
Physical Attack on Monocular Depth Estimation
with Optimal Adversarial Patches

Zhiyuan Cheng1, James Liang2, Hongjun Choi1, Guanhong Tao1, Zhiwen
Cao1, Dongfang Liu2,∗, and Xiangyu Zhang1,∗

1 Purdue University
2 Rochester Institute of Technology

{cheng443, choi293, taog, cao270, xyzhang}@cs.purdue.edu
{jcl3689, dongfang.liu}@rit.edu

Appendix

This document provides more details about our work and additional experimen-
tal settings and results. We organize the content of Appendix as follows:

• §A: Optimizing multiple patch regions.
• §B: Style transfer loss terms.
• §C: MDE model selection criteria.
• §D: Transferability evaluation.
• §E: More ablation studies.
• §F: Physical world experiments settings.
• §G: 3D object detection settings.
• §H: Defence methods and discussion.

A Optimizing multiple patch regions

The patch region does not have to be one part. There could be multiple patches
on the target object and our regional optimization technique also supports opti-
mizing multiple patches. In this case, the final patch mask is the sum of multiple
sub-masks with each sub-mask representing one rectangular region. The final
mask is defined in Equation A1, where mΘi

p refers to the i-th sub-mask and Θi

denotes its boundary parameters and clamp() is a function to restrict the mask
values in between 0 and 1. The mask loss Lm is also the sum of all sub-mask
loss terms.

mk
p = clamp(

k∑
i=0

mΘi
p , 0, 1) (A1)

Fig. A1 gives an example of the optimization process of 3× 3 initial patches.
As the optimization continues, some patches are minimized and disappear, and

* Corresponding authors



2 Z. Cheng, J. Liang et al.

the final patch is dominated by a single one when the target ratio is 1/9 of the
vehicle’s back view. We test optimizing with different initial patch setups and
the result is shown in Fig. A2. Each curve represents the change of attack effect
as the total patch ratio decreases and i× j refers to a initial setup of i rows and
j columns. As shown, when the target mask ratio is 1/9, different initial patch
setups have similar attack performance at the end with the same total patch
area. Thus, we mainly focus on optimization of a single patch (i.e., 1× 1 setup)
in our evaluation.

B Style transfer loss terms

Style Loss. Let F be the feature extraction network, which can be a pre-trained
CNN model, xs be the style reference image, x′ be the adversarial patch example
that we will update iteratively. The style loss is defined as the style distance
between target image and adversarial example:

Ls =

L∑
l=1

∥G(Fl(xs))−G(Fl(x
′))∥22 (A2)

, where Fl is the extracted features at the l-th layer of F and G is the Gram
matrix of the deep features. L is the total number of convolutional layers in F .

Content Loss. The content loss is designed to preserve the content of the
original image since the style loss could make the adversarial example different
a lot from the original one. It is defined in Equation A3:

Lc =

L∑
l=1

∥Fl(x)− Fl(x
′)∥22 (A3)

Fig.A1: Optimization with multiple
initial patches.

00.20.40.60.81
Totoal Mask Ratio

10

15

20

25

30

35

40

45

M
ea

n 
D

ep
th

 E
st

im
at

io
n 

E
rr

or
 (

m
)

1  1
3  3
5  5
7  7
9  9

Fig.A2: Optimization with multiple
initial patches.



Physical Attack on Monocular Depth Estimation 3

, where x is the original image (i.e., content image). The content loss is to make
sure the adversarial example and the original image have similar representation
in the deep feature space. In the beginning, the adversarial example is initialized
as the content image and the content loss is zero. Content loss will increase once
the adversarial example is updated.

Photorealism Regularization. This term introduced in [9] is to constrain the
reconstructed image (i.e., adversarial example) to be represented by locally affine
color transformations of the content image to prevent distortions [9], which could
make the generated image more realistic. Formally, it is built upon the Matting
Laplacian by Levin et al. [8] and defined as follows:

Lr =

3∑
c=1

Vc(x
′)⊤M(x)Vc(x

′) (A4)

, where c represents the c-th color channel and Vc(x
′) outputs the vectorized

version of the c-th channel of the adversarial example (i.e., Vc(x
′) ∈ RN×1,

where N is the number of pixels in image x′). M(x) ∈ RN×N is a matrix only
depending on content image x and it represents a standard linear system that
can minimize a least-square penalty function described in [8]. We refer readers
to the original article for a detailed derivation.

Smoothness loss. This loss is designed to reduce the difference between adja-
cent pixels and encourage a locally smooth output image. As pointed out in [14],
the smoothness term is useful in improving the robustness of a physical-world
adversarial examples. The smoothness loss is defined in Equation A5:

Lt =
∑
i,j

(
x′[i, j]− x[i+ 1, j])2 + (x′[i, j]− x[i, j + 1])2

) 1
2 (A5)

, where x[i, j] represents the pixel at i-th row and j-th column of image x.

