
PersFormer: 3D Lane Detection via Perspective
Transformer and the OpenLane Benchmark

Appendix

Li Chen1∗†, Chonghao Sima1∗, Yang Li1∗, Zehan Zheng1, Jiajie Xu1,
Xiangwei Geng1, Hongyang Li1,2†, Conghui He1, Jianping Shi3, Yu Qiao1, and

Junchi Yan1,2

1 Shanghai AI Laboratory 2 Shanghai Jiao Tong University
3 SenseTime Research

{lichen,simachonghao,liyang,lihongyang}@pjlab.org.cn
yanjunchi@sjtu.edu.cn

A More Related Work

A.1 Lane Detection Benchmarks

For example, [12,9,32] annotate lanes and lane markings in pixel-level so they
are best suitable for semantic segmentation task. [27,3] collect data on highways
with light traffic only, which is not challenging and has a large gap between the
evaluation and real-world performance for up-to-date algorithms. [19,30] con-
sider more scenarios under different weather and traffic conditions; however,
no-segment character limits their applicability for future applications, such as
lane tracking or temporal lane detection. The recently released VIL-1000 [33] is
specifically designed for video instance lane detection, and yet it does not provide
tracking ID annotation across the segments. At the same time of our proposing
OpenLane dataset, there’s another large-scale realistic 3D lane dataset, named
ONCE-3DLanes [31], that annotates lane layout in 3D space. The difference be-
tween OpenLane and ONCE-3DLanes falls into three aspects. First is the dataset
statistics. The number of frames contained is quite the same, where OpenLane
has 200K in total and ONCE-3DLanes has 211K. The annotation quality dif-
ferentiates a lot, as OpenLane has more than 25% of frames with more than 6
lanes, while ONCE-3DLanes only has less than 10% of frames under the same
setting. Second is the problem setting. OpenLane provides camera extrinsics as
Waymo Open Dataset, while ONCE-3DLanes lacks of this information. Mean-
while, OpenLane provides segments annotation as scene tags, where ONCE-
3DLanes doesn’t. This could be used in video task and expand the potential
usage of OpenLane. Third is the diversity of lane annotation. In OpenLane, the
lane annotation not only contains the 3D position of such a lane, but also several
attributes and tracking id. In ONCE-3DLanes, only the 3D position information
is provided. Due to the difficulty of collecting 3D information for lanes, current
3D lane detection algorithms mainly focus on synthetic data [7]. It is small-scale
and exists the domain gap between simulation and realistic scenarios.

∗ Equal contribution. † Correspondence author.

2 L. Chen et al.

A.2 2D Lane Detection

Early lane detection approaches rely on traditional computer vision techniques,
such as filtering [2,14], clustering [28], etc. With the advent of deep learning,
CNN-based methods significantly outperform hand-crafted algorithms. A typical
way is to treat lane detection as a semantic segmentation problem [12,19,18,8,1].
Binary segmentation [18] needs post-clustering process for lane instance discrim-
ination, while multi-class segmentation [12,19,8] usually limits the maximum de-
tection results in one frame. Moreover, the pixel-wise classification takes large
computation resources. To overcome this, several work propose lightweight yet
effective grid based [21,16,10,22] or anchor based [5,13,30,23,25] methods. The
grid-based approach detects lanes in a row-wise way, whose resolution is much
lower than the segmentation map. The model outputs the probability for each
cell if it belongs to a lane, and a vertical post-clustering process is still needed
to generate the lane instances. Anchor-based approaches adopt the idea from
classical object detection, focusing on optimizing the offsets from predefined line
anchors. In this circumstance, how to define anchors is a critical problem. Chen
et al. [5] adopts vertical anchors, which cause great difficulty for curving lane
prediction. Some work [13,25,23] design anchors as a slender tilt shape, while
the huge amount of different anchors to improve the detection accuracy would
influence the computational efficiency. Nevertheless, considering their incredi-
ble performance on public datasets, we adopt the anchor-based formulation and
carefully re-design anchors to achieve both high accuracy and efficiency.

B Algorithm

We summarize the details of PersFormer here. We introduce the backbone, over-
all structure and the unified anchor design. Later we break down the loss function
into pieces.

B.1 Backbone

The backbone module is slightly different from previous work [6,7], as we need
to consider 2D/3D branches together. We use EfficientNet [26] as our backbone,
and extract a specific layer as our following module’s input. Later we provide
two designs, using FPN [15] or not. After using several convolution layers, the
backbone module outputs 4 different scaled front-view feature maps. Their res-
olutions are 180× 240, 90× 120, 45× 60, 22× 30. Each front-view feature map
is then transformed to BEV-space feature map with the help of Perspective
Transformer, resulting in 4 BEV feature maps.

B.2 Anchor Details

In this section, we present details of our anchor design, including angles, numbers
of anchors and how we associate ground truth lanes with anchors in 2D and 3D.

PersFormer and OpenLane 3

As introduced in the main body of the paper, we first set anchors in BEV space.
Following Gen-LaneNet [7], the starting positions Xi

bev are evenly placed along
x-axis with the spacing of 8 pixels. However, we differentiate it from the incline
angle φ. Gen-LaneNet sets straight-forward (parallel to y-axis) only, which makes
it hard to predict lanes with large curvatures or perpendicular lanes. Towards
this problem, we put 7 anchors at each Xi

bev with different angles, i.e., φ ∈
{π/2, arctan (±0.5), arctan (±1), arctan (±2)}. Note that the angles are in terms
of grid coordinates, which is not equal to the absolute values when grids are
not square. Moreover, we project all the BEV anchors to image space with
average camera height and pitch angle of the dataset, leading to corresponding
2D anchors.

The association between ground truth lanes and anchors is based on the av-
erage distance similar to the loss calculation process, instead of assigning the
closest anchor at Yref to ground truths as [6,7]. The Yref is set very close
to ego-vehicle, i.e., 5m in Gen-LaneNet, which makes it better predict lanes
in close area while having unsatisfactory performance in the far distance. In
our experiments, we assign the anchor with minimum edit distance to ground
truth lanes in both 2D and 3D tasks. The distance is calculated at fixed y posi-
tions: (5, 10, 15, 20, 30, 40, 50, 60, 80, 100) for 3D anchors, and 72 equally sampled
heights for 2D anchors.

B.3 Loss Function

We give the details of loss function here. As introduced in the main body of
the paper, given the pre-defined y value of the Nd samples along y-axis, the 3D
detection head outputs a set of points for each anchor i as following:

(xi, zi,visibev) = {(x(i,k), z(i,k), vis
(i,k)
bev)}Nd

k=1 (1)

The y values are (5, 10, 15, 20, 30, 40, 50, 60, 80, 100) in the BEV space, and the
size of the BEV space is 20m×100m. Similar to 3D setting, given the pre-defined
v value of the Nd samples along v -axis in front view, the 2D prediction is:

(ui,visiuv) = {(u(i,k), vis(i,k)uv)}Nd

k=1 (2)

The loss is a combination of the 2D lane detection, 3D lane detection and inter-
mediate segmentation with learnable weights (α, β, γ) accordingly:

L =
∑
i

αL2D(c
i
2D,u

i,visifv) + βL 3D (ci3D,x
i, zi,visibev) + γLseg(Spred), (3)

where ci(·) is the predicted lane category in 2D and 3D domain respectively. For
L 3D , it consists of classification loss, regression loss and visibility loss. The
classification loss is a cross-entropy loss, which is as follow:

L3D-cls = LCE(c
i
3D-pred, c

i
3D-gt) (4)

4 L. Chen et al.

The regression loss is a L1 loss, which is as follow:

L3D-reg = LL1({xi, zi}pred, {xi, zi}gt) (5)

The visibility loss is a binary cross-entropy loss, which is as follow:

L3D-vis = LBCE(vis
i
pred,vis

i
gt) (6)

The 2D loss functions are similar to the 3D ones, except they are in 2D form:

L2D-cls = LCE(c
i
2D-pred, c

i
2D-gt)

L2D-reg = LL1({ui}pred, {ui}gt)
L2D-vis = LBCE(vis

i
pred,vis

i
gt)

(7)

The segmentation loss is a binary cross-entropy loss as well, which is as follow:

Lseg = LBCE(Spred, Sgt) (8)

C Details on OpenLane Benchmark

In this section, we present more details on dataset statics, our annotation crite-
rion, visualization examples, algorithms we adopted when generating the dataset.

C.1 Dataset Statistics

OpenLane has 1,150 segments with train/validation/test splits of 798/202/150,
respectively. Since the test sets are kept for its online leaderboard evaluation, we
annotate the other 1,000 segments, i.e., 200K frames at a frequency of 10 FPS,
and keep the original train/validation partition for fair comparison with other
tasks, such as object detection.

We compute the statistics in OpenLane and visualize them. The overall num-
ber of segments with different scene tags is given in Tab. 1. It implies great
diversity in data collection and raises higher requirements on the robustness of
algorithms. The weather distribution is visually presented in Fig. 1. It shows the
benchmark covers various weather conditions and well holds the consistency in
the train/validation split. The distribution of the number of lanes in each frame
is shown in Fig. 2. About 25% frames of OpenLane have more than 6 lanes,
which exceeds the maximum number in most lane datasets. Fig. 3 shows the
distribution of lane categories. Single white solid and dash lanes, double yellow
solid lanes take up almost 90% of the total lanes. This is imbalanced and yet
it falls into a long-tail distribution problem, which is common in realistic sce-
narios. Fig. 4 presents the distribution of altitude difference per frame. Only
around 20% frames are relatively flat with absolute height variation less than
0.5m, whereas the difference is more than 1m in over 50% of OpenLane. This
data further demonstrates the necessity of 3D lane detection. The above statis-
tics and examples below demonstrate that OpenLane is the most challenging
one compared to existing lane detection datasets.

PersFormer and OpenLane 5

Table 1. Statics of scenario tags. Scene tags are annotated in terms of segments

Tags Train Val. All

Weather

Clear 515 145 660
Partly cloud 131 28 159
Overcast 33 8 41
Rainy 107 18 125
Foggy 12 3 15

Scene

Residential 270 69 339
Urban 234 56 290
Suburbs 259 64 323
Highway 30 6 36
Parking lot 5 7 12

Hours
Daytime 653 167 820
Night 88 22 110
Dawn/Dusk 57 13 70

Train, Clear, 65%

Train, Partly cloud,
16%

Train, Overcast, 4%

Train, Rainy, 13%

Train, Foggy, 2%

Val, Clear, 72%

Val, Partly cloud,
14%

Val, Overcast, 4%

Val, Rainy, 9%
Val, Foggy, 1%

Clear Partly cloud Overcast Rainy Foggy

Fig. 1.Distribution of weather tags in training and validation sets. The data is collected
under different weathers and split into training and validation with great balance

C.2 Annotation Criterion

We aim at introducing how we annotate lanes, scene tags and CIPO levels in
this section. Details such as data structures, folder hierarchy will be provided in
the dataset releasing page in the future.

Lanes. Our principle for the 2D lane detection task is to find all visible lanes
inside left and right road edges. Following this philosophy, we carefully annotate
lanes in each frame. However, due to the complexity of scenarios, there exist
some special cases we seek to illustrate here. (1) Lanes are often occluded by
objects or invisible because of abrasion but they are still valuable for the real
application. Thus we annotate lanes if parts of them are visible, meaning lanes
with one side being occluded are extended or lanes with invisible intermediate

6 L. Chen et al.

0, 8.133%

1, 9.525%

2, 17.274%

3, 10.520%

4, 9.633%

5, 10.420%

6, 8.735% 7, 7.571%

8, 6.917%

9, 4.382%

10, 2.915%
11, 1.508%
12, 1.176%

13, 0.490%

14, 0.387%

15, 0.159%
16, 0.055%

17, 0.055%
18, 0.025%
19, 0.063%
20, 0.022%
21, 0.007%
22, 0.013%
23, 0.015%
24, 0.003%

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17

Fig. 2. Distribution of lane numbers per frame. The maximum number is 24, and 25%
frames have more than 6 lane

1-W
 da

sh

1-W
 so

lid

2-W
 da

sh

2-W
 so

lid

L-W
 da

sh

R-W
 so

lid

L-W
 so

lid

R-W
 da

sh
1-Y

 da
sh

1-Y
 so

lid

2-Y
 da

sh

2-Y
 so

lid

L-Y
 da

sh

R-Y
 so

lid
L-Y

 so
lid

R-Y
 da

sh

Left
 cu

rbs
ide

Righ
t c

urb
sid

e
Othe

rs

Lane category

La
ne

 N
um

be
r

Fig. 3. Distribution of the lane category. Here we abbreviate single in 1, double in 2,
white in W, yellow in Y, left in L, and right in R. Thus 1-W dash means the category
of single white dash lanes

parts are completed according to the context, as shown in Fig. 5. (2) It is very
common that the number of lanes changes, especially when lanes have complex
topologies such as fork lanes in merge and split cases. Traditional lane datasets
usually omit these scenarios for simplicity, while we keep them all and further
choose them out of the whole dataset for evaluation. Fork lanes are annotated as
separate lanes with a common starting point (split) or ending point (merge) - two
close adjacent lanes are desired for the lane detection methods. (3) We further

PersFormer and OpenLane 7

Altitude Difference

0

Fr
am

e
N

um
be

r

1,000

2,000

3,000

4,000

5,000

6,000

4.890.84 2.21 9.81 19.89

Fig. 4. Altitude difference per frame. Note the x-axis is approximately in a log scale
and its unit is m

annotate each lane as one of the 14 lane categories, i.e., single white dash, single
white solid, double white dash, double white solid, double white dash solid (left
white dash with right white solid), double white solid dash (left white solid with
right white dash), single yellow dash, single yellow solid, double yellow dash,
double yellow solid, double yellow dash solid (left yellow dash with right yellow
solid), double yellow solid dash (left yellow solid with right yellow dash), left
curbside, right curbside. Note that traffic bollards are considered as curbsides
as well if they are not temporally placed. (4) Different from all the other lane
datasets, we annotate a tracking ID for each lane which is unique across the
whole segment. We believe this could be helpful for video lane detection or lane
tracking tasks. We also assign a number in 1-4 to the most important 4 lanes
based on their relative position to the ego-vehicle. Basically, the left-left lane is
1, the left lane is 2, the right lane is 3, and the right-right lane is 4.

All valid 2D ground truths are transformed to 3D annotations by the gener-
ation method in Sec. 4.2 of the main body (Generation of High-quality Annota-
tion), except those without LiDAR points scanning through. Thus the criterion
above applies to 3D lanes as well.

Scene tags. We label each segment with 3 scene tags, i.e., weather, scene
and hours. We hope these labels can help researchers to investigate the robust-
ness of their models under various scenarios. The statics are shown in Tab. 1.
Specifically, the dataset covers 5 different kinds of weather, clear, partly cloud,
overcast, rainy and foggy. Note that we classify the video as partly cloud or
foggy when there are clouds or fog in the sky respectively, otherwise it will be
categorized as overcast. The scene, or the location, includes 5 categories, i.e.,
residential, urban, suburbs, highway and parking lot. And the hours are divided
into 3 parts: daytime, night, dawn/dusk.

8 L. Chen et al.

Closest-in-path object (CIPO). CIPO is usually defined as the closest
object in ego lane, which refers to a single vehicle only. However, there are
cases that vehicles on left/right lanes are intended to cut in which are crucial
as well, or there may not be any qualified vehicles in ego lane. To cover the
complex scenarios, we categorize objects, mainly including vehicles, pedestrians
and cyclists, into 4 different CIPO levels. (1) The most important one, which
is closest to ego vehicle within the required reaction distance and has over 50%
part of it in the ego lane. Level 1 contains one object at most. (2) Objects
are annotated as Level 2 when their bodies interact with the real or virtual
lines of ego lane. They are typically in the process of cut-in or cut-out, which
hugely influences ego-vehicle decision-making. (3) We consider objects mainly
within the reaction distance or drivable area, or those in left/ego/right lanes
more specifically. Thus we annotate Level 3 with objects in the above area and
having occlusion rate less than 50%. Note that vehicles in the opposite direction
can be in this CIPO level as well. (4) The remainings are labeled as Level 4,
which means they are almost unlikely to impact the future path at this moment.
They are mainly objects in lanes with far distance, objects out of drivable area,
or parked vehicles in our dataset. Examples are provided in Fig. 6.

C.3 3D lane Generation

Fig. 7 shows the intermediate results of the generation process of 3D lane labels.
However, the above process could have a few problems in some cases, especially in
the last step, i.e., smoothing and fitting. Multiple filtering and fitting algorithms
are adopted to realize it, while all of them require a set of sorted points. Due to
the large curvature, the one-to-one mapping probably does not stand either in x
or y direction, thus we could not sort the points directly. Towards this problem,
for each image with this circumstance, we simply find an angle to rotate the
whole points set, do the filtering and fitting process in the temporary coordinate
and rotate back in the end. This method is illustrated in Fig. 8.

