8 67.0

✓ ✓ ✓ ✓ 69.5 65.3 66.4 67.1
✓ ✓ ✓ ✓ ✓ 69.5 66.9 69.7 68.7
✓ ✓ ✓ ✓ ✓ ✓ 69.4 67.7 70.2 69.1

✓ ✓ ✓ ✓ 69.3 65.1 67.5 67.3
✓ ✓ ✓ ✓ ✓ 69.2 66.7 69.1 68.3
✓ ✓ ✓ ✓ ✓ ✓ 69.7 68.3 68.8 69.0

the results get a significant boost to 68.7% and 68.3% for the models using cross-
attention and deformable cross-attention. The fade augmentation strategy can
further improve the result by 0.4% and 0.7%. This is because the model can
adjust to the real data distribution at the end of the training.

4.5 Analysis

Comparison with deformable DETR Deformable DETR [62] aims to speed
up the learning speed and reduce the computation cost in the DETR struc-
ture. Compared to Deformable DETR, our method has three major differences.
First, we completely remove the transformer encoder to enable a larger encoded
feature map. Second, we use the center feature rather than the learnable pa-
rameter as the query embedding for the transformer decoder. Experiment shows
that using the center feature as the initial query embedding outperforms the
parametric embedding by 1.5% mAPH. This is because the center feature al-
ready contains object-level information, which makes it easier to learn pairwise
attentions. Third, we use a similar training strategy as [51] rather than the end-
to-end set matching training strategy. The set matching training is known for
being hard to converge. Since we already have an initial center proposal, we can
limit the network to learn only when the proposal is close to the ground truth
annotation to speed up the training. Experiment shows that if we use the same
set matching training strategy in DETR, the mAPH result is 46.3%, which is
more than 20% lower than our current training method.

Visualization of the learned attention The visualizations of the learned
self- and cross-attention are illustrated in Figure 5. The self-attention learning is
mainly focusing on the feature of the same class or nearby objects that have the
same attributes. For instance, the vehicles on the same line or same parking area
will have higher attention weight. The offsets learned by the deformable attention
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Ground Truth Bounding Box Self-Attention Deformable Cross-Attention (Three Scales)

Fig. 5: The visualization of the learned self- and cross-attention weight.
The lightness or darkness of the color represents the value of attention weight.
The red box denotes the ground truth box and blue box denotes the predicted
box. In cross-attention, the sampled keypoints are drawn with red, green and
blue for the scale from low to high. Best viewed in color.

layer vary among different scales. The offsets in two lower scales mostly lead to
the keypoints inside or around the object, whereas the offsets in the higher scale
can sample far-range features.

5 Conclusion

In this paper, we propose a novel center-based transformer for 3D object de-
tection. Our method provides a solution to improve the anchor-free 3D ob-
ject detection network through object-level attention learning. Compared to the
DETR-style transformer networks, we use the center feature as the initial query
embedding in the transformer decoder to speed up the convergence. We also
avoid high computational complexity by focusing the cross-attention learning of
each query in a small multi-scale window or a deformable region. Results show
that the proposed method outperforms the strong baseline in the Waymo Open
Dataset, and reaches state-of-the-art performance when extended to multi-frame.
We hope our design will inspire more future work in query-based transformers
for LiDAR point cloud analysis.
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