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1 Overview

In this document, we provide additional implementation details, experimental
analysis, qualitative results, and discussion. In Sec. 2, we provide further details
of our encoding architecture. In Sec. 3, we discuss all implementation details of
SpOT not covered in Sec. 4.3 of the main paper. In Sec. 4, we provide metrics
definitions for the two benchmarks. Finally, in Sec. 5, we provide a more fine-
grained discussion of our method with qualitative results, a reporting of SpOT’s
performance on the nuScenes test-split, a supplemental analysis of runtime on
the nuScenes dataset, and a supplemental ablation study.

2 Additional Architecture Details

Split Self-Attention Positional Encoding We refer the reader to Sec. 3.2 of
the main paper for an overview of the split self-attention encoder used by our SSR
module. We highlight that our positional encoding differs from previous works
that utilize self attention [5]. First, our positional encoding does not utilize a
fourier coordinate transformation, i.e. there is no [sin(x), cos(x)] transformation.
Second, we concatenate, instead of add, the positional encoding to the anchor
features. Experimentally, we find these modifications improve training in our
novel 4D setting.

Network Loss Hyperparameters. Sec. 3.2 of the main paper provides an
overview of our network’s training losses. We set our network loss weights as
follows: wc = 3.0, wθ = 3.0, wvel = 1.5, wwlh-cls = 1.0, wwlh-res = 1.5, and
wconf = 1.0. We set the confidence-loss temperature to α = 0.75 for nuScenes
cars, 1.0 for nuScenes pedestrians, 1.2 for Waymo vehicles, and 2.4 for Waymo
pedestrians.

3 Additional Implementation Details

3.1 Training-Time Augmentations

Iterative Sequence Refinement. During training, we stochastically update
each batch of training sequences multiple times, i.e. the network sees its own
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output as input. Concretely, for input training sequence T̄t, we apply our SSR
module to generate a refined training tracklet: SSR(T̄t) = T̄′

t. With probability
pend, we end the refinement and assign our output Tt = T̄′

t. Otherwise, we set
T̄t ← T̄′

t and repeat. We limit the maximum number of iterative refinements
to 4, and we set pend = min(1 − EPOCH

8 , 0.4). We find this iterative strategy
noticeably improves training on the Waymo Open dataset. On the nuScenes
dataset, we observe little improvement and ultimately leave it out to improve
training efficiency.

Training Augmentation. We apply four training sequence augmentations.
First, we uniform-randomly drop the leading [1,K] frames of the sequence. Sec-
ond, we apply a uniform-random rotation, scaling, and reflection to all tracklet
bounding boxes and points; we sample rotation between [−1.57, 1.57] radians,
sample scaling between [−5, 5] percent, and reflect about the x-axis with proba-
bility 0.5. Third, we apply a single uniform-random rotation, scaling, and trans-
lation to all tracklet bounding boxes; we sample translation between [−0.2, 0.2]
meters, rotation between [−0.25, 0.25] radians, and scaling between [−10, 10]
percent. Finally, we apply per-frame uniform-random translations and rotations
to each tracklet bounding box; we sample translations between [−0.1, 0.1] meters
and rotations between [−0.1, 0.1] radians. We use the same augmentations for
all object classes.

3.2 Training Schedule

During training, we use the Adam optimizer [4] with an exponentially decaying
learning rate. We set our initial learning rate to 0.0025 and our decay rate to
0.95 per epoch. We train in parallel across 4 Nvidia A100 GPUs and use a global
batch size of 300 sequences. We finish training after 10 epochs for pedestrians
and 20 epochs for cars/vehicles.

4 Tracking Metrics

4.1 MOTA and MOTP

The Waymo Open Dataset [7] evaluates tracking using the MOTA and MOTP
metrics [1]. Multiple Object Tracking Accuracy (MOTA) is defined as:

MOTA = 1−
∑

t (MISSt + FPt +MISMATCHt)

GT
(1)

where MISSt, FPt, and MISMATCHt respectively denote the number of missed
tracklets, false positive tracklets, and mismatches at time t. GT denotes the
number of all ground-truth tracklets. A mismatch (also denoted identity-switch)
occurs when a current tracklet is assigned to a ground-truth object that differs
from its previous ground-truth assignment. Thus, MOTA can be decomposed
into three equivalent parts: (1) identifying all objects in the frame, (2) not iden-
tifying false-positives, and (3) consistently re-identifying objects between frames.
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Multiple Object Tracking Precision (MOTP) is defined as:

MOTP =

∑
i,t di,t∑
t TPt

(2)

where di,t denotes the L2 center error of the i’th true-positive tracklet at time
t, and

∑
t TPt denotes the total number of true-positive tracklets. Thus, MOTP

conveys the quality of center estimates for all correctly predicted object tracklets.

4.2 AMOTA and AMOTP

The nuScenes dataset [2] evaluates tracking using the AMOTA and AMOTP
metrics [8]. AMOTA and AMOTP address the issue that the highest achievable
MOTA often occurs at a low recall; that is, maximizing MOTA often causes
tracking methods to remove low confidence detections due to their causing an
abundance of false-positives and mismatches. Concretely, Average Multiple Ob-
ject Tracking Accuracy (AMOTA) averages a recall-weighted MOTA over n
evenly-spaced recall thresholds:

AMOTA =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ...1}
MOTAR (3)

For a given recall threshold, r, the recall-weighted MOTA metric, MOTAR, is
defined as:

MOTAR = max

(
0, 1− MISSr + FPr +MISMATCHr − (1− r) ∗GT

r ∗GT

)
(4)

where MISSr, FPr, and MISMATCHr respectively denote the number of missed
tracklets, false positive tracklets, and mismatches over all times for a recall
threshold r. GT denotes the total number of ground-truth tracklets.

Average Multiple Object Tracking Precision (AMOTP) averages MOTP over
all recall thresholds, i.e.:

AMOTP =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,..,1}
MOTPr (5)

4.3 Discussion

While evaluating on AMOTA reflects the average MOTA over all recall thresh-
olds, evaluating on MOTA incites selection of the maximum MOTA over all
recall thresholds. Although correlated, modern tracking algorithms often en-
counter a substantial tradeoff between the two metrics. For instance, greedy and
center-distance association strategies have been shown to be more effective for
AMOTA [9,6]. Hungarian-matching and Intersection-Over-Union are more effec-
tive for MOTA [8,6]. We highlight this as a concern in LIDAR 3D multi-object
tracking: methods often only evaluate one of these metrics and offer no analy-
sis of the other. Contrary to this trend, we showcase SpOT’s robustness across
both metrics via our evaluation on the nuScenes (AMOTA) and Waymo Open
(MOTA) datasets.
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Car Pedestrian
Method AMOTA↑ AMOTP↓ AMOTA↑ AMOTP↓

Centerpoint [9] 82.9 0.384 76.7 0.378
MultimodalTracking [3] 83.0 0.388 74.1 0.507
SimpleTrack-10Hz* [6] 82.3 0.383 79.6 0.364

SpOT (Ours) 83.5 0.390 80.6 0.373

Table S1: Tracking results on the nuScenes test split. * denotes a preprint.

5 Additional Experiments

Please refer to Sec. 4 of the main paper for a comprehensive reporting of SpOT’s
tracking performance and an extensive ablation study of SpOT’s design choices.

5.1 SpOT on the nuScenes Test Split

Tab. 1 of the main paper reports the tracking results on the validation split
of the nuScenes dataset. In Tab. S1, we report results on the nuScenes leader-
board test split. SpOT outperforms previous methods in correctly tracking ob-
jects (AMOTA) and is on-par with previous methods in estimating high quality
object tracklets (AMOTP). Note that SimpleTrack [6] uses 10Hz CenterPoint
detections while SpOT only uses 2Hz; SimpleTrack reports worse validation-split
performance with 2Hz detections.

5.2 Influence of Sequence Length on Efficiency

Sec. 4.5 of the main paper reports the runtime of SpOT’s SSR module on an
Nvidia RTX3090 GPU for the chosen sequence lengths of 40 on the nuScenes
dataset and 10 on the Waymo dataset. In the right panel of Fig. S1, we show how
increasing the sequence length affects the SSR module’s runtime for nuScenes
pedestrians on a single Nvidia V100 GPU. As shown, there is a strong linear
relationship between sequence length and the SSR module runtime.

5.3 Further Analysis of Waymo Tracking

Tab. 2 of the main paper reports the tracking results of SpOT on the Waymo
Open dataset comparing the state-of-the-arts. In our experiments on the Waymo
dataset, we found that tracking performance of some state-of-the-art algorithms
tends to be sensitive to the tracklet birth confidence threshold, cthresh, which
determines when an unmatched detection will become a tracklet (e.g. a lower
cthresh allows more unmatched detections to become tracklets). This is not
suprising as MOTA focuses more on the high-confidence region of tracking re-
sults. For a fair comparison, in Tab. 2 we report results with the optimized
cthresh value for each tracking algorithm.
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Fig. S1: Left: Analysis of pedestrian tracking on the nuScenes dataset. Shown
is the difference in MOTA between SpOT and the SpOT-No-SSR baseline for
tracklet recall thresholds in [0.10, 0.91]. Right: Varying the sequence length on
the nuScenes pedestrian class has a linear effect on the SSR module’s runtime.

In Tab. S2, we provide ablation analysis on cthresh and show our robustness
towards this parameter. We evaluate performance with the original threshold
used in CenterPoint, cthresh = 0.75, as well as a lower threshold, cthresh = 0.60.
The lower threshold creates a more challenging setting as more unmatched detec-
tions will be treated as tracklets; this creates a more cluttered environment dur-
ing association. As shown in Tab. S2, our method is able to provide comparable
results across both thresholds while CenterPoint’s performance is negatively af-
fected by the lower threshold. This example showcases SpOT’s robustness against
cluttered scenes thanks to the use of dense spatiotemporal information.

Method / Pedestrian MOTA↑ FP%↓ Miss%↓ Mismatch%↓

Tracklet Birth Threshold 0.75
CenterPoint [9] 54.9 10.0 34.0 1.13
SpOT-No-SSR (Ours) 55.8 10.5 33.3 0.38
SpOT (Ours) 60.4 9.5 29.8 0.34

Tracklet Birth Threshold 0.60
CenterPoint [9] 51.1 9.8 35.2 3.80
SpOT-No-SSR (Ours) 56.5 11.4 31.5 0.61
SpOT (Ours) 60.5 11.3 27.6 0.56

Table S2: Tracking performance on the pedestrian class of the Waymo Open
dataset validation split. We compare SpOT and CenterPoint with controlled
tracklet birth thresholds. Best result in each threshold is bolded.
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5.4 Further Analysis of nuScenes Tracking

In Tab. 1 of the main paper, we report the final AMOTA tracking metric of SpOT
on the nuScenes dataset. In this section, we offer more fine-grained analysis on
nuScenes to better analyze the behavior of our proposed algorithm.

In the left panel of Fig. S1, we visualize the difference in the MOTA metric
with respect to the SpOT-No-SSR baseline at different recall thresholds. As
shown, SpOT consistently improves the tracking results at different recall levels.
It’s also worth noticing that SpOT improves MOTA disproportionately at higher
recall thresholds. This observation furthers the claim that SpOT is robust in
cluttered scenes due to the use of dense spatiotemporal information, which is
consistent with what we observe in Tab. S2.

In addition, we also provide some qualitative examples showcasing SpOT’s
improvements in individual tracking scenarios.

In Fig. S2, we provide two illustrative examples of how SpOT’s bounding-box
refinement improves tracking compared to the SpOT-No-SSR baseline. In the
SpOT-No-SSR column of both examples, we observe that poor motion estimates
and poor sequence continuity cause tracklet fragmentation and mis-association.
In contrast, due to the sequence-to-sequnce refinement, SpOT avoids fragmen-
tation and establishes more accurate tracklets.

In Fig. S3, we provide two illustrative examples of how SpOT’s confidence
refinement reduces the number of false-positive tracklets. In the SpOT-No-SSR
column of both examples, we observe many false-positive tracklets, i.e. tracklets
with confidence-scores that lie within the visualized recall threshold of 91.1%.
After updating tracklet confidence-scores with its sequence-to-sequence refine-
ment, SpOT is able to remove many false-positive tracklets.

Fig. S2: Two example birds-eye-view visualizations of pedestrians tracked over
many frames on the nuScenes dataset. Tracking predictions are colored consis-
tently. SpOT-No-SSR shuffles tracklets, resulting in mismatches and additional
false-positives. In contrast, SpOT establishes cleaner sequences via its bounding-
box refinement.
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Fig. S3: Two example birds-eye-view visualizations of pedestrian tracking over
many frames on the nuScenes dataset. Tracking predictions are colored consis-
tently. For the visualized recall threshold of 91.1%, SpOT’s confidence refinement
successfully identifies and removes false-positive tracklets.
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