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Abstract. Self-supervised monocular depth estimation has achieved en-
couraging performance recently. A consensus is that high-resolution in-
puts often yield better results. However, we find that the performance
gap between high and low resolutions in this task mainly lies in the in-
appropriate feature representation of the widely used U-Net backbone
rather than the information difference. In this paper, we address the
comprehensive feature representation problem for self-supervised depth
estimation by paying attention to both local and global feature repre-
sentation. Specifically, we first provide an in-depth analysis of the in-
fluence of different input resolutions and find out that the receptive
fields play a more crucial role than the information disparity between
inputs. To this end, we propose a bilateral depth encoder that can fully
exploit detailed and global information. It benefits from more broad
receptive fields and thus achieves substantial improvements. Further-
more, we propose a residual decoder to facilitate depth regression as
well as save computations by focusing on the information difference
between different layers. We named our new depth estimation model
Bilateral Residual Depth Network (BRNet). Experimental results show
that BRNet achieves new state-of-the-art performance on the KITTI
benchmark with three types of self-supervision. Codes are available at:
https://github.com/wencheng256/BRNet

1 Introduction

Depth estimation is a fundamental problem in many applications, which aims to
estimate the depth for each pixel in a 2D image. Traditional methods formulate
this task as a stereo matching problem [29,38], but the exhausted matching pro-
cess often limits their deployment. In recent years, deep learning based monoc-
ular depth estimation [7] has drawn much attention, which predicts depth only
relying on a single-view input image. However, such a method requires large-scale
samples with accurate annotation for fully-supervised training, leading to expen-
sive and elaborate manual work[28,5]. An alternative is to apply self-supervised
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Large image and depth by monodepth2Small image and depth by monodepth2 Small image and depth by our BRNet

Fig. 1. Predictions from monodepth2 [8] and our BRNet with different in-
put resolutions. The board in the images shows no obvious difference in the two
resolutions, but the results of the monodepth2 differ substantially. This motivates us
to explore the reason for the different predictions and devise a more suitable model of
fully utilizing information in the images for depth estimation.

learning [7] for monocular depth estimation, which requires only video sequences
or stereo images to provide supervision signal. This largely decreases the heavy
annotation burden and still achieves competitive performance.

Most of the self-supervised learning works, e.g., Monodepth2 [8], HRDepth [17]
and PackNet-SfM [9], adopt the U-Net-like [26] architectures. U-Net [26] contains
an encoder for extracting hierarchical feature maps and a decoder for predicting
depth based on encoded feature maps. It is worth mentioning that almost all
these models achieve notably better results when taking higher resolution im-
ages as input. Despite this, little work has given deeper attention to how the
input resolution influences the performance. Intuitive thought is that the more
detailed information in larger images may be the reason. However, as shown in
Fig. 1, the boards in the red circles are equally clear in both resolutions, but the
model still gives different predictions for them. This observation motivates us to
find out the real mechanism behind it.

In this paper, we argue that the performance gap between the high and low-
resolution inputs mainly lies in the different receptive fields rather than the in-
formation disparity between the inputs. Features extracted from high-resolution
images have smaller receptive fields than those extracted from low-resolution
ones. The smaller receptive enforces the network to focus more on the detailed
information of the images, which is of crucial importance for a depth estimation
model. To prove this point, we conduct a heuristic experiment by interpolating
the images from a lower resolution to a higher resolution, e.g., the large fake
image in Fig. 2, and perform depth estimation based on this fake large image.
It turns out that there is little performance decrease in comparison to the in-
put with real large images, suggesting the information disparity is not the main
reason for the performance gap. In addition, we find that only smaller receptive
fields could not always come with better results, so we should also integrate
the feature with large receptive fields, which provides global information such
as perspective and object relations [20,7]. To this end, we propose a bilateral
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encoder. One branch is designed to encode detailed information with small re-
ceptive fields, and the other accounts for global information with large receptive
fields. Combining these comprehensive and complementary features, our model
significantly outperforms existing U-Net-based encoders [26].

