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Abstract. Online stereo adaptation tackles the domain shift problem,
caused by different environments between synthetic (training) and real
(test) datasets, to promptly adapt stereo models in dynamic real-world
applications such as autonomous driving. However, previous methods
often fail to counteract particular regions related to dynamic objects with
more severe environmental changes. To mitigate this issue, we propose
to incorporate an auxiliary point-selective network into a meta-learning
framework, called PointFix, to provide a robust initialization of stereo
models for online stereo adaptation. In a nutshell, our auxiliary network
learns to fix local variants intensively by effectively back-propagating
local information through the meta-gradient for the robust initialization
of the baseline model. This network is model-agnostic, so can be used
in any kind of architectures in a plug-and-play manner. We conduct
extensive experiments to verify the effectiveness of our method under
three adaptation settings such as short-, mid-, and long-term sequences.
Experimental results show that the proper initialization of the base stereo
model by the auxiliary network enables our learning paradigm to achieve
state-of-the-art performance at inference.
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1 Introduction
Stereo depth estimation to predict 3D geometry for practical real-world applica-
tions such as autonomous driving [1] has been developed by handcrafted meth-
ods [11, 9, 43, 13] and deep stereo models based on supervised learning [23, 2, 34,
15] that leverage the excellent representation power of deep neural networks. In
general, given that the high performance of deep networks is guaranteed when
test and training data are derived from a similar underlying distribution [4, 22,
12, 20, 5], they demand a huge amount of annotated training data to reflect a real-
world distribution. Acquiring groundtruth disparity maps, but unfortunately, is
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(a) Input image

(b) Disparity and reprojection error of MADNet

(c) Disparity and reprojection error of PointFix (ours)

Fig. 1. Estimated disparity after online adaptation from MADNet and our PointFix.
Our method has a much stronger adaptation ability, especially in local detail.

laborious and impractical [36]. Especially for autonomous driving, constructing
datasets from all possible different conditions (e.g. weather and road conditions)
is impossible while it is a very fatal problem [37]. To mitigate the aforementioned
issues, an intuitive solution is to finetune the stereo model trained on a large-
scale synthetic dataset that is easier to collect groundtruth. However, despite
the help of large-scale synthetic datasets, most recent works [35, 26, 46, 44] have
pointed out the limitation of fine-tuning that is incapable of collecting sufficient
data in advance when running the stereo models in the open world. While do-
main generalization methods [42, 32] have shown promising results without real
images, they require high computations to provide generalized stereo models and
often fail to respond to continuously changing environments.

As an alternative solution, online stereo adaptation [37, 36, 39, 29, 45, 19] is
proposed to incorporate unsupervised domain adaptation [6, 10] into a contin-
ual learning process [31]. Formally, a baseline network is trained offline using
a large number of the labeled synthetic datasets (e.g. Synthia [30], FlyingTh-
ings3D [23]) and continually adapted to unlabeled unseen scenarios at test time
in an unsupervised manner. To demonstrate a faster inference speed for real-
world applications, MADNet [37, 29] proposed a lightweight network and mod-
ular adaptation framework to rely on self-supervision via reprojection loss [10].
Meanwhile, Learning-to-adapt (L2A) [36] introduced a new learning framework
based on model agnostic meta-learning (MAML) [4] for the improved adapta-
tion ability of the network by well-suited base parameters. It shows that the
meta-learning framework has great potential in making the network parameters
in learning process to make the parameters into a very adaptable state. Despite
their great progress, most online adaptation methods [36, 37] have merely at-
tempted to only impose a global average errors from the whole prediction as a
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learning objective during an offline training without attention to a domain gap
in local, showing poor initial performance.

In particular, we observe that given stereo images from a novel environment,
incorrectly estimated disparities are concentrated on specific local regions, as
depicted in Fig. 1(b). The domain shift [27] issue arises because the local con-
text of test data (e.g. appearance deformations of objects, occlusion type, or the
form of a shadow etc.) is significantly diverse from those deployed throughout
the training process. This means that without taking such locally varying dis-
crepancies between training and test data into account, the global adaptation
strategy used in the existing methods [37, 36, 39, 29, 45, 19] has fundamental lim-
itations in improving the adaptation performance. In addition, a plug-and-play
algorithm to easily combine with evolving deep stereo networks is also needed.

In this paper, we propose a novel model-agnostic training method for robust
online stereo adaptation, called PointFix, that can be flexibly built on the top
of existing stereo models and learns the base stereo network on a meta-learning
framework. Unlike the existing methods [29, 19, 3, 39] that focus on a new online
adaptation strategy, we leverage the meta-learning strategy for learning-to-fix a
base stereo network offline so that it can have generalized initial model parame-
ters and respond to novel environments more robustly. Specifically, we incorpo-
rate an auxiliary point-selective network, termed PointFixNet into meta-learning
to rectify the local detriment of the base network and alternately fix the base
network by an additional update as in the online meta-learning methods [20, 5].
As a result, the parameters of the base network are updated to grasp and utilize
the incoming local context and can be robust to the local variants at test time by
preventing the network from being biased to global domain dependencies only.

In the experiment, we learn two base stereo models, DispNetC [23], MAD-
Net [37], together with our framework on the synthetic data in the offline train-
ing, and then update the whole models (full adaptation) or the sub-module of
the models (MAD adaptation) in the online adaptation using the unsupervised
reprojection loss [6, 10] on the real-world dataset. Note that the proposed auxil-
iary network is not used in the online adaptation during inference, maintaining
an original inference speed of the base stereo models. Given that our PointFix is
a general and synergistic strategy that can be adopted with any kinds of stereo
networks, it improves a generalization capability of the base stereo model to
novel environments through the robust parameter initialization. Extensive ex-
perimental results show that PointFix outperforms recent state-of-the-art results
by a significant margin on various adaptation scenarios including short-, mid-,
and long-term adaptation. In addition, comparison with domain generalization
methods [42, 32, 21] demonstrates the superiority of our PointFix in terms of
both accuracy and speed.

2 Related Work

For depth estimation from stereo images, there is an extensive literature, but
here we briefly introduce related work in the application of convolutional neural
networks (CNNs). Modern approaches using CNNs are mostly categorized by
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Fig. 2. The overall framework of the proposed PointFix and PointFixNet. We alterna-
tively update the base network and PointFixNet underlying meta-learning. The detail
of main flowchart is illustrated in the dotted box.

matching-based approaches [41, 15, 33] that learn how to match corresponding
points, and regression-based methods [14, 2, 23] that learn to directly regress
sub-pixel disparities. To further enhance the performance, some works [17, 16,
28] consider exploiting auxiliary network or module to assist base network by
estimating confidence of prediction map from stereo inputs, prediction or cost
volume of the base network. Although their results are promising, they have a
limitation in retaining the superb accuracy in new domains [29].

Pointing out the domain shift issue, recent works [36, 37, 29, 45, 39, 3, 19] have
proposed online stereo adaptation methods to consider more practical solution
for real-world applications. They have argued that we should consider a new
open-world scenario in which input frames are sequentially provided to the model
with certain time intervals. By continually updating parameters at test time in
an unsupervised manner, they observe the adaptability of the models in changing
environments. As one of the pioneering works, [37, 29] has proposed a light weight
model (MADNet) and its modular updating frameworks (MAD, MAD++) to
improve the adaptation speed drastically. Following this idea, [39] has picked up
the speed even more by implementing ‘Adapt or Hold’ mechanism based on deep
Q-learning network [25].

Closely related work to ours is meta-learning based online adaptation ap-
proaches [36, 45] that train to learn proper model parameters to be better suit-
able for online adaptation. L2A [36] has directly incorporated online adaptation
process into the inner loop updating process, and also learn a confidence mea-
sure to use adaptive weighted loss. However, L2A is inherently unstable during
training due to multiple adaptation steps, especially when coupled with the
lightweight model (e.g. MADNet [29]). Also, it is worth noting a difference in
purpose between confidence-weighted adaptation of L2A and our PointFixNet.
The role of the auxiliary network in L2A is to eliminate uncertain errors from
inherently noisy reprojection loss, whereas ours is to stabilize the generality of
the base model by generating a proper point-wise learning objective for particu-
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lar bad pixels. We hereby deliver the gradient of the point-wise loss to the base
stereo model to prevent the model from being learned by minimizing only the
global errors and to remedy domain-invariant representations in local regions.

3 Problem Statement and Preliminaries

Online Stereo Adaptation Here we first formulate online stereo adaptation.
Given stereo image pairs from source domain Ds with available ground-truth
maps, online stereo adaptation aims to learn a stereo model capable of adapting
itself dynamically in a novel unseen domain Du. In the inference, given a set
of parameters θ from the base stereo model trained on Ds, the base network
parameters are updated in a single iteration step t to adapt the stereo model
with respect to continuous input sequence without ground-truth disparity maps:

θt+1 ← θt − α∇θtLu(θt, I lt, Irt ), (1)

where Lu is an unsupervised loss function, α is the learning rate, I lt, and I
r
t are

left and right images of the t-th stereo pair from Du. We evaluate the perfor-
mance of the online adaptation under the short-term (sequence-level), mid-term
(environment-level), and long-term (full) settings. Note that following previous
approaches [36, 37], we use a reprojection error [10] as the unsupervised learning
objective Lu.
Model Agnostic Meta-learning MAML [4] has proposed to learn initial base
parameters that are suited to adapt to new domain with only few updates. This
is attained by implementing a nested optimization which consists of an inner loop
and an outer loop. Specifically, the inner loop updates the base parameters for
each sample in batch separately in the standard gradient descent way. The outer
loop performs the update of the base parameters using the sum of sample-specific
gradients (meta-gradient) which are computed by the parameters updated in the
inner loop. Formally, for a set of tasks T , let the meta-training and meta-testing
sets be Dtrain

τ and Dtest
τ respectively. A set of parameters θ∗ can be obtained for

a specific task τ ∈ T with a single gradient step in the inner loop:

θ∗ = min
θ

∑
τ∈T
L(θ − α∇θL(θ,Dtrain

τ ),Dtest
τ ), (2)

where L is a objective function for the task and α is the learning rate. They
carries out meta-update, including inner and outer updates, during training and
then adaptation for the target task after the the whole meta-learning processes
are completely over. In this paper, we treat the disparity prediction for each
stereo pair as a single task.

Recent works [20, 5] have introduced two stage meta-learning procedure (a.k.a
online meta-learning) that implements meta-update and adaptation stages al-
ternatively during training to achieve more efficient gradient path and better
performance. Inspired by their alternative updating scheme, we propose a novel
learning-to-fix strategy. Our objective is to get base network and PointFixNet
parameters that enable the base network to quickly adapt regardless of local
variants in unseen domains. The details are described in the following section.
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Algorithm 1 Parameter update with PointFix loss

Input: I = {(Iln, Irn, dn)}N−1
n=0 ; learning rate α; base model parameters θ; PointFix

network parameters ψ
Output: updated parameters θ̄, ψ̄

1: function PointUpdate(I, α, θ, ψ)
2: Lτp ← 0 ▷ Initialize loss
3: for n = 0 to N − 1 do
4: d̂, zb = F(Iln, Irn|θ)
5: p(θ) = {(i, j)| |(d̂ij − dn,ij)|1 > 3} ▷ Select points
6: zc = F(Iln, d̂, dn|ψc)
7: for (i, j) ∈ p(θ) do
8: rij = F(zbij , zcij |ψp) ▷ Residual disparity

9: Lτp ← Lτp + Lp(rij + d̂ij , dn,ij) ▷ PointFix loss
10: end for
11: end for
12: θ̄ ← θ − α∇θLτp ▷ Update base network
13: ψ̄ ← ψ − α∇ψLτp ▷ Update PointFixNet
14: return θ̄, ψ̄
15: end function

4 PointFix: Learning to Fix

We design a novel meta-learning framework for online stereo adaptation to learn
good base model and quickly adapt to novel environments (i.e., unseen domain),
especially concentrating on erroneous pixels. As illustrated in Fig. 2, we leverage
off-the-shelf deep stereo model as a base network and incorporate an auxiliary
network, PointFixNet, to make parameters of the base network robust to the
local distortion.

4.1 Base Stereo Models

Our goal is to train base models offline to be more suitable for the online adap-
tation by correcting bias to the seen domain. We have employed two stereo
networks as a base model: 1) DispNet-Corr1D [23] (shortened as DispNetC) and

2) MADNet [37]. Besides taking the initial disparity d̂ estimated from the base
model, we extract intermediate features that is useful to exploit the fine-grained
information. The intermediate features consist of the matching cost c (same as
correlation layer in DispnetC) and its corresponding left feature f l. They are
concatenated and taken as a base feature zb = Π(c, f l), where Π(·, ·) is a con-
catenation operation. We note that in MADNet, the matching cost calculation is
similar with the one in DispNetC, but before calculation their right features are
warped with a disparity map on a coarse resolution to reduce search range and
computation. However, to extract base features, we apply the same matching
cost computation scheme used in DispNetC regardless of the base network to
ensure the generality of our method.

In each inner loop of our method, we select a pixel i, j to fix local deformations
by computing ℓ1 loss between d̂ and the ground-truth d, such that the set of



PointFix: Learning to Fix Domain Bias for Robust Online Stereo Adaptation 7

Algorithm 2 Overall training procedure

Hyperparameters: batch size N ; max iteration K; learning rate of inner and outer
loop α, β
Input: pre-trained base model parameters θ; source training dataset S
Output: optimized base model parameters θ∗

1: function Training(θ,S)
2: Initialize θ and ψ.
3: for k = 0 to K − 1 do
4: Lk ← 0 ▷ Initialize loss
5: Ik ∼ S ▷ Sample a batch of size N
6: for n = 0 to N − 1 do
7: θn ← θ, ψn ← ψ ▷ Copy parameters
8: θ̄n, ψ̄n,← PointUpdate(Ik,n, α, θn, ψn) ▷ Inner loop update
9: d̂n, z

b
k,n = F(Ilk,n, Irk,n|θ̄n)

10: Lk ← Lk + Lb(d̂n, dk,n) ▷ Base loss
11: end for
12: θ′ ← θ − β∇θLk ▷ Outer loop update
13: ψ′ ← ψ − β∇ψLk ▷ Outer loop update
14: θ, ψ ← PointUpdate(Ik, α, θ′, ψ′) ▷ Adaptation
15: end for
16: return θ∗ ← θ
17: end function

points p(θ) with the base parameter θ can be derived as:

p(θ) = {(i, j)| |d̂ij − dij |1 > 3}. (3)

Note that we represent p as a function of θ to indicate that the selected point
varies depending on θ updated in the learning procedure. In next section, we
describe a way to leverage the set of points for correcting local distortions caused
by the seen domain bias, depicted in Fig. 1.

4.2 PointFixNet

To mitigate the seen domain bias of the base network, we deploy an additional
auxiliary network, called PointFixNet, which individually repairs a disparity by
incurring a proper point-wise gradient. The PointFixNet consists of two modules:
a feature extraction module (parameterized by ψc) that extracts feature zc from
heterogeneous inputs; and a point-wise prediction module (parameterized by
ψp) that generates residual disparity value of each point and back-propagates
the point-wise errors. Specifically, the feature extraction module consists of three
convolution layers and takes the left image, I l, the initial disparity d̂, and ground-
truth d as inputs to integrate context around each erroneous pixel. Therefore,
the feature zc can be obtained as follows:

zc = F(I l, d̂, d|ψc), (4)

where F is a feed-forward process.
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Then, the base feature zb from the base network and feature zc from the
feature extraction module are concatenated and fed into the point-wise predic-
tion module to generate the residual disparity value rij . Inspired by structure in
[18], the module consists of four fully-connected (FC) layers to produce a single
value for each pixel, such that:

rij = F(zbij , zcij |ψp), (5)

where (i.j) ∈ p(θ). The final disparity for (i, j)-th pixel is obtained by adding

rij to d̂ij . We note that FC layers share weights across all selected points.

4.3 Learning to Fix

The key idea underlying our framework is iterating learning how to fix first and
then fixing alternatively. First, the parameters of the PointFixNet learn how to
generate a proper gradient to the base model in a point-wise manner such that
the base model can be improved with less domain bias and then secondly the base
model is updated by the learned PointFixNet. This strategy is essential because
if we keep network training only with point loss, the performance of prediction
after PointFixNet can be guaranteed but the one after the base model may not.
Thus, to enhance maximal performance of the base network, it is necessary to
employ the alternative meta-learning structure. To this end, we deploy two loss
functions: a base loss, Lb, derived from the whole disparity map predicted by
the base network and a point loss, Lp, applied to the final disparity values.
They are alternatively optimized to update θ and ψ by relying on the two-stage
meta-learning scheme [20, 5], as described in Fig. 2 and Alg. 2.

In the inner loop, parameters are copied for each sample in batch, θn ← θ
and ψn ← ψ. Then we calculate the PointFix loss, to evaluate of the current
parameters:

θ̄n ← θn − α∇θn
∑

(i,j)∈p(θ)
Lp(d̂ij + rij , dij), (6)

ψ̄n ← ψn − α∇ψn

∑
(i,j)∈p(θ)

Lp(d̂ij + rij , dij), (7)

where α is a learning rate, p(θ) is a set of selected points, and Lp is a point-wise
ℓ1 loss between the final disparity and its corresponding ground-truth. Given in
Alg. 1, since the PointFix loss is imposed on the local distortion of the erroneous
pixels selected on the initial prediction, we can update base parameters that
refer to the fine-grained details.

