
ST-P3: End-to-end Vision-based Autonomous
Driving via Spatial-Temporal Feature Learning

Appendix

Shengchao Hu1†, Li Chen2∗, Penghao Wu1,3†, Hongyang Li1,2,
Junchi Yan1,2, and Dacheng Tao4

1 MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
2 Shanghai AI Laboratory, Shanghai, China

3 The University of California, San Diego, CA, USA
4 JD Explore Academy, JD.com Inc., Beijing, China
charles-hu@sjtu.edu.cn lichen@pjlab.org.cn

A Implementation Details of the Network

A.1 Architecture for Perception and Prediction

Spatial-Temporal Perception. For nuScenes dataset, we first crop and re-
size the original image R3×900×1600 to R3×224×480 and take the past 3 frames to
the model, denoted by Int ∈ R3×224×480, where t ∈ {1, 2, 3}, n ∈ {1, . . . , 6}. We
use EfficientNet-b4 [8] as the backbone, obtaining features fk

i ∈ RC×He×We and
depth estimation dki ∈ RD×He×We where C = 64, D = 48, He = 28,We = 60.
Note that the depth ranges from 2m to 50m with spacing 1m. After spreading
the feature across the entire ray of space according to the predicted depth dis-
tribution, camera images from all angles are denoted by uk

i ∈ RC×D×He×We .
Then with the ego-motion matrix, features for all surround cameras and times-
tamps could be transformed to the coordinate system centered at the SDV at
time t, resulting in ego-centric features {u′

i}. Finally the BEV features maps

bi ∈ RC×Hb×Wb could be sum pooled from {u′

i} with Hb = 200,Wb = 200.

In order to boost the features, we can integrate historical information to ev-
ery frame through an accumulation method in the temporal fusion step. Then
these features are fed into a temporal network realized by 3D convolutions to
better align temporal features. In particular, in order to take different recep-
tive fields into account, we apply different 3D kernel sizes on the time channel
with [(2, 3, 3), (1, 3, 3)] and a pyramid pooling with kernel size (2, 200, 200). We
concatenate all the outputs to feed into the final compression convolution layer,
getting the final output x1∼t ∈ RC×Hb×Wb . Note that the output features keep
the same shape with the input after passing through the temporal network, and
features from different timestamps are integrated.

∗ Correspondence author. † Work done during internship at Shanghai AI Laboratory.

2 S. Hu et al.

Future Prediction. In our experiments, we model the future uncertainty by
two different distributions: Gaussian and Bernoulli. For Gaussian distribution,
the present feature xt is passed through several residual block layers and an
average pooling layer to get the hidden state R32×1×1. Then a 2D convolution
with kernel size (1, 1) fits the mean and log variance of the Gaussian with R32×
R32. For Bernoulli distribution, since each grid of the spatial is 0 − 1, we pass
xt to several residual block layers and through a LogSigmoid to regress the
probability in each grid. For the prediction network, we utilize the convolutional
Gated Recurrent Unit as our basic module, and each gate is realized by a 2D
convolution with stride 3. We combine the predicted features through a trusting
gate implemented by a 2D convolution which has 2 output channels, and use it
as the weight to sum the two predicted features. The mixed predicted features
are then used as the hidden state for the “uncertainty” pathway and the input
state for the “historical” pathway. Through this method, we could recursively
predicts future states (x̂t+1, . . . , x̂t+H).

Decoders for BEV Representations. All task heads share the same back-
bone considering the robustness of the decoder, which is implemented by the
first three layers of ResNet-18 [3] and three upsampling layers of factor 2 with
skip connections. Features now has 64 channels, and then are passed to different
heads according to the task requirement. Each head is composed of two 2D con-
volutions with different output channels. In particular, we set that the number
of output channel for all semantic segmentation heads is 2. However, we need to
predict offset, center, future flow for instance segmentation task, thus they are
set as 2, 1 and 2 respectively.

A.2 Planning

In this section we will give more detailed the scoring functions and the imple-
mentation of the refinement GRU network.
Safety Cost. The SDV should not collide with other objects on the road and
need to consider their future motion when planning its trajectory. For this pur-
pose, we use the predicted occupancy map to penalize the trajectories that in-
tersect with the occupied regions. Formally, for trajectories τ at each timestamp
t, we will penalize τ if the SDV polygon g intersects with the grids which are
occupied by other objects (with a safety margin indicated by parameter λ), de-
noted by the og(τ, t, λ). The safety cost related to objects collision is given by:

fo(τ, o) =
∑
t

∑
g

og(τ, t, 0) + og(τ, t, λ)v(τ, t), (1)

where the first term penalizes the intersection grids whereas the second term
penalizes the high-velocity motion with uncertainty occupancy.

Moreover, SDV usually follows a leading vehicle and should keep a certain
safe distance from it which mainly depends on the speed of the leading vehicle.
Since the HD map is unavailable and thus the leading vehicle along the center

ST-P3 3

lane is unknown, instead we compute the occupancy grid in front of the SDV
with a distance L determined by the SDV velocity. Hence if we are too close to
the leading vehicle, the cost will be large that the trajectory will be evaluated as
bad. However it cannot take effect when it is in lane change manoeuvres since
the leading vehicle is not directly in front of SDV.

The above objectives focus on moving objects, meanwhile the vehicle should
stay in the middle of the lane line as well. We can ensure this traffic safety with
the perceived lanes in the first stage, with a cost function that is set as the
distance to lane lines.
Refinement. Getting the selected trajectory τ∗ according to the scoring func-
tions, we then refine it through a GRU network. Specially, the hidden state of
the GRU is the feature of the front camera from the encoder, and the input
state is the concatenation of the current position, the position from the selected
trajectory τ∗ and the target point. Note that the initial current position is (0, 0).
Doing the same process, we could recursively obtain the final refinement trajec-
tory taking into consideration the front camera information and the target point
information.

B Depth Supervision

In this section, we introduce how the depth maps of nuScenes dataset are gen-
erated for explicit supervision.

We adopt a self-supervised, semantic segmentation required method named
FSRE-Depth [5], which has great performance on depth generation. Since FSRE-
Depth use semantic segmentation as input, we first train a segmentation model
on Mapillary Vistas Dataset [6]. Then we apply it on nuScenes dataset to gen-
erate semantic results, as shown in Fig. 1(b). In the next step, We train FSRE-
Depth with front view images in nuScenes, using ResNet-50 as the backbone. The
resolution of input images is 1216× 672. After 45 epochs of training, the model
can predict sufficient results on front view images. To leverage the performance
of depth model, we further train it on each camera view for 15 epochs. Thus, our
depth maps of all camera views could be produced by this model individually.
To evaluate our depth maps, we calculate depth estimation metrics with LiDAR
points every 20 images. The result is shown in Tab. 1, which indicates that our
depth maps have decent quality. This result in Fig. 1(c) would be utilized to
explicitly supervise the depth estimation in the perception module of ST-P3.

C Experiments

C.1 Protocols

Dataset. We evaluate ST-P3 in both open-loop and closed-loop environments.
We adopt nuScenes dataset [1] for the open-loop setting, and CARLA simula-
tor [2] for the closed-loop demonstration.

4 S. Hu et al.

(a)

(b)

(c)

Fig. 1. (a) Original image; (b) Segmentation result; (c) Predicted depth map

ST-P3 5

Table 1. Depth map evaluation. ARE: absolute relative error; SRE: square relative
error; RSME: root mean square error; RSME log: root mean square logarithmic error;
δ: accuracy (threshold 1.25)

View ARE SQE RSME RSME log δ δ2 δ3

FRONT 0.1522 3.5165 6.8756 0.2252 0.8720 0.9474 0.9701
FRONT LEFT 0.2516 2.6591 5.7600 0.3035 0.7290 0.8755 0.9317
FRONT RIGHT 0.3030 5.9052 6.6903 0.3278 0.7067 0.8651 0.9231
BACK 0.2297 5.5757 7.8486 0.3020 0.8011 0.9159 0.9535
BACK LEFT 0.2752 3.6375 5.7691 0.3110 0.6982 0.8673 0.9279
BACK RIGHT 0.3021 3.9396 6.2027 0.3413 0.6605 0.8503 0.9279

For nuScenes, by default we take the 1.0s of past context and predict the
future 2.0s contexts, which corresponds to 3 frames in the past and 4 frames in
the future. Since each batch input to the model contains 7 frames of contexts, we
just follow the offical split method to split the dataset into training, validation
that consist of 26124 and 5719 samples, respectively.

For CARLA, we conduct closed-loop evaluation. Note that we still need to
train our model in a open-loop manner first. We follow the dataset collection
in [7] and use the Town05 scenario for evaluation and the rest for training. It is
worth mentioning that the camera setup in CARLA only consists of 4 cameras;
thus it could not cover the 360◦ field of view around the SDV. The context from
the past 1.0s and current 4 cameras images are passed to our model, then a
trajectory is produced and executed by the simulator until SDV getting to the
destination or surpassing the time limitation.
Implementation Details. We adopt EfficientNet-B4 [8] as the backbone, and
detailed model description would be illustrated in the Supplementary. We use
the Adam optimizer with a constant learning rate 2× 10−4. We train our model
on 4 Tesla V100 GPUs for 20 epochs at mixed precision. The BEV spatial
is (100m, 100m) around the SDV with resolution (0.50m, 0.50m) on nuScenes
dataset, following the setting in [4] for a fair comparison. While on CARLA,
it is (40m, 40m) around SDV with resolution (0.20m, 0.20m). The time interval
between two consecutive frames is 0.5s for both datasets.

C.2 Open-loop Experimental Results on nuScenes

In this section we show more qualitative results on nuScenes dataset [1]. We
present the visualization of the learned cost volume and the composite graph
of multiple semantic elements in the meantime. Note that darker color means
smaller cost value here, and vice versa. As shown in Fig. 2-3, basically all the
places occupied by cars have higher cost values, while open drivable areas have
lower cost values.

C.3 Closed-loop Planning Results on CARLA Simulator

In this section we show the qualitative results on the CARLA simulator [2],
similar to the open-loop results. As shown in Fig. 6, when the car deviates from

6 S. Hu et al.

Fig. 2. Qualitative results of ST-P3 on the straight road. We show our BEV inter-
mediate representations and planned trajectory (blue) in the right. We also present
the learned subcost map from prediction module. Note that a darker color indicates a
smaller cost value

Fig. 3. Qualitative results of ST-P3 when turning at intersections

ST-P3 7

Fig. 4. Qualitative results of ST-P3 in closed-loop planning on the straight road

Fig. 5. ST-P3 predicts a slowing down trajectory when detecting a pedestrian

the center of lanes, the detection accuracy of the map drop significantly. This
is probably because the data collection strategy that most training data is on
normal circumstance. When the map accuracy is low, the traditional method
which utilizes the sampler and cost map generally deviates from the expected
track behavior, but due to our refinement operation, the car can still travel to
the expected track correctly. We provide more visualization in different scenarios
in Fig. 4-7.

8 S. Hu et al.

Fig. 6. BEV representations of ST-P3 become normal when driving on a predetermined
trajectory (centerlines)

Fig. 7. Qualitative results of ST-P3 in closed-loop when turning at intersections

ST-P3 9

References

1. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: CVPR (2020) 3, 5

2. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open urban
driving simulator. In: CoRL (2017) 3, 5

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 2

4. Hu, A., Murez, Z., Mohan, N., Dudas, S., Hawke, J., Badrinarayanan, V., Cipolla,
R., Kendall, A.: Fiery: Future instance prediction in bird’s-eye view from surround
monocular cameras. In: ICCV (2021) 5

5. Jung, H., Park, E., Yoo, S.: Fine-grained semantics-aware representation enhance-
ment for self-supervised monocular depth estimation. In: ICCV (2021) 3

6. Neuhold, G., Ollmann, T., Bulò, S.R., Kontschieder, P.: The mapillary vistas dataset
for semantic understanding of street scenes. In: ICCV (2017) 3

7. Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end
autonomous driving. In: CVPR (2021) 5

8. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML (2019) 1, 5

	ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning Appendix

