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Abstract. Deep learning-based approaches usually suffer from perfor-
mance drop on out-of-distribution samples, therefore domain general-
ization is often introduced to improve the robustness of deep models.
Domain randomization (DR) is a common strategy to improve the gener-
alization capability of semantic segmentation networks, however, existing
DR-based algorithms require collecting auxiliary domain images to styl-
ize the training samples. In this paper, we propose a novel domain gen-
eralizable semantic segmentation method, “SiamDoGe”, which builds
upon a DR approach without using auxiliary domains and employs a
Siamese architecture to learn domain-agnostic features from the training
dataset. Particularly, the proposed method takes two augmented ver-
sions of each training sample as input and produces the corresponding
predictions in parallel. Throughout this process, the features from each
branch are randomized by those from the other to enhance the feature di-
versity of training samples. Then the predictions produced from the two
branches are enforced to be consistent conditioned on feature sensitivity.
Extensive experiment results demonstrate the proposed method exhibits
better generalization ability than existing state-of-the-arts across various
unseen target domains.

Keywords: Domain generalization; Semantic segmentation; Siamese
Network; Domain randomization

1 Introduction

Semantic image segmentation associates each pixel to a semantic label and has
a wide range of applications in real world, such as autonomous driving [65,5],
robotic navigation [53,41] and medical image diagnostic [10,68]. Current deep
learning-based approaches [341,65,5] have achieved very promising results through
training on large-scale labeled datasets [13,11,1], but these datasets are usually
very laborious to collect and annotate. Another well-known phenomenon is that a
deep model trained on one dataset often fits well on its own test split (in-domain)
but suffers from a huge performance drop on other datasets (cross-domain), and
this phenomenon is usually called domain shift.

1 Co-corresponding authors. Code is available at github.com/W-zx-Y /SiamDoGe.



2 Z. Wu et al.

Image RobustNet Ours ‘ GT

Fig. 1. Some visual comparisons of the domain generalizable semantic segmentation
results produced by the proposed method and RobustNet [10]. Both models are trained
on the GTAV dataset and evaluated using the ACDC dataset with four conditions of
Fog, Night, Rain and Snow, as shown in rows 1 to 4 respectively.

In recent years, domain adaptive (DA) semantic segmentation
[22,8,55,57,44,60,63] was proposed to bridge domain gaps so that a model
trained on one domain (source) also works well on other domains (target).
This is achieved by leveraging multiple unlabeled target samples as references
while training the source with supervision. However, this approach has two
limitations: 1) target samples are always required even if it can be as few as
one [36]; and 2) multiple times of adaptation are required to be performed
when there are multiple desired target domains. Compared with DA, domain
generalization (DG) is a more universal solution to handle arbitrary domain
shifts thus does not have a preference towards a particular target domain. It
aims to reduce the model sensitivity to the change of data distribution via
domain-agnostic feature learning. DG has been typically studied with two
different settings: multi-source DG [42,14,29,31,30,67] and single-source DG
[46,66,58]. In this paper, we study single-source DG for semantic segmentation.

Existing domain generalizable semantic segmentation approaches are mainly
based on feature normalization [45,10] and domain randomization [62,23,27]
(DR). It is observed that the domain randomization-based approaches usually
can achieve better generalization capacity than the domain normalization-based
ones due to the use of auxiliary real-world domains, e.g., ImageNet [12] or web-
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crawled images, for source image stylization. On the other hand, the DR-based
methods also have the following drawbacks: 1) their DG performances highly
depend on the choice of auxiliary domains and it takes a lot of time to carefully
collect data in the domains related to the task in order to avoid impure DG
[27]; and 2) most of them lack enough control and could undesirably alter the
semantic structures (domain invariant features) of images [23].

With this observation, we propose in this paper a novel domain generalizable
semantic segmentation method, “SiamDoGe”, which is based on domain random-
ization but does not use other auxiliary domains. Our work is partially inspired
by SimSiam [7], a Siamese network for unsupervised representation learning by
comparing two views of one image. In the proposed method, two augmented
versions of a source sample are first generated, then a Siamese network is em-
ployed to find the crucial shared invariant representations from the two branches
for domain generalization. Specifically, the features from the two branches are
randomized interdependently during training. There are two natural advantages
for such design over existing DR-based algorithms: 1) collecting extra data in
auxiliary domains is no longer needed; and 2) more controllability is obtained
since the randomization is performed by using two images that share common
content. Besides, we also study the feature sensitivity by comparing low-level
features from the two branches. The prediction consistency of the two branches
is then enforced with more attention being paid to more sensitive regions since
it is usually difficult to obtain domain-agnostic features in those regions. Exten-
sive experimental results verify the effectiveness of our approach and show that
the proposed SiamDoGe generalizes very well to multiple unseen domains both
qualitatively (see Figure 1 for sample visual comparisons) and quantitatively.

The main contributions of our work are summarized as follows:

— A new domain generalizable semantic segmentation approach, “SiamDoGe”,
is developed for domain-invariant feature learning by employing Siamese
structure.

— Our method achieves a more controllable self-guided randomization with-
out using auxiliary domains, and better domain-agnostic features by taking
account of feature sensitivity when ensuring the prediction consistency.

— We evaluate the performance on various unseen domains and the results
show that our method exhibits better generalization capacity than existing
state-of-the-arts.

2 Related works

In this section, we discuss the related works on DA- and DG-based semantic
segmentation and the background of Siamese networks.

Domain adaptive semantic segmentation Domain adaptation (DA) is
related to our work since its goal is to minimize domain discrepancy. There are

The auxiliary domains should not share common data samples with the unseen target
domain according to the definition of DG.
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two commonly-used strategies for domain adaptive semantic segmentation: ad-
versarial training [22,55,21,35,57,44] and self-training [69,70,33,60,38,26,63,17].
The former usually trains a discriminator and a segmentation network alterna-
tively to align source and target domains and the latter leverages the confident
pseudo labels to achieve more performance gains via multiple rounds of retrain-
ing on the target domain. A lot of DA scenarios have been studied for semantic
segmentation such as synthetic-to-real [55,57,69,70,60,44,63], cross-time of day
[49,50,51,59], cross weathers [51], cross cities [22,55], and many of them ben-
efit autonomous driving. However, retraining is required whenever a new DA
scenario (target) appears. Differently, in this paper, we explore domain gener-
alization, which is a more universal solution than DA for handling the domain
discrepancy since it does not require to specify a target domain.

Domain generalizable semantic segmentation Existing DG semantic
segmentation is usually achieved by specific designs of feature normalization
[45,10], knowledge distillation [6], or domain randomization [62,23,27].

IBN-Net is the first DG semantic segmentation approach [15] integrating in-
stance normalization [56] and batch normalization [25], where the former learns
appearance-invariant features and the latter preserves content information. This
work was recently extended by incorporating an instance selective whitening
loss to selectively remove the feature co-variances that respond sensitively to
the domain shift in [10]. In [6], Chen et al.formulate the synthetic-to-real gener-
alization as a lifelong learning problem by enforcing the representation similarity
between synthetically trained models and the ImageNet pre-trained model via a
distillation loss.

Domain randomization (DR) is a more frequently used strategy for DG. Yue
et al.[62] first explored the DR for semantic segmentation where auxiliary-domain
images are carefully picked from ImageNet [12] to stylize the training images and
the prediction consistency is enforced across all stylized images of one training
sample. However, DR is not controllable and might hurt the domain invariant
features [23] crucial to DG. Huang et al.[23] further refined the DR strategy by
transferring images into the frequency domain and only randomizing the domain-
variant frequency components with the domain-invariant ones unchanged. Very
recently, Kim et al.[27] proposed a non-parametric style injection module to
randomize the training images on-the-fly using a large amount of web-crawled
images which are real and related to the application of autonomous driving. In
general, our proposed method falls in the group of DR but does not use auxiliary
domains for source image stylization and thus is more controllable.

Siamese network  Siamese neural networks [1] were proposed to learn se-
mantic similarity and have been shown to work well on various vision tasks such
as object-tracking [3,54,18,64,9], image co-segmentation [32,2], one-shot learning
[28] and unsupervised visual representation learning [19,16,7], etc.. By definition,
Siamese networks are weight-sharing neural networks applied to two or more in-
puts for comparing the entities [4,7]. It has been employed by many of existing
DA approaches [22,55,57,39] to bridge the domain gap between source and target



SiamDoGe 5

i;

P,

A Image Augmentation |:||:||:||:||:||:||:| Semantic Segmentation Network Self-guided Randomization Layer IIScnsilivily-nwurc Consistency Loss

Fig. 2. The overall architecture and training pipeline of the proposed SiamDoGe. A
training sample I,,; is first taken as input to obtain two augmented versions I; and
I, respectively. Then each branch i, (i = 1,2) is fed with an augmented image I; and
produces a prediction P; with a group of intermediate features {f7 }%_,. The proposed
self-guided randomization is particularly applied to the features obtained from the first
and second layers of the segmentation network, i.e., fi and fZ, to produce the corre-
sponding randomized features f} and ff The semantic segmentation network shares
weights across the two branches and the whole pipeline is trained via the standard
cross-entropy loss and regularized by a novel sensitivity-guided consistency loss.

images. In this paper, we propose a novel DG semantic segmentation approach
based on the Siamese architecture.

3 Proposed Method

3.1 Overview

Our model improves the performance and robustness of semantic segmentation
networks via two specially designed components: a self-guided randomization and
a sensitivity-guided consistency training. The former allows to perform domain
randomization with the training sample itself, and the latter encourages to find
domain-invariant features based on feature sensitivity by comparing the two
branches.

The overall architecture and training pipeline of the proposed SiamDoGe
is illustrated in Figure 2. Given a training sample image [,.;, we first obtain
two augmented views I; and I for it with two random simple color jittering
transformations 4; and As, respectively. The two views which share the same
content but different visual styles are then fed into a weight-sharing Siamese
network (two branches) for semantic segmentation. During feature extraction,
the proposed self-guided randomization is particularly applied to the features
obtained from the first and second layers of the segmentation network, i.e., f}
and fiz, to produce the corresponding randomized features fil and f? for each
branch ¢ € {1,2}. The whole pipeline is trained under the supervision of source
domain ground truths for both branches via the standard cross-entropy loss plus
a novel sensitivity-guided consistency loss.
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3.2 The self-guided randomization

To achieve more controllable domain randomization without accessing to auxil-
iary domains, we propose to randomize the source image in a self-guided way,
which is implemented via feature normalization inspired by [67]. The details of
this operation are shown in Figure 3.

Eq.(4)

fi is fi
I.I.I.I.:.ll Iﬁi.l.l.ii |_—|

Eq.3) ____
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7
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Fig. 3. An illustration of the proposed self-guided randomization process.

Specifically, the inputs of the self-guided randomization layer are two inter-
mediate feature maps f; and fo € RE*H*W from the two branches with C, H
and W representing channel, height and width, respectively. Following [24], we
first denote the spatial feature statistics u(.) and o(.) € R® of a feature f by

1 H W
H(f)(c) = W Z Z f(c,h,w)a (1)

h=1w=1

and

1 H W
o(f)e) = WZZ fenwy = 1(f))? + (2)

where € is set to 10710

A naive randomization can be easily obtained via adding Gaussian noise to
the source feature statistics, however, such perturbation is also lacking in control
and still might destroy the domain-invariant features. Based on the concept
of “domain flow” introduced in [15] to describe intermediate domains between
the source and target domains for domain adaptation, we propose a concept
of “intra-domain flow” which represents intermediate intra-domains within the
source domain for domain generalization. We first define the intra-domain flow
from f; to fy based on their feature statistics as:

Fie = p(C(f2)) = u(f); Fioe =0(C(f2)) —o(fr), 3)

where the function C stands for the random cropping operation with a size of
64 x 64 used to help improve the diversity of the flow. Then the computed intra-
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domain flow {F}".,, F{ 5} is adopted to randomize f; as follows:

fi= (o) + A m)(fl (ff)fl))
+(p(f1) + AF1L,)

fi —p(f)
= A FY + Ft 4
fi+ < 2oy 152 (4)
where A € [0,1] is a randomly generated hyper-parameter used to control the
randomization. Similarly, we also compute the flow {F4',,, F§_,,} and then ran-
domize fy via Eq. (3) and Eq. (4) by switching f; and f2, and replacing 1 — 2
with 2 — 1.

3.3 The sensitivity-guided consistency training

Consistency training was explored in [62] for domain generalizable semantic seg-
mentation, where various stylized source images of one training sample in auxil-
iary domains are enforced to have consistent predictions. In this paper, we make
one further step to propose a sensitivity-guided consistency training to ensure
the consistency of the two branches as illustrated in Figure 4. Our insight is that
the difference between low-level features from the two augmented versions can
well describe how the features are sensitive to the “domain” shift, i.e., a small
difference means the feature is robust while a large one means it is variant to
the shift. Therefore, the proposed loss function will pay more attention to the
sensitive regions and less attention to the insensitive regions that are already
generalized well.

= T
X I
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upsample

‘Cp»sc
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Fig. 4. An illustration of the proposed sensitivity-guided consistency training. In a
sensitivity map S, the darker blue regions are less sensitive than the light blue ones.

We first measure the distance between the low-level features fi and f5 from
the two branches and obtain the feature sensitivity map S € REXW by

C
1
Sthow) = ¢ (C D 1 e — f21,<c,h,w>|> : (5)
c=1
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where ( is the stop-gradient operation that is borrowed from [7]. S then is
involved in consistency loss computation. Specifically, we build the sensitivity-
guided consistency loss in both the feature level (Ls_.) and the prediction level
(Lp—sc), which are formulated as:

C
1 6 6
Erse = G 2 (Sww) D1 ) ~ fz,<c,h,w>l> , ©)

C
1
‘CP*SC = m Z <S(h,w) Z |P1,(c,h,w) - P2,(c,h,w)|> ; (7)

h,w c=1

where the feature f¢ and the prediction P; are upsampled to the same resolution
as 5.

3.4 Implementation details

Architecture Following [10], we use the DeeplabV3+ [5] as our semantic
segmentation network with Resnet-50 [20] as the backbone of the proposed
SiamDoGe. It contains seven layers in total with the first one being a com-
bination of Conv-BN-ReLU-MAX POOLING operations, the 2-5th ones being
the residual blocks, the 6th one being the ASPP layer with the output stride of
16 and the last one is the classifier layer.

Loss function The training objective of SiamDoGe is a combination of se-
mantic segmentation loss and the sensitivity-guided consistency loss defined as:

£total = £CE + a(ﬁf—sc + 'Cp—sc)v (8)

where « is a weighting parameter for balancing the two loss terms.
Augmentation Our SiamDoGe only uses the random color jittering for input
image augmentation, i.e., A; and Ay in Figure 2, which produces two different
views of the same image. Following [10], the parameters for color jittering are set
to 0.8, 0.8, 0.8 and 0.3 for brightness, contrast, saturation and hue, respectively.
Optimization The SGD optimizer is used with an initial learning rate of
102 and a momentum of 0.9. The polynomial learning rate scheduler [65] with
the power of 0.9 is also applied to stabilize the training. The whole network is
trained using two Nvidia Tesla V100 GPU cards with a batch size of 8 for 40K
iterations in total for all experiments and each experiment requires around 22
hours for training. The hyper-parameter « is set to 0 for the first 10K iterations
and 10 for the rest iterations during training.

4 Experiments

In this section, we first introduce all the datasets that are involved in the ex-
periments. Then we demonstrate the excellent performance of our SiamDoGe
by comparing it with existing state-of-the-arts, and also empirically study the
effects of its key components via ablation studies.
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4.1 Datasets

We evaluate the proposed SiamDoGe on two DG settings based on different
domains, including GTAV(G) — {Cityscapes(C), SYNTHIA(S), Mapillary(M),
BDD-100K(B), ACDC(A)} and Cityscapes(C) — {GTAV(G), SYNTHIA(S),
Mapillary(M), BDD-100K(B), ACDC(A)}. We adopt the mean intersection-
over-union (mloU) as the evaluation metric (the higher the better) and all the
datasets are evaluated based on 19 classes defined by Cityscapes.

GTAYV [17] is a large-scale self-annotated synthetic dataset collected from com-
mercial video games. It contains images with a resolution of 1,914x1,052 and
is divided into 12,403/6,382/6,181 for training, validation and testing purposes.
Here we use the training and validation images with their labels for training
when it serves as the seen domain and only use its validation set when it is
treated as an unseen domain.

Cityscapes [1 1] captures real-world urban street scenes from different cities and
it provides 5,000 high quality manually-annotated images in pixel level with a
resolution of 2,048 x1,024. The images are split into subsets of 2,975/500/1,525
images for training, validation and testing, respectively. Here we use the training
set when it serves as the seen domain and the validation set when it serves as
an unseen domain.

SYNTHIA [48] is a synthetic dataset consisting of 9,400 self-labeled images
with a resolution of 960x720. Here we use the 2,820 images split by [10] for
evaluation.

Mapillary [43] is a real-world dataset that is designed to capture scenes in the
wild variations across season/weather conditions, viewing perspectives, time and
resolution (at least 1,920x1,080), etc. Here we use its original validation split
(2,000 images) for evaluation.

BDD-100K [(1] is an another real-world dataset recorded in diverse weather
conditions at different times of the day. The resolution of the images is
1,280%x720. Here we use its original validation split (1,000 images) for evalu-
ation.

ACDC [51] is the largest adverse condition dataset for semantic segmentation
to date. Different from Mapillary and BDD-100K which also contain normal
condition scenes, ACDC purely consists of images with four common adverse
conditions of fog, nighttime, rain and snow. The resolution of the images is
1,920x1,080. Here we use its validation set (406 images) for evaluation, i.e.,
100/100/100/106 for fog/rain/snow/nighttime conditions, respectively.

4.2 Comparison with state-of-the-arts

We first compare the performance of our SiamDoGe with several existing DG
approaches for semantic segmentation under the setting G — {C, B, M, S, A},
including the feature normalization-based ones (not using auxiliary domains):
IBN-Net [45] and RobustNet [10], and the domain randomization-based ones
(using auxiliary domains): DRPC [62] and WEDGE [27]. Table 1 reports all the
quantitative comparison results. Note that only the results on G — {C, B, M}
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Fig. 5. Qualitative results of SiamDoGe and RobustNet [10] under the setting G —
{C, B, M, S, A}

Table 1. Quantitative comparison results of our SiamDoGe and the existing state-of-
the-art DG approaches for semantic segmentation under the setting G — {C, B, M,
S, A}. All the methods use ResNet-50 as backbone. The avg. represents the average
mloU (%) over the five datasets. findicates that auxiliary domains are required. The
best results are highlighted with bold.

Methods e B M S A avg.
DRPC $[62] 37.41 3214 3412 - - -
WEDGE 1[27] 38.15 36.14 43.21 - - -
IBN-Net [15] 33.85 3230 37.75 27.90 22.55 30.87

RobustNet [10] 36.58 35.20 40.33 2830 25.46 33.14

SiamDoGe (0urs)‘42.96 37.54 40.64 28.34 29.25 35.75

are available for DRPC and WEDGE in the literature. It can be observed that
our SiamDoGe achieves the best performance across all unseen target domains
among the methods of not using auxiliary domains and surpasses the second
best by a large margin on Cityscapes (6.38 mIoU) and ACDC (3.79 mlIoU).
More surprisingly, our SiamDoGe also outperforms the methods of using auxil-
iary domains, e.g., DRPC significantly on all the three unseen target domains
and WEDGE slightly on Cityscapes and BDD-100K. It is worth mentioning that
WEDGE uses around 5K auxiliary domain images for randomization which is
even larger than those in the unseen target domains. Some qualitative compar-
ison results with RobustNet under this setting are provided in Figure 5, where
we observe that our method achieves better results visually for the truck in the
sample from BDD-100K, the traffic sign in the sample from Mapillary and the
person in the sample from ACDC.
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Table 2. Quantitative comparison results of SiamDoGe and the existing state-of-the-
art DG approaches without using auxiliary domains for semantic segmentation under
the setting C — {G, B, M, S, A}. All the methods use ResNet-50 as backbone.

Methods | G B M S A avg.
IBN-Net [15] | 45.06 48.56 57.04 26.14 44.05 44.17
RobustNet [10] | 45.00 50.73 58.64 26.20 46.91 45.50
SiamDoGe | 45.08 51.53 59.00 26.67 52.34 46.92
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Fig. 6. Qualitative comparison results of SiamDoGe and RobustNet [10] under the
setting C — {G, B, M, S, A}.

Similarly, we compare the performance of our SiamDoGe with the state-
of-the-arts [45,10] under the setting C — {G, B, M, S, A}. The quantitative
results are reported in Table 2 with some visualization results shown in Figure 6.
Consistently, our SiamDoGe wins across all unseen domains again and surpasses
the second best [10] on ACDC dataset by 5.44 mIoU. In addition, from Figure 6
we find that our method obtains better predictions especially for the classes of
track, car, motor, train and etc..

For a fair comparison, we also report the comparison of computational costs
of the proposed SiamDoGe with RobustNet [10] in Table 3. It is observed that
our method is more efficient than RobustNet.

Table 3. Comparison of computational costs with ResNet-50 as backbone.

Methods ‘ # of Params GFLOPs Inference Time (ms)

RobustNet 40.35 60.69 7.58
SiamDoGe 40.23 43.00 5.71
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Table 4. Quantitative comparison results of our SiamDoGe and the existing state-
of-the-art DG approaches without using auxiliary domains for semantic segmentation
under the setting G — {C, B, M, S, A}. All the methods use ShuffleNetV2 as backbone.

Methods e B M S A avg.
IBN-Net [45] | 27.10 31.82 34.89 25.56 22.33 28.34
RobustNet [10] | 30.98 32.06 35.31 24.31 21.27 28.79
SiamDoGe  |34.40 34.23 35.87 21.95 25.22 30.33

Table 5. Quantitative comparison results of our SiamDoGe and the existing state-
of-the-art DG approaches without using auxiliary domains for semantic segmentation
under the setting G — {C, B, M, S, A}. All the methods use MobileNetV2 as backbone.

Methods ‘ C B M S A avg.
IBN-Net [45] 30.14 27.66 27.07 24.98 20.30 26.03
RobustNet [10] | 30.86 30.05 30.67 24.43 23.26 27.85
SiamDoGe ‘ 34.15 34.50 32.34 23.53 24.17 29.74

Other backbones Following [10], we also employ ShuffleNetV2 [37] and Mo-
bileNetV2 [52] as additional backbones for performance evaluation. The models
are compared under the setting G — {C, B, M, S, A} with corresponding results
reported in Table 4 and Table 5, respectively. We observe that our method still
achieves the best performance on average over all the unseen domains. Among
all five test domains, our SiamDoGe achieves the best on the four real-world
domains for both backbones.

4.3 Ablation studies

On main model components We first examine how each of our model compo-
nents impacts the DG performance for semantic segmentation by testing several
model variants. The numerical results obtained under both the settings G — {C,
B, M, S, A} and C — {G, B, M, S, A} are shown in Table 6. “Single branch”
serves as the baseline of our method by feeding the randomly augmented images
(using A) into only one branch to produce the segmentation results. “Siamese
Network” means two branches take two augmented views of a sample as input
and the predictions from the two branches are supervised by the ground-truth in-
dependently. The third one further models the relationship between the branches
with the proposed sensitivity-guided consistency. The last one is our full model
by adding the self-guided randomization. By comparing the former three vari-
ants, we can find that the Siamese structure is meaningless without modeling
the consistency, i.e., just doubles the batch size of the “Single branch”. For the
two settings, the sensitivity-guided consistency brings 2.12/1.17 mIoU gains on
average and the self-guided randomization further brings 1.50/1.75 mIoU gains.
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Table 6. Ablation study for main components of our SiamDoGe, including the Siamese
network, the sensitivity-guided consistency (SC) and the self-guided randomization
(SR).

‘ Trained on Cityscapes H Trained on GTAV
Variants ‘ G B M S A ‘ avg. H (@] B M S A avg.
Single branch 42.27 47.02 55.05 24.66 45.78|42.96|(40.75 33.69 37.09 29.42 23.67|32.92
+ Siamese Network|40.98 46.88 56.84 24.36 47.45|43.30(|39.81 34.93 37.36 29.51 22.5432.83
+ SC 43.71 48.97 58.68 25.37 50.36|45.42|/40.75 35.47 38.54 28.86 26.38|34.00
+ SR 45.08 51.53 59.00 26.67 52.34(46.92||42.96 37.54 40.64 28.34 29.25|35.75

On the self-guided randomization We then study the choice of layers to
perform the self-guided randomization. As shown in Table 7, for both DG set-
tings, we achieve the best performance when randomizing features from both
layerl and layer2, i.e., f' and f2. Besides, for all the test domains, the best
performance is always located in the last three rows which also verifies the effec-
tiveness of the self-guided randomization. From the Table 7, we also observe that
the croppping operation C and randomly generated hyper-parameter \ are effec-
tive in both generalization scenarios. Our proposed self-guided randomization is
also outperform MixStyle [67] on the semantic segmentation task.

Table 7. Ablation study on the choice of layers for the self-guided randomization in
our SiamDoGe.

‘ Trained on Cityscapes H Trained on GTAV

Variants ‘ G B M S A ‘avg. H C. B M S A avg.

Using MixStyle [67]| 44.40 50.87 57.30 24.39 48.85|45.16|/40.68 36.00 38.55 27.81 27.69|34.15

w/o randomization |43.71 48.97 58.68 25.37 50.36[45.42(|40.75 35.47 38.54 28.86 26.3834.00
w/o C 45.01 51.44 58.62 25.57 52.83|46.69(/40.15 37.94 38.18 27.50 28.80|34.51
A=0.5 44.58 50.87 58.67 25.62 51.54[46.26 (| 39.89 38.21 38.24 27.92 28.72|34.60
layer 1 only 45.53 51.85 59.13 25.20 52.01(46.74(/41.18 37.73 40.34 27.28 29.60|35.23
layer 2 only 43.29 50.18 57.49 25.78 49.77|45.30(/41.51 37.30 38.65 29.22 27.95|34.93
layers 1 & 2 45.08 51.53 59.00 26.67 52.34|46.92((42.96 37.54 40.64 28.34 29.25|35.75

On the sensitivity-guided consistency training Next, we study several
variants of the proposed sensitivity-guided consistency training. We can observe
from the top part of Table 8 (Rows 1-3) that both the feature-level consistency
loss Lf_., and the prediction-level consistency loss £,_.s can boost the perfor-
mance of domain generalization on most test domains and the feature-level one
seems even more important. We also find (from Row 4 and Row 5) that the per-
formance of each column is improved except for BDD-100K and ACDC (trained
on GTAV), which verifies the importance of sensitivity guidance for consistency
training.
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Hyper-parameter tuning Finally, we tune the values of the hyper-parameter
« and the number of iterations before launching the consistency loss during the
training of our full model. The results are reported in the bottom part of Table
8 and we observe that o = 10 and iter = 10k gives the best performance.

Table 8. Ablation study on each factor of sensitivity-guided consistency loss in our
SiamDoGe. “iter” represents the iterations required before launching the sensitivity-
guided consistent loss.

Variants ‘ Trained on Cityscapes H Trained on GTAV

Lf csLlp_cs « iter.‘ G B M S A ‘(wg. H C B M S A avg.

- - [43.28 49.40 57.93 24.67 47.88|44.63(/40.08 34.52 37.94 28.62 25.71|33.37

v 10.0 10k |43.54 48.99 57.40 26.13 48.21|44.85(/39.39 34.13 36.44 26.88 27.14|32.80
v' 10.0 10k [45.23 51.21 58.92 26.13 52.44/|46.79|40.85 37.31 37.99 26.94 27.72|34.12

w/o S w/o S10.0 10k|44.26 51.07 57.22 24.55 51.70|45.76 (|41.86 39.09 40.04 26.96 29.72|35.53
v v' 10.0 10k |[45.08 51.53 59.00 26.67 52.3446.92(|42.96 37.54 40.64 28.34 29.25|35.75

v' 1.0 10k|[44.62 50.17 58.50 25.59 50.41|45.86|41.42 34.96 38.94 27.41 25.61|33.67
v' 50.0 10k |43.84 50.13 56.88 23.75 52.13|45.35(|41.07 37.53 40.52 25.52 28.08|34.54
v’ 10.0 0 [44.06 51.49 58.37 25.18 51.75|46.17|/40.28 35.75 38.82 26.43 28.00|33.86
v' 10.0 20k |44.17 51.24 58.01 25.11 51.69|46.04|40.71 36.47 39.86 25.88 27.00|33.98

SNENENEN

5 Conclusion

In this paper, we explored a novel domain generalizable semantic segmentation
approach with a more controllable domain randomization strategy. The proposed
method, “SiamDoGe”, is built upon a Siamese network with two branches per-
forming semantic segmentation. It is integrated with two novel designs: one is
the self-guided randomization which randomizes each training sample without
using auxiliary domain images (different from other existing DR-based alterna-
tives), the other is the sensitivity-guided consistency training which helps learn
domain-agnostic features from two views of each training sample. Comprehen-
sive numerical experiments demonstrated that our SiamDoGe generalizes well
on several unseen target domains by training on a single domain and achieves a
new state-of-the-art performance.
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