Since the input resolution determines the output resolution, we further in-
vestigate how much the output depth map sizes of the decoder affect the perfor-
mance. There are five decoder layers in U-Net, where each layer upsamples the
current feature map to a larger one and fuses it with the corresponding feature
map from the encoder. We evaluate the output depth from each decoder layer
and surprisingly find that there is no obvious performance gap between them.
This is contrary to the intuition that larger outputs should encode more details
and be preciser than smaller ones. We infer that the incremental information
can not be fully exploited as the decoder layers go deeper. To address this, we
propose to add the depth obtained from the previous layers to the input of the
current layer and enforce the network to predict residual information between
different depth sizes. We call the proposed decoder as residual decoder, which
is inspired by the residual operation in ResNet. Our residual decoder effectively
focuses on the difference between features maps from different layers and thus
facilitates depth regression.

Our main contributions can be summarized as follows:

– We provide a deeper insight into the performance gaps between different
input resolutions by thorough and exhaustive heuristic experiments. We find
that appropriate receptive fields are critical to the performance of the depth
estimation model.

– We propose a new Bilateral Depth Encoder that can fully exploit details and
global information simultaneously, providing a more comprehensive feature
representation for depth estimation.

– A Residual Decoder is introduced for dense depth regression. It makes full
use of the output depth from each decoder layer, focusing on the information
difference between features maps of different scales.

– Our depth estimator achieves a new state-of-the-art performance on the
KITTI benchmark. The approach remarkably outperforms other approaches
with all the types of self-supervision, e.g., achieving 0.097 and 4.378 in terms
of Abs Rel and RMSE, respectively, with MS training.

2 Related Work

Current monocular depth estimation approaches can be roughly categorized into
two groups. One group applies the fully-supervised learning to regress the ground
truth depth maps generated from the LiDAR sensor. Another group provides
supervision by leveraging synchronized monocular videos or stereo pairs in order
to optimize the depth estimation model in a self-supervised fashion.
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2.1 Fully-Supervised monocular depth estimation

The first method for monocular depth estimation based on deep learning is devel-
oped by Eigen et al. [5], which directly regresses the depth by two components.
One is for estimating the global structure of the scene, and the other is used
to refine it using local information. The two components are trained separately,
and this increases the training expenses. Later this architecture is replaced by a
fully convolutional network [14] designed for semantic segmentation by Evan et
al. [30]. This work enables the depth estimation task to be trained end-to-end
with a deeper network, and it performs comparably with the depth sensor. And
then, many methods are exploited to improve the performance [2,31,25].

Besides point clouds, some networks also try to exploit extra labels to im-
prove the performance. Klodt et al. [12] employ sparse depths and poses from
the traditional SLAM system, and Ramirez et al. [24] demonstrate that jointly
predicting depth and semantic labels can improve the performance of depth es-
timation. Tosi et al. [32] exploit proxy ground truth labels, which are generated
by a traditional stereo matching method.

Although these works achieve notable success, they rely on ground truth
labels that are expensive to obtain, which limits the training data’s scale. In
consequence, many works focus on self-supervised methods.

2.2 Self-supervised monocular depth estimation

For self-supervised approaches in monocular depth estimation, there are mainly
two categories. One is based on stereo pairs, and the other uses consecutive video
frames during the training phase.

Stereo training Garg et al. [6] first propose the self-supervised training
approach for monocular depth estimation with a photometric-consistency loss
between stereo pairs. Specifically, they take the images from one of the views
and construct pseudo images for the other view based on the depth predicted
and the relative position between the two views. Then a L2 loss is employed to
measure the difference between generated images and the real ones. Godard et
al. [7] improve the method by replacing the L2 loss with a L1 loss and introducing
the structural similarity index measure to generate sharper results. Godard et
al. [8] show that computing projection loss at a higher resolution will improve the
depth map quality, and Pillai et al. [21] introduce differentiable flip augmentation
and subpixel convolutions for increasing the fidelity of the depth map. Watson et
al. [35] introduce Depth Hints to alleviate the effects of ambiguous reprojections
in depth-prediction.

Although some works have achieved satisfying performance [13,16,1,39,22],
stereo image pairs require specialized equipment. Therefore, some other works
like [10,37,36,18,34] turn to investigate methods based on video sequences.

Video training Zhou et al. [41] design an additional network to predict the
camera pose between adjacent frames and construct the pseudo frame based on
the previous and subsequent frames, respectively. To deal with non-rigid scene
motion, they employ a motion explanation mask so that it allows the network to
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Experiments
Metrics

Abs Rel ↓ RMSE ↓ δ < 1.25 ↑
Input Resolution

Small 0.115 4.863 0.877

Large (1024 × 320) 0.115 4.701 0.879

Fake Large (1024 × 320) 0.115 4.708 0.880

Encoder

1/2 Receptive field 0.111 4.672 0.880

1/4 Receptive field 0.116 4.761 0.875

1/8 Receptive field 0.129 5.098 0.844

Decoder

Extra Layer 0.118 4.826 0.869

Disp0 (full size) 0.115 4.863 0.877

Disp1 (1/2 size) 0.114 4.858 0.877

Disp2 (1/4 size) 0.114 4.834 0.875

Disp3 (1/8 size) 0.116 4.869 0.868

Table 1. Experiments about different input resolutions and different archi-
tecture of encoder and decoder. We adopt Abs Rel, RMSE and δ as our metrics.
For Abs Rel and RMSE, lower values are better, and higher values are better for
δ > 1.25.

ignore specific regions. Godard et al. [8] then propose a new strategy to replace
this mask and achieve better performance. To fully exploit the view difference
between frames, they did not average the loss from the future and past frames
but took the minimum value of the loss instead. They also propose a simple
auto-masking method to filter out pixels that do not change appearance in a
sequence from one frame to the next. Lyu et al. [17] prove that predicting more
accurate boundaries can improve performance and redesign the skip connection
generating high-resolution feature maps to get sharper edges. Zhou et al. [42]
proposed a lightweight architecture that performs better in a more efficient way.
Johnston et al. [11] and Bakhanova et al. [19] introduce attention mechanism
into depth estimation area to improve the performance of models.

These methods show better performances when taking large inputs in their
experiments, but little work investigates the reason.

3 Methods

This section first analyses the reason behind the performance gap between the
different input resolutions and reveals several limitations of the prevalent depth
estimation backbone U-Net [26]. Then, based on our observations, we develop
a new depth estimation network, BRNet, which effectively mines the detail and
global information of the input image by the Bilateral Encoder and fully exploits
the incremental data of different layers by the Residual Decoder. Notably, even
taking small inputs, our model significantly outperforms the baseline method
taking large inputs.
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3.1 Analysis of Current Depth Estimator

As shown in previous works, models with larger inputs always outperform those
with small inputs, which is a consensus of the community. An intuitive reason is
that larger images keep more real-world information while small ones can not.
However, as shown in the Fig. 1, although some objects can be seen clearly in
both resolutions, the model still gives different results. Stemming from these
observations, we believe that information difference between inputs may not be
the main reason leading to the performance gap.

To explore this, we conduct an experiment as shown in Fig. 2. We first
down-sample a large input image into a small resolution and then interpolate
it back to the original size. The resultant image, called a fake-large image, has
the same information as the small image except for a larger size. Afterward, we
apply monodepth2 [8] as the baseline model to train and evaluate on fake-large,
small and large images, respectively. If the performance gap comes from the
information difference, the model’s performance with fake-large inputs will be
the same as that of small inputs. Otherwise, the result will be similar to the
one by taking large inputs. As shown in the Table 1, the model’s performance
with fake-large inputs is comparable with that of large inputs and is better than
the model of small inputs. This experiment proves that most of the performance
gap between large and small inputs in the depth-estimation model does not come
from the information difference between them.

As input information is not the reason, it may be in the process of feature
extraction in the encoder or result generation in the decoder. So we design a
series of experiments to find it.

Encoder We find that the bad cases from small inputs are mainly objects that
are far from the camera. The prediction for these objects heavily depends on the
detailed occlusion relationship with other elements. However, the radical down-
sampling strategy of the encoder provides a large receptive field, making it hard
to focus on these details and thus neglecting this information. Larger inputs
counterbalance the down-sampling and provide relatively smaller receptive fields,
which can extract more information, leading to the performance gap between
different resolutions. To validate this, we adjust the stride of the convolutions in
the encoder and feed small input into it so that the produced feature maps have
1
2 receptive fields of the origin network and are similar to those of large input.
As shown in Table 1, it generates even better results than that of large inputs.
The results support our theory that the receptive fields of the model may be the
main reason of the performance gap.

On the other hand, as mentioned in Miangole et al. [20], higher resolution
inputs do not always come with better results. As the resolution gets higher, the
network starts losing the overall structure of the scene. As a result, the relative
depth between objects is better predicted, but their absolute depth in the whole
image is less precise than that of smaller inputs. To verify this conclusion in
monocular depth estimation, we prepare another experiment by adjusting more
convolutions in the decoder and trying smaller receptive fields. As shown in the
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large input
(1024 × 320)

small input
(640 × 192)

fake large input
(1024 × 320)

down-sample up-sample

Fig. 2. Experiments in our analysis. An example of our larger inputs, small inputs
and fake-large inputs.

Table 1, when reducing the receptive fields into 1
4 and 1

8 of the original ones, the
performance of this model will degenerate gradually.

In summary, relatively smaller receptive fields can help provide more de-
tailed information, contributing to the better performance of the depth estima-
tor. Larger inputs also lead to smaller receptive fields, which may be the main
reason behind the influence of the input resolution. Before we make a conclusion,
we still need to clarify the role of the decoder.
Decoder Larger inputs lead to smaller receptive fields, but they also induce
larger depth maps. Here is another question, how much does the result size affect
the performance. To figure out this question, we prepare another experiment. In
this experiment, we feed the network large inputs but down-sample the first
feature map into small resolution and send it to the rest of the encoder. The
feature maps of the encoder keep the same receptive fields as it takes small
inputs. As for the decoder, we insert an extra decoder layer, which upsamples
the decoder feature map and fuses it with the large feature map, and we finally
obtain the results with the same size as larger inputs as shown in the Fig. 2. As
a result, it has similar results with smaller inputs which confirms that the larger
output size can obviously improve the performance.

Since a larger result resolution does not affect the performance markedly,
does a smaller result affect the performance a lot? To form multi-scale disparity
loss, monodepth2 [8] modifies the decoder to generate four results with different
sizes. So we evaluate the results produced by different layers of the decoder,
which has a full, 1

2 ,
1
4 , and

1
8 resolution, respectively. As shown in the Table 1,

they all perform comparably. The result with the full size is even worse than
that with 1

4 size. This observation is counterintuitive because larger depth maps
are supposed to keep more details, so they should be preciser than small results.
The experiment shows that the decoder does not perform as it is designed.
We attribute this problem to that the U-Net decoder designed for semantic
segmentation is not well suited to depth estimation and will discuss it in Sec.
3.3.
Summaries. The analysis above leads us to the following conclusion: The re-
ceptive field’s difference contributes most to the performance gap between differ-
ent input resolutions rather than the information disparity. Therefore, adjusting
the convolutions’ stride in the encoder providing more detailed information can
lead to better performance. Besides, global information is also indispensable. To
achieve better performance, we must fully exploit both detailed and global fea-
tures. Finally, we find that U-Net decoder can not achieve this as it is designed
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Fig. 3. Overview of the proposed network which mainly contains two parts. One
is the bilateral encoder the other is the residual decoder. There is a detail branch
for extracting detail features for the encoder, a global branch to extract high-level
information, and finally, a global-detail fuse module (GDFM) that fuses the two feature
maps. The pose network is employed to give the relative pose between two frames and
is only used during the training phase.

in the depth estimation, so we need a new decoder that is more suitable for this
task.

3.2 Bilateral Depth Encoder

According to the conclusions drawn above, a better depth encoder should prop-
erly deal with global and detailed information. However, there is a paradox. De-
tailed information needs the encoder to have relatively smaller receptive fields to
focus on occlusion relationships. On the other hand, only larger receptive fields
can provide an objective overview. To meet their needs simultaneously, we de-
sign a two-branch architecture to extract both global and detailed features and
then fuse them into more comprehensive ones.

As shown in the Fig. 3, we reduce the stride of the first convolution so that the
whole network downsamples the input more slowly, concentrating more on the
details. After several blocks, information such as occlusion relationships will be
well encoded. Still, as the receptive fields are reduced, they cannot get enough
global information. Thus it will lead to inconsistent predictions, as discussed
above. To alleviate this problem, we develop a new branch, i.e., Global Branch,
after Layer-3. For convenience, we call the original one as Detail Branch.

The global branch further down-samples the feature maps to get larger
receptive fields while the detail-branch keeps high resolution of the feature
maps maintaining detail features. Then the two branches are joined together
by GDFM (Global-Detail Fusion Module) to generate comprehensive feature
maps, as shown in Fig. 3. Some global information is critical to every location
in the image, such as the perspective point and view point. To share this infor-
mation to every place, we employ a multi-head attention [33] to fuse global and
detailed information. Specifically, the detailed features are mapped into query
features, and the global features are mapped into key and value features. Then
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the query and key features are multiplied to generate an affinity map, and the
affinity map is used to aggregate information from value features. In this way,
every pixel in the detail feature map can aggregate corresponding global features
as they need, even though they are far away from current location. Finally, we
add this feature map into a detailed feature map to fuse them. Also, we add a
residual shortcut of the global features by upsampling and merging it into the
final feature map to facilitate optimization.

Bilateral Depth Encoder can fully exploit hidden information from input
images by taking advantage of global and detailed features. With these compre-
hensive feature maps, our model is able to achieve significant improvement.

3.3 Residual Decoder

Intuitively, larger outputs contain more details and are supposed to perform
better than smaller ones. On the contrary, as discussed in Sec. 3.1, the results
of different layers in the current depth decoder perform closely, which means
that the decoder does not ideally perform as designed. Decoders in most depth
estimators are adopted from U-Net [26], which is intended for semantic seg-
mentation. However, semantic segmentation is a dense classification task, while
depth estimation is a dense regression task so they are different.

In the classification task, as types are discrete, every pixel needs to be judged
independently to generate sharp borders. But in depth estimation, depth values
are changed smoothly, and every pixel in the depth map is close to its’ neighbors.
Thus, we can generate depth for large regions and fine-tune the depth for every
pixel in a region.

In this work, we regard the outputs of higher layers as residuals:

Disp(l) = UpSample(Disp(l − 1)) +R(l). (1)

If there is no extra information for some regions in the view, their residuals R(l)
are close to 0. On the contrary, if there is valuable information, the residuals are
used to adjust the predictions made by the former layer. As shown in the Fig. 4,
different from the original decoder layer, which upsamples the feature maps from
the previous layer, our residual layer upsamples the one-channel depth map to
a larger size. Then the depth map is modulated by a convolution, and then
we concatenate it with the shortcut feature map extracting the residual using
another convolution as:

R(l) = f(Disp(l − 1), F (l); θ), (2)

where θ is the parameters and F (l) is the shortcut features of layer l. Finally, the
residual is added to the previous depth map. Compared to independent decoder
layers, residuals can focus on the differences between layers, which helps the
current layer to generate better predictions than their predecessors. Benefited
from the multi-scale loss [8], every layer in the decoder can be fully optimized
during the training phase. Finally, with this residual decoder, our model yields
significant improvements compared to the U-Net decoder.
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Fig. 4. Comparison between Residual Decoder layer and U-Net Decoder
layer. In a U-Net decoder layer, the feature map from the previous layer Fl−1 is
upsampled and concatenated with the shortcut feature map Sl. Then the feature map
is used to generate fused featuremaps Fl and a depth map Ol. In a residual decoder
layer, the depth map from the previous layer (Ol−1) is upsampled and concatenated
with Sl. And the output of this layer is regarded as residual (Rl) and should be added
to the previous depth map generating Ol.

3.4 Loss Function

To optimize the proposed model, we formulate our problem as minimising the
photometric reprojection error during the training phase. As described in mon-
odepth2 [8], at each pixel, minimization is used to merge results from different
sources:

Lp = min
t′

pe (It, It′→t) , (3)

where It is the target image and It′→t is the pseudo target image which is
generated by:

It′→t = It′ ⟨proj (Dt, Tt→t′ ,K)⟩ (4)

where It′ is the source image and Dt is the depth map generated by our model.
K is the pre-computed intrinsics and Tt→t′ is the camera pose between It′ and
It. When training with video sequences, Tt→t′ is the result of the pose model
or when training with stereo image pairs, it is the pose between two cameras.
pe (Ia, Ib) is our photometric error function, which is designed as:

α

2
(1− SSIM (Ia, Ib)) + (1− α) ∥Ia − Ib∥1 . (5)

In our experiments, α is set to 0.85. Also, the edge-aware smoothness [7] is
employed to encourage the disparities to be locally smooth:

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|. (6)

Then the final loss is:

L = µLp + λLs, (7)

where µ and λ are the auto-mask introduced by [8]. When training with stereo
image pairs, It′ is the image from the other view. For video sequences, It′ ∈
{It−1, It+1} where It−1 is the previous frame and It+1 is the subsequent frame.
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Method Resolution Trian
lower is better higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

low resolution

EPC++ [15] 640 × 192 M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth [3] 416 × 128 M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [8] 640 × 192 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 R50 [8] 640 × 192 M 0.110 0.831 4.642 0.187 0.883 0.962 0.982
Johnston [11] 640 × 192 M 0.106 0.861 4.699 0.185 0.889 0.962 0.982

PackNet-SfM [9] 640 × 192 M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HR-Depth [17] 640 × 192 M 0.109 0.792 4.632 0.185 0.884 0.962 0.983
R-MSFM6 [42] 640 × 192 M 0.112 0.806 4.704 0.191 0.878 0.960 0.981
BRNet (Ours) 640 × 192 M 0.105 0.698 4.462 0.179 0.890 0.965 0.984

Monodepth R50 [7] 512 × 256 S 0.133 1.142 5.533 0.230 0.83 0.936 0.970
3Net (R50) [23] 512 × 256 S 0.129 0.996 5.281 0.223 0.831 0.939 0.974

3Net (VGG) [23] 512 × 256 S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
Monodepth2 [8] 640 × 192 S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
BRNet (Ours) 640 × 192 S 0.103 0.792 4.716 0.197 0.876 0.954 0.978

EPC++ [15] 640 × 192 MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [8] 640 × 192 MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-Depth [17] 640 × 192 MS 0.107 0.785 4.612 0.185 0.887 0.962 0.982
R-MSFM6 [42] 640 × 192 MS 0.111 0.787 4.625 0.189 0.882 0.961 0.981
BRNet (Ours) 640 × 192 MS 0.099 0.685 4.453 0.183 0.885 0.962 0.983

high resolution

Monodepth2 [8] 1024 × 320 M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Zhao et al. [40] 832 × 256 M 0.113 0.704 4.581 0.184 0.871 0.961 0.984

PackNet-SfM [9] 1280 × 384 M 0.107 0.802 4.538 0.186 0.889 0.962 0.981
HR-Depth [17] 1024 × 320 M 0.106 0.755 4.472 0.181 0.892 0.966 0.984
R-MSFM6 [42] 1024 × 320 M 0.108 0.748 4.470 0.185 0.889 0.963 0.982
BRNet (Ours) 1024 × 320 M 0.103 0.684 4.385 0.175 0.889 0.965 0.985

SuperDepth + pp [21] 1024 × 382 S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [8] 1024 × 320 S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
BRNet (Ours) 1024 × 320 S 0.097 0.729 4.510 0.191 0.886 0.958 0.979

Monodepth2 [8] 1024 × 320 MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980
HR-Depth [17] 1024 × 320 MS 0.101 0.716 4.395 0.179 0.899 0.966 0.983
R-MSFM6 [42] 1024 × 320 MS 0.108 0.753 4.469 0.185 0.888 0.963 0.982
BRNet (Ours) 1024 × 320 MS 0.097 0.677 4.378 0.179 0.888 0.965 0.984

Table 2. Comparison with other SOTA networks on KITTI Eigen split test
set. The train column refers to the training data of the models. M means monocular
videos only and S means stereo image pairs, and MS means both. The best two results
are shown in bold and underlined, respectively.

Architecture Abs Rel ↓ Sq Rel ↓ RMSE↓ log10 ↓
Monodepth 0.544 10.94 11.760 0.193

Monodepth2 0.322 3.589 7.414 0.163

BRNet 0.302 3.133 7.068 0.156

Table 3. Make3D results with monocular training and 640 × 192 inputs.

4 Experiments

We implement our network using Pytorch, and all the training and evaluation
are performed on a workstation with an Intel E5-2698 v4CPU, 512G memory,
and a single V100 GPU.

4.1 KITTI

The KITTI benchmark is the most widely used dataset in depth estimation, con-
sisting of calibrated videos registered to LiDAR measurements of city scenarios.
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The depth evaluation is done on the LiDAR point cloud. We adopt the data
split like [4], followed by pre-processing as [41] to remove static frames. Finally,
39, 810 triplets are used for training and 4, 424 for validation. We use the same
intrinsics for all images and set the camera’s principal point to the image center
and the focal length to the average of all the focal lengths in KITTI.

4.2 State-of-the-Art Comparison

Followed by [8], we compare the results of several variants of the proposed model,
which is trained on different types of self-supervision. M, S and MS mean monoc-
ular video, stereo image pairs only and both, respectively. For the metrics, fol-
lowing [4] we adopt Abs Rel, Sq Rel, RMSE, RMSE log for which lower is better
and δ < 1.25, δ < 1.252, δ < 1.253 for which higher is better.

We compare our model to several state-of-the-art methods. As shown in
Table 2, our approach outperforms all existing self-supervised networks with all
the three types of self-supervision and two input resolutions. Compared to our
baseline model monodepth2 [8], our model with monocular video training and
small inputs achieves 0.010, 0.401 and 0.013 improvement in terms of AbsRel,
RMSE and δ < 1.25, respectively. As discussed in Sec.3.1, the original U-Net
cannot fully exploit the detailed information in small images. Therefore, they
cannot fully use the more detailed information carried by the large information
either. Different from it, BRNet can extract abundant details from the inputs.
When taking larger images, BRNet can extract more information than smaller
ones and achieve better results. As a result, our model significantly outperforms
our baseline when taking large inputs. We achieve 0.252 improvements on RMSE
with 1024×320 inputs and MS training. To show the generality of our model, we
follow the setting of [7] and evaluate BRNet on Make3D[27] dataset. According
to the results shown in Table.3, BRNet significantly outperform our baseline
with monocular training and 640× 192 input.

We also compare the qualitative performance with other representative net-
works. As shown in Fig. 5, our model performs better than other networks,
especially for objects far from the camera (marked by the red circles).

4.3 Ablation Study

We perform ablation studies to understand how the proposed components con-
tribute to the overall performance improvements. All the experiments are evalu-
ated on the KITTI Eigen split [4]. There are three components need evaluation:
Detail Branch (DB) The detail branch is responsible for extracting compre-
hensive features from inputs. As shown in the Table 4, the model taking small
inputs with the detail branch even performs better with the baseline accepting
large inputs gaining 0.004 improvement in terms of AbsRel and 0.192 in RMSE.
Global Branch (GB) The global branch is incorporated to extract perspective
and other global information. In default, GDFM is a part of the global branch
and is used to fuse the features from the two branches. To show the efficiency
of GDFM, we also show a result without GDFM by replacing GDFM with an
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Fig. 5. Qualitative results on the KITTI Eigen split test set. Our model can
fully exploit global and detailed information and outperforms previous SOTA networks.

Components
Abs Rel ↓ RMSE ↓ δ < 1.25 ↑

DB GB GB w/o GDFM RD

0.115 4.863 0.877

✓ 0.111 4.672 0.880

✓ ✓ 0.109 4.579 0.889

✓ ✓ 0.108 4.538 0.890

✓ ✓ ✓ 0.105 4.462 0.890

✓ 0.113 4.780 0.877

Table 4. Ablation study of the proposed components We compare the im-
provements from DB (Detail Branch), GB (Global Branch) RD (Residual Decoder)
and Global Branch without GDFM, and the model with all the three components and
GDFM achieves our best performance.

element-wise summation. As shown in Table 4, with global branch, the model
achieves 0.108 in AbsRel while GDFM provide an obvious improvement.

Residual Decoder (RD) We demonstrate the performance improvement from
our decoder. As shown in Table 4, the residual decoder outperforms the original
decoder by 0.076 in terms of RMSE. As shown in the table, RD alone can improve
the AbsRel by 0.002 and about 0.1 in RMSE.

Efficiency To extract abundant details from the inputs, BRNet introduces more
computation than our baseline. To verify the complexity of our model, we com-
pare its efficiency with two representative works in Table 5. As shown in it,
BRNet is only slightly slower than its baseline, runing at 14ms (71fps), a speed
far beyond real-time requirement. Compared with PackNet-SfM, BRNet largely
outperform it with 15% computation, which can prove the improvement of our
model does not come from the increasing computation.

Distance Comparison As discussed above, our method mainly improves the
performance on objects far from the camera. To verify this, we split the validation
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Architecture Abs Rel ↓ FLOPs(B) Params(M) Speed(ms)

Monodepth2 0.115 8 14 10

BRNet 0.105 31 19 14

PackNet-SfM 0.111 205 128 154

Table 5. Comparison of speed, computation. All the speeds are reported on the
the same device with a Tesla V100 GPU.

Method
Abs Rel

Near Middle Far

BRNet 0.059 0.073 0.147

Monodepth2 0.061 0.082 0.159

Table 6. Far objects comparison on different parts over the whole dataset.

(a) Near 0-8m (25%) (c) Far 14-∞m (40%)(b) Middle 8-14m (35%)

Fig. 6. Illustration and the proportion of different depth groups. We split the
prediction and ground truth into three groups, Near, Middle and Far, according to the
depth of each pixel.

dataset into three groups according to the depth of each pixel and the illustration
and proportion of each group are shown in Fig.6. We then compare our model and
the baseline model on the groups. In Table 6, two methods perform comparably
on the Near part but BRNet outperforms Monodepth2 [8] significantly on the
Middle and Far parts, which indicates that for more than 75% pixels in the
dataset, our model can improve the performance from our baseline.

5 Conclusion

In this paper, we first make a deep study on the mechanism behind the influence
of input resolutions and find out that the receptive field affects the performance
rather than information difference between inputs. Indeed, depth estimators need
a wide range of receptive fields. Thus they can extract detailed information, such
as occlusion and global information like perspective. Based on these findings,
we designed a bilateral depth encoder that simultaneously extracts details and
global features and fuses them. Finally, we propose a residual decoder focusing
on the difference between layers in the decoder, which is able to generate better
predictions.
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