In the outer loop, we evaluate the performance of the updated base parameter
after the inner loop. To measure the performance, we apply the conventional
supervised loss between the initial disparity map and ground-truth. Following
the procedure of [4], the parameters θ and ψ are updated based on sum of Lk
as follows:

θ′ ← θ − β∇θLk, ψ′ ← ψ − β∇ψLk, (8)

where Lk =
∑
N Lb(d̂n, dk,n) and k is the current iteration step. Note that the

gradients are computed along with the parameters before being updated in the
inner loop.



PointFix: Learning to Fix Domain Bias for Robust Online Stereo Adaptation 9

Unlike traditional MAML where the parameters are optimized via meta-
update only, we deploy an additional update inspired by online meta-learning.
θ′ and ψ′ are updated in the same way as the inner loop so that the parameters
after final update, θ and ψ can be written as:

θ ← θ′ − α∇θ′
∑

(i,j)∈p(θ′)
Lp(d̂ij + rij , dij), (9)

ψ ← ψ′ − α∇ψ′

∑
(i,j)∈p(θ′)

Lp(d̂ij + rij , dij), (10)

where rij = F(zbij , zcij , dij |ψ̄p) for (i, j) ∈ p(θ′). Finally, the networks are up-
dated with PointFix loss which are, at the first stage, trained to generate proper
back-propagation to enhance the performance of the base network in the next
training step. At test time, we use the final parameters of the base network θ∗

and perform adaptation according to Eq. (1).

5 Experiments

5.1 Experimental Settings

Datasets. In order to evaluate our method on realistic scenario, we use syn-
thetic dataset for offline training and real dataset for the test. Therefore, the
training and test data exist in completely different data distributions. Following
the previous work [36], we train our networks using the Synthia [30] dataset
and evaluate each model on the KITTI-raw [7] dataset and the subset of the
DrivingStereo [40] dataset. All datasets are recorded in driving scene but the
Synthia [30] is synthetic data, the KITTI and DrivingStereo are obtained from
real world. The Synthia [30] dataset contains 50 sequences which have different
combination of weathers, seasons and locations. To set similar disparity ranges in
training and test, we resized Synthia [30] dataset images to half resolution as in
[36]. We exploit stereo images from front direction only and there are 45,591 to-
tal number of stereo frames. The KITTI [7] dataset consists of 71 sequences and
total 42,917 frames of stereo images and sparse depth maps. Different from the
scenario on the KITTI [7] dataset, we present an additional adaptation scenario
that the models adapt to various unseen weather conditions using the subset of
the DrivingStereo [40] dataset. The DrivingStereo contains four different weather
sequences (i.e., cloudy, foggy, rainy, and sunny) that each sequence includes 500
stereo images with high quality labels obtained from multi-frame LiDAR points.

Metrics. We evaluate the performance using two popular evaluation metrics,
the percentage of pixels with disparity outliers larger than 3 (D1-all) and average
end point error (EPE). Following the scheme of [37, 36], we average each score
from all the frames which belong to the same sequence and reset the model to
the base parameters at the next sequence, based on the definition of a sequence
for different evaluation protocols.

Evaluation protocols. We perform online stereo adaptation under three dif-
ferent settings according to the definition of the sequence, including short-, mid-,
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Table 1. Mid-term adaptation: Performance comparison for several methods on
the KITTI [7] dataset.

Method Training Adapt.
City Residential Campus Road Avg.

D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE

DispNetC-GT KITTI No 1.94 0.68 2.43 0.77 5.43 1.10 1.67 0.69 2.87 0.81
MADNet-GT KITTI No 2.05 0.65 2.67 0.82 6.87 1.24 1.57 0.66 3.29 0.84

L2A-Disp. Synthia No 12.78 1.67 12.80 1.72 17.57 2.06 12.34 1.59 13.87 1.76
MADNet Synthia No 38.78 8.36 35.73 7.89 40.59 7.68 38.31 8.77 38.35 8.18
Ours-Disp. Synthia No 9.98 1.47 10.99 1.62 17.01 2.06 7.98 1.33 11.49 1.62
Ours-MAD. Synthia No 15.51 1.82 14.24 1.78 22.40 3.04 15.61 1.84 16.94 2.12

L2A-Disp. Synthia Full 2.05 0.78 2.57 0.86 4.43 1.07 1.63 0.77 2.67 0.87
MADNet Synthia Full 2.11 0.81 2.79 0.90 6.24 1.41 1.60 0.72 3.19 0.96
Ours-Disp. Synthia Full 2.03 0.99 2.46 0.83 4.21 1.02 1.58 0.74 2.57 0.90
Ours-MAD. Synthia Full 1.55 0.72 1.55 0.70 3.84 1.08 1.15 0.67 2.02 0.79

MADNet Synthia MAD 2.36 0.84 1.94 0.77 10.03 1.70 2.27 0.83 4.15 1.04
MADNet Synthia MAD++ 1.95 0.80 1.86 0.76 8.57 1.65 1.94 0.80 3.56 0.99
Ours-MAD. Synthia MAD 1.63 0.74 1.62 0.73 4.16 1.12 1.23 0.69 2.16 0.82

and long-term adaptation. For short-term adaptation, each sequence is de-
fined as a distinct sequence provided by the dataset (e.g. 2011 09 30 drive 0028 sync).
This setting is appeared in [36]. The sequences in mid-term adaptation are
divided according to the environment (i.e., City, Residential, Campus, Road).
In long-term adaptation, we perform adaptation for all frames by concate-
nating all mid-term sequences. The mid- and long-term adaptation settings are
shown in [37] as short- and long-term adaptation. The implementation details
are provided in supplementary material.

5.2 Synthetic to Real Adaptation

We evaluate the performance corresponding to the different adaptation methods:
No adaptation (No), which measures the performance for all sequences without
performing adaptation from the base parameters to estimate the capacity of the
initial parameters; Full adaptation (Full), which updates parameters of whole
network; MAD adaptation (MAD), which performs faster modular adaptation
on a prediction of certain resolution selected at every iteration by their own
handcrafted method as proposed in [37]; MAD++ adaptation (MAD++) is an
extension from MAD and utilizes predictions obtained by handcrafted methods
(e.g. SGM [11], WILD [38]) as proxy supervision. The cases of -GT are re-
garded as supervised learning that is fine-tuned on KITTI 2012 [8] and 2015 [24]
datasets. In the experiment, (L2A, Ours)-Disp. and Ours-MAD. employ Disp-
NetC and MADNet as base networks, respectively.

Mid-term adaptation. Table 1 shows the results according to the adaptation
methods under mid-term adaptation setting. From the performance with No
adaptation (row 3-6), we observe that our method helps to learn better base
parameters compared to other methods using the same base network. Especially
before the adaptation, with MADNet (row 4 and 6), our PointFix significantly
improves the performance of the base network by 20.19% and 4.39 in terms
of D1-all and EPE respectively, that demonstrates PointFix is effective in a
generalization capability.
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Table 2. Short-term and Long-term adaptation: Performance comparison for
several methods on the KITTI [7] dataset.

Method Training Adapt.
Short-term Long-term
D1-all EPE D1-all EPE

DispNetC-GT KITTI No 2.38 0.77 2.32 0.75
MADNet-GT KITTI No 2.57 0.75 2.52 0.78

L2A-Disp. Synthia No 12.99 1.73 12.86 1.70
MADNet Synthia No 27.63 3.59 36.77 8.09
Ours-Disp. Synthia No 9.47 1.21 10.56 1.57
Ours-MAD. Synthia No 11.59 1.67 23.50 3.23

L2A-Disp. Synthia Full 2.64 0.84 2.37 0.84
MADNet Synthia Full 6.68 1.31 2.86 0.93
Ours-Disp. Synthia Full 2.62 0.81 2.30 0.82
Ours-MAD. Synthia Full 2.00 0.74 1.56 0.71

MADNet Synthia MAD 11.82 1.90 1.92 0.75
MADNet Synthia MAD++ 9.56 1.61 1.70 0.75
Ours-MAD. Synthia MAD 2.64 0.87 1.47 0.70

The results of Full adaptation (row 7-10) and MAD adaptation (row 11-13)
show the adaptation capability of the base network. Our PointFix outperforms
previous methods with large margin in both metrics, achieving state-of-the-art
performance on all domains. The PointFix with MAD adaptation (row 13) out-
performs MADNet with MAD++ adaptation that leverages the additional su-
pervision and even L2A and MADNet with full adaptation (row 7 and 8) while
enabling fast inference by adapting only a few parameters. As pointed out in [37],
all adapted models perform worse on Campus domain that has a small number
of frames (1149) compared to the other domain (5674, 28067, 8027). The results
on Campus domain show that PointFix adapt better than previous works with
a small number of frames in all adaptation methods.

Short-term adaptation. In Table 2, to examine the adaptability in short
sequences, we evaluate models on each sequence independently as represented
in [36]. For each sequence, parameters are initialized at every beginning of se-
quences. Measured performance is first averaged in each sequence and then they
are averaged out. Thanks to fast adaptation speed and inherent robustness of
our framework, we surpass the performance than previous works with a large
margin. Especially, due to its light weight structure, inherent weakness of MAD-
Net is maximized in short-term environment (row 4 and 8) because they requires
a number of frames to be adapted. Nevertheless, MADNet with our framework
shows superior results. This suggests that our framework is worthy to be devel-
oped with light weight networks.

We conduct additional experiments on the DrivingStereo [40] dataset to hy-
pothesize more difficult scenarios under various weather conditions. Specifically,
we train all models on Synthia [30] dataset and evaluate the performance on each
sequence including four types of weather conditions in the short-term adaptation
setting. As shown in Table 3, our model outperforms MADNet [37] with a large
margin for all novel weather conditions. In particular, our method represents
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Table 3. Short-term adaptation: Performance comparison on the subset of Driv-
ingStereo [40] under different weather conditions.

Method Adapt.
cloudy foggy rainy sunny Avg.

D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE

MADNet No 56.83 19.16 70.14 23.85 54.20 19.20 51.30 16.08 58.12 19.57
Ours-MAD. No 32.76 5.34 37.25 6.55 34.06 4.78 30.00 4.58 33.52 5.31

MADNet Full 15.71 3.11 18.09 3.28 18.37 2.86 14.71 2.63 16.72 2.97
Ours-MAD. Full 7.00 1.28 7.25 1.39 15.31 2.52 8.33 1.49 9.47 1.67

MADNet MAD 28.46 6.65 33.56 6.13 31.34 5.79 27.10 6.15 30.11 6.18
Ours-MAD. MAD 8.46 1.46 8.57 1.46 11.99 1.69 8.90 1.52 9.48 1.53

error rates of about half those of MADNet [37]. The implementation details and
additional experimental results are provided in supplementary material.

Long-term adaptation. The adaptation on a long sequence followed by vari-
ous environments without network resets can be regarded as the most practical
scenario in the real world. To simulate this scenario, we report the results eval-
uated on the concatenation of four environments of the KITTI [7] datase (∼
43000 frames) in Table 2. As analyzed in [37], the results show much smaller
average errors than the mid- and short-term adaptation for all adaptation meth-
ods, as the length of the sequence increased. Among them, our PointFix shows
drastically improved performance and significantly outperforms previous works.
Therefore, PointFix framework can be further improved, continually adapting
to the real world environment.

5.3 Analysis

Table 4. Ablation studies for PointFixNet
and the meta-learning framework (ML) eval-
uated on the KITTI [7] dataset under short-
term adaptation setting.

PointFixNet ML Adapt. D1-all EPE

✗ ✗ Full 6.68 1.31
✓ ✗ Full 8.06 1.47
✗ ✓ Full 3.12 0.96
✓ ✓ Full 2.00 0.74

Ablation study. To investigate the
effectiveness of the components of
within our model, we conduct abla-
tion experiments on the KITTI [7]
dataset according to PointFixNet
and the meta-learning framework
(ML), as shown in Table 4. Note that
we use MADNet as the base network
and evaluate the performance using
the full adaptation under the short-
term adaptation setting for all experiments in this section. As a baseline, we
remove all components of the proposed method such that the first row in Table
4 corresponds to MADNet [37].

Effectiveness of PointFixNet. To validate the effectiveness of the point-wise
backpropagation, we ablate PointFixNet and apply ℓ1 loss between the initial
disparity d̂ and groundtruth d instead of the point loss in Alg. 1. The compar-
ison between the third row of Table 4 and the full use of components shows
PointFixNet contributes 1.12% and 0.22 in terms of D1-all error and EPE and
demonstrates fixing local detriments is simple yet effective to improve the ro-
bustness of the stereo model.
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0th frame 100th frame 200th frame

(b)

(c)

(a)

Fig. 3. Disparity maps predicted using MADNet as the base network on the KITTI [7]
sequence. (a) Left images, (b) MADNet with MAD adaptation [37], (c) Ours-MAD.
with MAD adaptation. Red pixel values indicate closer objects.

Effectiveness of ML. As described in 4.3, the performance improvement of the
base network using the point loss is not guaranteed without meta-learning. The
results in the second row of Table 4 show poor performance even than the base-
line. The comparison between the first and third rows of Table 4 further validates
the effectiveness of the ML framework, showing significant performance improve-
ments. Finally, the state-of-the-art performance is shown by demonstrating the
advantage of the full use of all components of learning to fix the base network
through meta-learning.
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Fig. 4. D1-all error (%) across frames in
sequence from the KITTI [7] dataset with
respect to the adaptation methods.

Convergence. In Fig. 3, we evaluate
the qualitative results related to the
convergence analysis. The results con-
tain good initialized parameters (first
column), fast adaptation (second col-
umn), and convergence to low errors
(last column) as analyzed above. As
the adaptation proceeds, the MAD-
Net (row 2) estimates better predic-
tion, yet still shows a high error while
Ours-MAD (row 3) shows not only ro-
bust initial performance but also faster
convergence to low errors.

To analyze and compare the adaptation cost corresponding to the methods,
we visualize the adaptation performance over frames of the sequence from the
KITTI [7] dataset in Fig. 41. In overall view, the results show that our Point-
Fix adapts faster than [37] and converges with lower errors regardless of the
adaptation method. Furthermore, the comparison between MAD.-No (green)
andOurs+Mad.-No (brown) shows the effectiveness of the initial base parame-
ters. The comparison between MAD.-MAD (yellow) and Ours+Mad.-MAD
(purple) shows that the performance is improved by PointFix with MAD adap-

1 The results with DispNetC are shown in supplementary materials.
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tation, while MAD.-Full (red) overtakes from the about 100-th frame. Finally,
Ours+Mad.-Full (blue) adapts faster than all the other methods and con-
verges to the low D1-all error, showing comparable performance with MAD.-
GT (gray) fine-tuned with ground-truth. The additional experimental results
and analysis are shown in supplementary material.

Comparison with domain generalization methods. To argue the practi-
cality of online stereo adaptation, we compare our model with the state-of-the-
art domain generalization (DG) methods [42, 32, 21] that the stereo models are
trained on the synthetic dataset and evaluated on the unseen real dataset with-
out the additional adaptation. Table 5. Comparisons of domain generaliza-

tion methods and our method evaluated on
the KITTI [7] dataset.

Method Adapt. D1-all EPE FPS

DSMNet [42] N/A 1.59 0.68 1.30
CFNet [32] N/A 1.93 0.97 4.27
Raft [21] N/A 1.66 0.71 22.44
MADNet [37] MAD 1.95 0.82 35.7
Ours-MAD. MAD 1.47 0.70 35.7

For a fair comparison, the mod-
els are pretrained on the Scene-
Flow [23] dataset and evaluated on
the KITTI [7] dataset2. Note that we
report the performance of our model
measured under the long-term adap-
tation setting. As shown in Table 53,
our model not only outperforms the
generalization approaches in terms
of D1-all error but also shows about ×27, ×8.3, and ×1.6 faster inference speed
than [42], [32], and [21], respectively, despite of additional adaptation steps.
While the domain generalization approaches [42, 32, 21] estimate the depth maps
without the adaptation, they require a large number of parameters to obtain a
generalized stereo model, making them impractical. This is worth noting that our
method has high applicability to the practical application such as autonomous
driving in terms of accuracy and inference speed.

6 Conclusion

In this paper, we proposed PointFix, a novel meta-learning framework to ef-
fectively adapt any deep stereo models in online setting. Compared with previ-
ous online stereo adaptation approaches facing global domain bias problem to
synthetic data, our model can induce maximal performance of the base stereo
networks by the proposed the auxiliary network PointFixNet and learning-to-fix
strategy, that can adapt well to the fine-grained domain gap. Our extensive ex-
periments show PointFix achieves state-of-the-art results, outperforming several
online stereo adaptation methods in a wide variety of environments. In addition,
the results demonstrate that PointFix is capable of improving the generalization
ability of the stereo models.

2 We conducted a custom experiment using a publicly available code for each paper.
3 For Raft-stereo [21], a real-time version was employed which shows a much faster
inference speed.
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