C Model selection criteria

MDE models can be either trained with supervised method (using ground truth
depth collected by Lidar or depth camera) or unsupervised method (using video
frames or stereo image pairs). Unsupervised models are more attractive to indus-
try because one can easily collect a large amount of training data (e.g. videos)
with affordable RGB cameras or reuse existing videos at a low cost. Tesla has
declared that they use a self-supervised model in monocular depth estimation[5].
Hence, in our evaluation, we use three monocular depth estimation models: Mon-
odepth2 [7], Depthhints [16], and Manydepth [15]. We selected these models with
the following criteria.

(1) Representativeness. Among self-supervised monocular depth estimation
models, these models are most widely used in many previous research [17,12].
Monodepth2 [7] is one of most successful monocular depth estimation methods.
Depthhints [16] is an advanced model that improves performance via additional



4 Z. Cheng, J. Liang et al.

depth suggestion obtained from stereo algorithms. Manydepth [15] is the state-
of-the-art model that uses sequence information from multiple images to achieve
better performance.

(2) Practicality. We focus on self-supervised monocular depth estimation
models because they do not require ground truth depth data for training, which
is usually collected by high-priced Lidar sensors. In contrast, they require only
monocular videos or stereo pairs collected by RGB camera(s), enabling them
to collect data and train a model economically and efficiently. These techniques
have already been in production-level vision-based autonomous driving systems
such as Tesla Autopliot [5] and Baidu Apollo Lite [1].

(3) Open Model. The models are publicly available. In our evaluation, we use
models trained with both monocular videos and stereo pairs on KITTI dataset [6]
and the resolution of input images are 320×1024. These models are publicly
available in their project repository on GitHub [4,2,3]

D Transferability evaluation

Table A1: Transferability evaluation.

(a) Across Objects

V-A V-B V-C

V-A 12.84 7.89 9.66

V-B 9.11 10.23 5.37

V-C 6.36 8.72 11.58

(b) Across Networks

Many DH Mono

Many 5.876 1.926 4.649

DH 0.524 10.027 9.037

Mono 0.304 1.9 12.84

We evaluate the transferability
of our adversarial patch in two
phases: the transferability across
objects and the transferability
across networks. For objects, we
use three types of vehicles as our
target objects. They are a black
SUV (V-A), a blue sedan (V-B)
and a grey truck (V-C). We use
Monodepth2 as the target depth es-
timation model and generate ad-
versarial patch for these three ve-
hicles respectively. Then we paste each generated patch to three vehicles and
evaluate the attacking performance. For the transferability across networks, we
use the black SUV as target object and generate adversarial patches with three
kinds of monocular depth estimation models, then we evaluate the attacking per-
formance of each patch on the three networks respectively. Other experimental
setup is the same as the effectiveness evaluation and we report the mean depth
estimation error for attacks.

The result is shown in Table A1. In Table A1a, the first column denotes the
object for which the patch is generated and the first raw denotes the object to
which the patch is pasted. Observe that the adversarial patch generated from
one vehicle is also effective on other vehicles, which means that our adversarial
patch has a good transferability across objects. At the same time, the patch
optimized for the target object has the best attacking performance compared
with unmatched objects, which shows the effectiveness of our object-specific op-
timization. In Table A1b, the first column denotes the target network used to
generate the patch and the first row denotes the network used to evaluate the
attack. Results on the diagonal are white-box attacks and others are black-box



Physical Attack on Monocular Depth Estimation 5

attacks. Observe that all three models are vulnerable to white-box attacks, which
is consistent with our evaluation of attack effectiveness. For black-box attacks,
Monodepth2 is the most vulnerable since patches generated from other two net-
works have a strong effect on it while Manydepth and Depthhints are more
robust. In summary, our attack has a good transferability towards Monodepth2
but is less effective on Depth Hints and Manydepth.

E More ablation studies

Style transfer Weight. We also evaluated the impact of different style trans-
fer weight λ. Using a larger style transfer weight can generate more stealthy
adversarial patterns while having worse attack performance. This experiment
also shows the trade-off between stealthiness and attack effectiveness. We use
our default setting in all other experiments as a reference (i.e., λ = 1) and do
ablation study with different style transfer weights. We use Monodepth2 and the
vehicle as our target network and object. For a fair comparison, we fix the patch
region to the optimized region generated in our default setting and place the
vehicle at the same position on scene images in each test. Table A2 presents the
result. The first column is the style transfer weight parameter. The second and
third columns show the generated patch image and the corresponding depth gap
caused by the attack. The fourth and fifth columns are the two metrics we used to
evaluate attack performance. The last column reports the Structural Similarity
Index (SSIM) between the adversarial patch and the original style image, which
is a metric to measure the perceptual difference between two images, ranging
from 0 to 1, the higher, the more similar. As shown, using a larger style trans-
fer weight can generate more stealthy adversarial patterns while having worse
attack performance. Our default setting (λ = 1) makes a good balance between
them.