D Experiments

D.1 Evaluation Metrics.

For both 3D lane datasets, we follow the evaluation metric designed by Gen-
LaneNet [7], with small modifications1 and additional category accuracy on
OpenLane dataset. The matching between prediction and ground truth is built
upon edit distance, where one predicted lane is considered to be a true positive
only if 75% of its covered y-positions have a point-wise distance less than the
max-allowed distance (1.5m). Then, with the percentage of matched ground-
truth lanes as recall and the percentage of matched prediction lanes as preci-
sion, we use F-score to report the regression performance of such a model. Since
OpenLane dataset has category information per lane, we present the accuracy

1 Please see in OpenLane page: https://github.com/OpenPerceptionX/OpenLane.

https://github.com/OpenPerceptionX/OpenLane

PersFormer and OpenLane 9

Fig. 5. Visualization example of lane annotation in OpenLane dataset

upon the matched lanes to show classification performance. We only report the
accuracy of PersFormer on OpenLane dataset, as other 3D methods do not sup-
port classification task. For the 2D task, the classical metric in CULane [19] is
adopted.

D.2 Implementation Details

To fairly compare with other methods [7,6,17], we retain many model settings
of image resolution and BEV scale. We resize the original image to 360 × 480
as model input, project it to BEV space with a resolution of 208× 108. We use
PyTorch [20] to implement the model. The batch size is set to 8; the number of
training epochs is set to 100. We re-implement 3D-LaneNet and Gen-LaneNet on
OpenLane dataset for a fair comparison. Following previous experience on train-
ing vision transformer [4,34,29], we use Adam optimizer [11] with base learning
rate of 2×10−4, β1 = 0.9, β2 = 0.999 and weight decay of 10−4. All of these mod-

10 L. Chen et al.

Fig. 6. Visualization example of CIPO and Scene tags annotation in OpenLane dataset

els are trained on 8 NVIDIA Tesla V100 GPUs. More details about environment
setup can be referred to our GitHub repository once accepted.

D.3 More Experimental Results

In this section, we present more experimental results, mainly in 3D comparison
on ONCE-3DLanes, additional ablations and more qualitative examples.

3D Comparisons on ONCE-3DLanes. We provide additional experimen-
tal results on ONCE-3DLanes dataset [31], as it’s another real-world 3D lane
dataset concurrently presented. ONCE-3DLanes also uses F-Score as the eval-
uation metric, and more details can be found in their repo ONCE-3DLanes. In
Tab. 2, PersFormer gets the highest F-Score on the validation set, outperforming
its proposed method SALAD [31] over 10%. One thing worth noticing is that
ONCE-3DLanes does not provide camera extrinsics, therefore PersFormer pre-
define a set of extrinsic parameters to fit the model setting. The camera height

https://github.com/once-3dlanes/once_3dlanes_benchmark

PersFormer and OpenLane 11

(b)(a) (c)

(d) (e)

Fig. 7. 3D lane generation pipeline. (a) Original point clouds inside a certain threshold
of 2D lane annotations are reserved, which is relatively sparse; (b) Positions of points
on the 2D annotation are interpolated to get a dense point set; (c) 3D lane points in
the same segment are spliced into long, high-density lanes; (d) We remove those too far
as they are invisible, while reasonable extensions are desired; (e) A smooth and fitting
process is applied to get the final 3D lane annotation

(a) (b) (c)

Fig. 8. Illustration of 3D lane generation problem with large curvatures. (a) The orig-
inal image and the 2D lane; (b) Unsorted 3D points set of the lane in (a), which a
filtering algorithm is not applicable directly; (c) A simple translation and rotation can
result in a one-to-one mapping of x and y

Table 2. New results on the new benchmark (CVPR22) ONCE-3DLanes [31]. ∗ denotes
results from the paper [31]

Method F-Score(%) Precision(%) Recall(%) CD error(m)

3D-LaneNet∗ [6] 44.73 61.46 35.16 0.127
Gen-LaneNet∗ [7] 45.59 63.95 35.42 0.121
SALAD∗ [31] 64.07 75.90 55.42 0.098
PersFormer (ours) 74.33 80.30 69.18 0.074

is set to be 1.5m and pitch to be 0.5. This does not affect the evaluation results
since it is just to fit the IPM process in PersFormer.

12 L. Chen et al.

Table 3. Ablative Study on PersFormer Design. IPM prior plays a vital role in guiding
the generation of BEV feature compared to naive one-to-one mapping and learned
reference-target mapping. Using MSDeformAttn from Deformable DETR [34] to map
multi-scale front-view feature to multi-scale BEV feature is competitive, and the self-
attention module of BEV query is important in Transformer-style structure

Exp.
Naive
1-1

Learned
Multi-to-
Multi

Self
Attn.

IPM
Prior

3D F-Score

1 ✓ 36.15
2 ✓ 13.45
3 ✓ 51.35
4 ✓ 47.18
5 ✓ 52.68

Ablations. We provide an additional ablative study on the structure of the
feature transformation module on a subset of OpenLane (∼300 segments) in Tab.
3. We argue that the IPM-based cross attention is a necessity in PersFormer,
as we compare it with two initial designs, naive one-to-one mapping and the
learned mapping. The naive one-to-one mapping simply scales every location
in the BEV space to the corresponding location in the front view space, not
considering camera parameters (Exp.1). A more “aggressive” way to simulate
the mapping is directly learning from the front view feature with several fully-
connected layers (Exp.2). Neither of them could catch up with the performance
of IPM-based mapping, indicating the importance of such a prior in generating
BEV feature. We further attempt to adopt Multi-scale Deformable Attention
from [34] to implement a several-for-one feature mapping from multi-scale front
view feature to multi-scale BEV feature (Exp.3), just like Deformable DETR.
The result slightly falls behind our final design (Exp.5), probably due to the
influence of tuning of hyper-parameters and the impact of the small-scale feature
on the large-scale feature. Finally, we try to remove the classical self attention
module in ordinary Transformer design (Exp.4), showing that the self attention
module is all there for a reason in Transformer-style structure.

Visualization. We provide qualitative results compared with SOTA 3D lane
detection methods in different evaluation scenarios on OpenLane dataset in Fig.
9,10. Results on Apollo 3D synthetic dataset are shown in Fig. 11. We can
observe that PersFormer could achieve higher accuracy and capture more lanes
to reconstruct the scenes on both datasets.

E License of Assets

OpenLane dataset is based on the Waymo Open Dataset [24] and therefore
we distribute the data under Creative Commons Attribution-NonCommercial-
ShareAlike license and Waymo Dataset License Agreement for Non-Commercial
Use (August 2019). You are free to share and adapt the data, but have to give

PersFormer and OpenLane 13

appropriate credit and may not use the work for commercial purposes. All code
of PersFormer and OpenLane toolkit is under Apache License 2.0.

The pretrained ResNet model weights are under the MIT license. We inte-
grate part of the code of Deformable-DETR [34] and Gen-LaneNet [7] which are
under Apache License 2.0. We also use part of the code of LaneATT [25] which
is under the MIT license.

F Outlook

As OpenLane is built upon Waymo Open Dataset [24], a road-object joint detec-
tion framework is possible in the future. Moreover, BEV is the necessity in the
future of autonomous driving, and how to design a better BEV representation
remains to be explored. The proposed PersFormer may also be adapted to new
tasks.

14 L. Chen et al.

Fig. 9. Qualitative results of PersFormer(a), 3D-LaneNet(b) [6], and Gen-LaneNet(c)
[7] on OpenLane. Night case and Up&Down case

PersFormer and OpenLane 15

Fig. 10. Qualitative results of PersFormer(a), 3D-LaneNet(b) [6], and Gen-LaneNet(c)
[7] on OpenLane. Extreme weather case, Intersection case and Merge&Split case

16 L. Chen et al.

Fig. 11. Qualitative results of PersFormer(a), 3D-LaneNet(b) [6], and Gen-LaneNet(c)
[7] on Apollo. Curve case and Up&Down case

PersFormer and OpenLane 17

References

1. Abualsaud, H., Liu, S., Lu, D.B., Situ, K., Rangesh, A., Trivedi, M.M.: Laneaf:
Robust multi-lane detection with affinity fields. RA-L (2021) 2

2. Aly, M.: Real time detection of lane markers in urban streets. In: IV (2008) 2
3. Behrendt, K., Soussan, R.: Unsupervised labeled lane markers using maps. In:

ICCV (2019) 1
4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-

to-end object detection with transformers. In: ECCV (2020) 9
5. Chen, Z., Liu, Q., Lian, C.: Pointlanenet: Efficient end-to-end cnns for accurate

real-time lane detection. In: IV (2019) 2
6. Garnett, N., Cohen, R., Pe’er, T., Lahav, R., Levi, D.: 3d-lanenet: End-to-end 3d

multiple lane detection. In: ICCV (2019) 2, 3, 9, 11, 14, 15, 16
7. Guo, Y., Chen, G., Zhao, P., Zhang, W., Miao, J., Wang, J., Choe, T.E.: Gen-

lanenet: A generalized and scalable approach for 3d lane detection. In: ECCV
(2020) 1, 2, 3, 8, 9, 11, 13, 14, 15, 16

8. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection cnns by
self attention distillation. In: ICCV (2019) 2

9. Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The apolloscape
open dataset for autonomous driving and its application. TPAMI (2019) 1

10. Jayasinghe, O., Anhettigama, D., Hemachandra, S., Kariyawasam, S., Rodrigo,
R., Jayasekara, P.: Swiftlane: Towards fast and efficient lane detection. In: ICMLA
(2021) 2

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) ICLR (2015) 9

12. Lee, S., Kim, J., Shin Yoon, J., Shin, S., Bailo, O., Kim, N., Lee, T.H., Seok Hong,
H., Han, S.H., So Kweon, I.: Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition. In: ICCV (2017) 1, 2

13. Li, X., Li, J., Hu, X., Yang, J.: Line-cnn: End-to-end traffic line detection with line
proposal unit. T-ITS (2019) 2

14. Li, Z.Q., Ma, H.M., Liu, Z.Y.: Road lane detection with gabor filters. In: ISAI
(2016) 2

15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017) 2

16. Liu, L., Chen, X., Zhu, S., Tan, P.: Condlanenet: a top-to-down lane detection
framework based on conditional convolution. In: CVPR (2021) 2

17. Liu, R., Chen, D., Liu, T., Xiong, Z., Yuan, Z.: Learning to predict 3d lane shape
and camera pose from a single image via geometry constraints. In: AAAI (2022) 9

18. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: To-
wards end-to-end lane detection: an instance segmentation approach. In: IV (2018)
2

19. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: Spatial cnn for
traffic scene understanding. In: AAAI (2018) 1, 2, 9

20. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019) 9

21. Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. In: ECCV
(2020) 2

22. Qu, Z., Jin, H., Zhou, Y., Yang, Z., Zhang, W.: Focus on local: Detecting lane
marker from bottom up via key point. In: CVPR (2021) 2

18 L. Chen et al.

23. Su, J., Chen, C., Zhang, K., Luo, J., Wei, X., Wei, X.: Structure guided lane
detection. In: IJCAI-21 (2021) 2

24. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous
driving: Waymo open dataset. In: CVPR (2020) 12, 13

25. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos,
T.: Keep your eyes on the lane: Real-time attention-guided lane detection. In:
CVPR (2021) 2, 13

26. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML (2019) 2

27. TuSimple: https://github.com/TuSimple/tusimple-benchmark (2017) 1
28. Wang, J., Mei, T., Kong, B., Wei, H.: An approach of lane detection based on

inverse perspective mapping. In: ITSC (2014) 2
29. Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: Detr3d: 3d

object detection from multi-view images via 3d-to-2d queries. In: CoRL (2022) 9
30. Xu, H., Wang, S., Cai, X., Zhang, W., Liang, X., Li, Z.: Curvelane-nas: Unifying

lane-sensitive architecture search and adaptive point blending. In: ECCV (2020)
1, 2

31. Yan, F., Nie, M., Cai, X., Han, J., Xu, H., Yang, Z., Ye, C., Fu, Y., Mi, M.B.,
Zhang, L.: Once-3dlanes: Building monocular 3d lane detection. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 17143–17152 (June 2022) 1, 10, 11

32. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell,
T.: Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In:
CVPR (2020) 1

33. Zhang, Y., Zhu, L., Feng, W., Fu, H., Wang, M., Li, Q., Li, C., Wang, S.: Vil-100:
A new dataset and a baseline model for video instance lane detection. In: ICCV
(2021) 1

34. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable
transformers for end-to-end object detection. In: ICLR (2021) 9, 12, 13

https://github.com/TuSimple/tusimple-benchmark

	PersFormer: 3D Lane Detection via Perspective Transformer and the OpenLane Benchmark Appendix