F Physical world experiments settings

In our physical world experiments, we use 2016 BMW X1 as our target object
and Monodepth2 as the target monocular depth estimation model. We first take

Table A2: Patches generated with different style transfer weights

λ Patch Image Depth Gap Ed Ra SSIM

0.1 11.09 0.373 0.108

1 7.69 0.246 0.575

10 1.44 0.003 0.924

100 0.65 0.001 0.993



6 Z. Cheng, J. Liang et al.

Fig.A3: Physical world experiments setup

a photo of the vehicle’s back view. Then we generate the adversarial patch with
our attack method as described in §3. Multiple background scenarios from the
dataset are used in this generation process. The vehicle with the generated patch
is shown in Fig. 9a. We print the patch and paste it on the optimized region
of the target vehicle to create an adversarial car. On the victim side, we use
iPhone 11’s back camera as the main camera of the victim vehicle. We drive the
victim vehicle following the target vehicle at a distance of 7-10 meters and record
the adversarial scenario while driving. Fig. A3 (a) and (b) show the inside and
outside view of our experimental setup. To explore the attack performance under
different conditions, we drive on three routes as shown in Fig. A3 (c), which
involves different lighting conditions (e.g., positions of the sun and shadows),
driving operations (e.g., going straight and turning), and different background
scenes and objects. We drive twice on each route, with the first one a benign case
and the second one an adversarial case. Specifically, in the first trip, we drive
without any patch, while in the second one, we drive with the patch pasted on
the target vehicle. We compare the monocular depth estimation of the benign
and the adversarial case to evaluate the effect of our patch. Specifically, we
report the mean depth estimation error Ed of the vehicle in both benign and
adversarial cases. As we can see in Fig. 4, the depth (z) of the vehicle can be
calculated with z = fH/s. So, given the focal length (f) of the camera and the
height of the vehicle in the physical world (H) and on the image plane (s), we
calculate the vehicle’s depth. We use this depth as vehicle’s depth ground truth
to calculate Ed. Also, we project the depth map to pseudo-Lidar point cloud and
use PointPillar network to do 3D object detection.

G 3D object detection settings

We use PointPillars as our point cloud-based 3D detection network. The original
model is trained with real Lidar data in KITTI object detection dataset. It
cannot be directly applied to our pseudo-Lidar data because of their different
density and distribution. Hence, we replace the real lidar data in the dataset
with corresponding pseudo-Lidar data and train our own model on the new
dataset. Specifically, we use Monodepth2 as the monocular depth estimation
model and generate pseudo-Lidar for all images in the KITTI object detection
dataset replacing original Lidar data. Then we train our PointPillar network
on the generated pseudo-Lidar dataset from scratch. The training is the same



Physical Attack on Monocular Depth Estimation 7

as original setup and the mean average precision (mAP) of our model on the
category of cars is 61.04, which is close to the performance in Apollo (i.e., 63.49).

In each scene, we place the adversarial vehicle at a distance of 7 meters in the
front of the victim vehicle, then we predict the depth of the scenario and project
the depth output to 3D space generating pseudo-Lidar point cloud. Next, we use
PointPillar to detect 3D objects in this scenario with the point cloud as input.
We evaluate on the three depth estimation models and a vehicle object, and use
three different target patch sizes in patch region optimization. We perform the
evaluation on 100 scenarios and report the attack success rate.

H Defence methods and discussion

In §4.5, we evaluated five popular defencing techniques. The introduction and
configuration details of these methods are as follows:
JPEG compression: This method uses JPEG image compressing algorithms
to compress the input before feeding to the depth estimation network. The com-
pressing operation is expected to disturb the subtle pixel-level adversarial noise
and defend the adversarial attack. In our evaluation, we use Python Image Li-
brary (PIL) to apply JPEG compression to the input and select the quality level
from 90 to 20. Lower quality argument means higher compression rate.
Bit-Depth Reduction: Typical RGB images have three channels and each
channel has an 8-bit depth. Pixel value of each channel ranges from 0 to 255.
Bit-depth reduction is to remap the 8-bit depth to a smaller bit depth. Lower
bit-depth has smaller color space and this remap operation can also disturb the
adversarial perturbation to defence the attack. In our experiments, we evaluated
four smaller bit-depth cases from 5 bits to 2 bits.
Median Blur: Median Blur is a method to smooth the image by calculating
the median of each pixel’s surrounding pixels within a certain kernel size. This
defence uses the smoothing effect to remove the adversarial noise. We use the
median filter implemented in SciPy and use square kernel size ranging from 5 to
25 in our experiments. Larger kernel size has stronger smoothing effect.
Gaussian Noise: This method adds Gaussian noise on the image to disturb the
adversarial perturbation since adversarial perturbation is also a kind of precise
noise designed to fool the network. The Gaussian noise we add to the image is
zero-mean and the standard deviation is from 0.01 to 0.1. As a reference, the
image data is normalized to [0, 1]. Gaussian noise with larger standard deviation
is stronger.
Autoencoder: The Autoencoder is a method proposed in Magnet [11] to defend
adversarial attacks. It uses neural networks to filter out the adversarial noise
which is not within the distribution of training dataset of the target model. The
neural network architecture differs according to dataset and the size of input
images, and in our evaluation we use architectures defined in the original work
(minist and cifar10) and the architectures designed in [13] (Arch-1 and Arch-
2) for large-size images. We train these networks with the KITTI dataset and
eliminate the 100 scenes used in our evaluation to avoid in-sample evaluation.

Besides those methods we evaluated above, adversarial training [10] is an
effective method to improve the robustness of DNN models against adversarial



8 Z. Cheng, J. Liang et al.

examples. However, traditional adversarial training is for supervised learning
which requires ground truth data while the depth estimation models we target
are trained in an unsupervised (i.e., self-supervised) way using videos and stereo
image pairs. Hardening self-supervised MDE models with adversarial training
effectively and efficiently is still an open problem and we leave it to future work.

Another direction is to fuse pseudo-lidar and RGB image. Since we consider
fully vision-based perception system, the defense cannot include other types
of sensors like Lidar, Radar or ultrasonic sensors. To avoid object detection
failure, one direction is to make full use of camera frames by fusing pseudo-Lidar
and RGB images. Although the point cloud of the target object is distorted
by the adversarial patch, the object can still be detected in the RGB image.
Fusing both sources may have more robust object detection result. Note that
this cannot fundamentally defeat our attack because the object detected in the
RGB image does not have depth information and the spatial relationship between
the detected target object and the victim vehicle can still be wrong. Also, fusion
does not solve the problem of wrong depth estimation.

References

1. Baidu unveils Apollo Lite Level 4 vision-based autonomous driving solution, https:
//autonews.gasgoo.com/m/Detail/70016068.html

2. Depth Hints Github, https://github.com/nianticlabs/depth-hints
3. Manydepth Github, https://github.com/nianticlabs/manydepth
4. Monodepth2 Github, https://github.com/nianticlabs/monodepth2
5. Tesla use per-pixel depth estimation with self-supervised learning, https://youtu.

be/hx7BXih7zx8?t=1334
6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti

vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

7. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth prediction (October 2019)

8. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image mat-
ting. IEEE transactions on pattern analysis and machine intelligence 30(2), 228–
242 (2007)

9. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
4990–4998 (2017)

10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

11. Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples.
In: Proceedings of the 2017 ACM SIGSAC conference on computer and communi-
cations security. pp. 135–147 (2017)

12. Ramamonjisoa, M., Firman, M., Watson, J., Lepetit, V., Turmukhambetov, D.:
Single image depth prediction with wavelet decomposition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (June 2021)

13. Sato, T., Shen, J., Wang, N., Jia, Y., Lin, X., Chen, Q.A.: Dirty road can attack:
Security of deep learning based automated lane centering under physical-world
attack. In: 30th {USENIX} Security Symposium ({USENIX} Security 21). pp.
3309–3326 (2021)

https://autonews.gasgoo.com/m/Detail/70016068.html
https://autonews.gasgoo.com/m/Detail/70016068.html
https://github.com/nianticlabs/depth-hints
https://github.com/nianticlabs/manydepth
https://github.com/nianticlabs/monodepth2
https://youtu.be/hx7BXih7zx8?t=1334
https://youtu.be/hx7BXih7zx8?t=1334


Physical Attack on Monocular Depth Estimation 9

14. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
2016 acm sigsac conference on computer and communications security. pp. 1528–
1540 (2016)

15. Watson, J., Aodha, O.M., Prisacariu, V., Brostow, G., Firman, M.: The Temporal
Opportunist: Self-Supervised Multi-Frame Monocular Depth. In: Computer Vision
and Pattern Recognition (CVPR) (2021)

16. Watson, J., Firman, M., Brostow, G.J., Turmukhambetov, D.: Self-supervised
monocular depth hints. In: The International Conference on Computer Vision
(ICCV) (October 2019)

17. Yang, N., Stumberg, L.v., Wang, R., Cremers, D.: D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1281–1292 (2020)


	Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches

