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In this supplementary document, we first present additional information
about our network architecture and implementation in § A. We then elaborate on
technical details of ego-motion estimation, iterative pose refinement, and scene
reconstruction in § B. Precise definitions of loss functions and evaluation metrics
are provided in § C. Further analysis of the two datasets, nuScenes and Waymo,
is presented in § D, followed by additional quantitative results including scene
flow estimation, instance association, and the TubeNet motion model in § E.
Finally, we show more qualitative results in § F.

A Network and implementation

Network architecture. The detailed network architecture is depicted in
Fig. S6. Our network is a sequential model consisting of (i) per-frame feature
extraction used to estimate ego-motion, (ii) multi-frame feature extraction to
segment dynamic objects and regress offset vectors towards the associated in-
stance center, and (iii) TubeNet to regress the rigid motions of dynamic objects.
The Pillar encoder and the two UNets operate without Batch Normalisation [5],
this speeds up training and inference without any loss in performance [9]. Our
network achieves flexibility w.r.t. the number of input frames via global max-
pooling along the temporal dimension in the InitConv3D block (Fig. S6).

Implementation details. We use torch scatter1 to efficiently convert point-
wise features to pillar/instance-level global features. To spatially align the back-
bone features we use grid sample, implemented in PyTorch [8]. Before cluster-
ing, we apply voxel down-sampling implemented in TorchSparse [11] to reduce
the point density and improve clustering efficiency. The voxel size is set to 15 cm.
Instance labels at full resolution are recovered by indexing points to their asso-
ciated voxel cell.

1 https://github.com/rusty1s/pytorch_scatter

https://github.com/rusty1s/pytorch_scatter
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B Methodology

Ego-motion estimation. Given two sets (P1,Pt) of pillar centroid coordinates
and associated L2-normalised features (F1

ego,F
t
ego), we first compute the cost ma-

trixMt = 2−2⟨Ft
ego,F

1
ego⟩ and an Euclidean distance matrixDt

l,m = ∥pt
l−p1

m∥2
from pillar coordinates. We then pad Mt with a learnable slack row and column
to accommodate outliers, before iteratively alternating between row normalisa-
tion and column normalisation2 for five times to approximate a doubly stochastic
permutation matrix St that satisfies

Nego+1∑
l=1

St
l,m = 1,∀m = 1, ..., Nego,

Nego+1∑
m=1

St
l,m = 1,∀l = 1, ..., Nego, St

l,m ≥ 0.

(S.1)
Here St

l,m represents the probability of (pt
l ,p

1
m) being in correspondence. pt

l is
considered as an outlier and should be ignored during pose estimation if its slack
column value St

l,−1 → 1. We further mask St using a support matrix It computed

from Dt as:

It =
(
Dt < s

)
, s = v ·∆t , (S.2)

where v is the maximum speed and ∆t is the interval between two frames. The
final corresponding point ϕ(pt

l ,P
1) of pt

l and its weight wt
l are computed as

ϕ(pt
l ,P

1) = (It ⊙Dt)[l,:−1]X
1, wt

l =

Nego∑
m=1

(It ⊙Dt)l,m , (S.3)

with ⊙ the Hadamard product. Eq (3) is solved with the Kabsch algorithm. For
a detailed derivation, please refer to [3]. The value of v is dataset-specific, we set
it to 30m/s for the Waymo, respectively 10m/s for nuScenes.

Iterative refinement of TubeNet estimates. To improve the estimation of
the transformation parameters for dynamic objects, we unroll TubeNet for two
iterations, as often done in point cloud registration [13,4]. Specifically, for a
dynamic object Xk, we first estimate the initial rigid transformation T0,t

k of the

tth frame Xt
k following Eq (7). We then obtain the transformed points Xt′

k =

T0,t
k ◦ Xt

k. Next, we update the positional feature f̃ t
′

pos = PN(Xt′

k ) and regress

the residual transformation matrix Tt,1
k again, according to Eq (7). The final

transformation is Tt,1
k · Tt,0

k . For better stability during training, the gradients
between the two iterations are detached. We assign higher weight to the latter
iteration to improve accuracy. The overall loss Lobj is:

Lobj = 0.7 · L ,0
obj + L ,1

obj (S.4)

2 To improve training stability, row and column normalisations operate in log-space.
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Scene reconstruction. To show the benefits of our method for downstream
tasks, we use the points accumulated with different methods as a basis for 3D
surface reconstruction, see Fig. S4 and S5. Specifically, we use the accumulated
points as input to the Poisson reconstruction [6], implemented in Open3D [14].
To estimate point cloud normals, the neighborhood radius is set to 0.5m and the
maximum number of neighbors is set to 128. The depth for the Poisson method
is set to 10, and the reconstructed meshes are filtered by removing vertices with
densities below the 15th percentile.

C Loss functions and evaluation metrics

C.1 Loss functions

Weighted BCE loss. To compensate for class imbalance, we use a weighted
BCE and compute the weights of each class on the fly. Specifically, for a mini-
batch with Npos positive and Nneg negative samples, the associated weights wpos

and wneg are computed as:

wpos = min(

√
Npos +Nneg

Npos
, wmax) wneg = min(

√
Npos +Nneg

Nneg
, wmax) ,

(S.5)
where wmax is the maximum weight of a class.3 The final weighted BCE loss
Lbce(x,x) is

Lbce(x,x)=
1

|x|

|x|∑
i=1

wi(xi log(xi) + (1− xi) log(1− xi)) , (S.6)

with x and x are predicted and ground truth labels, and wi the weight of the
ith sample, computed as

wi =

{
wpos., if xi = 1

wneg., otherwise
. (S.7)

Lovász-Softmax loss. The Jaccard index (ratio of Intersection over Union)
is commonly used to measure segmentation quality. In the binary classification
setting, we can set the ground truth labels as xi ∈ {−1, 1}, then the Jaccard
index of the foreground class J1 is computed as

J1(x,x) =
|{x = 1} ∩ {sign(x) = 1}|
|{x = 1} ∪ {sign(x) = 1}|

, J1(x,x) ∈ [0, 1] , (S.8)

3 We find that in some extreme cases, there are very few (< 10) positive samples and
way more negative samples. We thus bound wmax at 50 to ensure stability.
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with x the prediction and sign() the sign function. The corresponding loss
∆J1

(x,x) to minimise the empirical risk is

∆J1
(x,x) = 1− J1(x,x) . (S.9)

However, this is not differentiable and cannot be directly employed as a loss func-
tion. The authors of [1] have proposed to optimise it using a Lovász extension.
The Lovász extension

...
∆ of a set function ∆ is defined as:

...
∆(m) =

p∑
i=1

mi gi(m) , (S.10)

with
gi(m) = ∆({π1, . . . , πi})−∆({π1, . . . , πi−1}), (S.11)

where π denotes a permutation that places the components of m in decreasing
order. Considering mi = max(1 − xixi, 0), the Lovász-Softmax loss Lls(x,x) is
defined as

Lls(x,x) =
...

∆J1
(m). (S.12)

Inlier loss. Previous works [13,3] have observed that the entropy-regularized
optimal transport [2] has a tendency to label most points as outliers. To alleviate
this issue, we follow [13,3] and use an inlier loss Linlier on the matching matrix
Dt, designed to encourage inliers. The inlier loss is defined as

Lt
inlier =

1

2Nego
(2Nego −

Nego∑
l=1

Nego∑
m=1

Dt
l,m) . (S.13)

C.2 Evaluation metrics

Instance association metrics. To quantitatively measure the spatio-temporal
instance association quality, we report weighted coverage (WCov) as well as
recall and precision at a certain threshold. Given the ground truth clusters G
and the estimated clusters O, recall measures the ratio of clusters in G that have
an overlap above some threshold with a cluster in O, while precision does the
same in the opposite direction. Weighted coverage WCov(G,O) is computed as

WCov(G,O) =

|G|∑
i=1

1

|G|
wi max

j
IoU(rGi , r

0
j ), wi =

|rGi |∑
k |rGk |

, (S.14)

where rGi and rOj are clusters from G and O, and IoU(rGi , r
O
j ) denotes the overlap

between two clusters.

ECDF. The Empirical Cumulative Distribution Function (ECDF) measures the
distribution of a set of values:

ECDF(x) =

∣∣{oi < x}
∣∣∣∣O∣∣ , (S.15)

where O = {oi} is a set of samples and x ∈ [min{O},max{O}].
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Fig. S1. ECDF curve of points lying on foreground objects and on dynamic objects,
for both the Waymo and nuScenes datasets.
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Fig. S2. Scene flow magnitudes of dynamic objects in the Waymo and nuScenes
datasets.

D Dataset analysis

In total, we have 150, respectiverly 202 scenes as held-out test sets in nuScenes
and Waymo. The ECDF curve of points belonging to foreground and dynamic
objects are shown in Fig. S1. As can be seen, the ratios of foreground and
dynamic points span a large range (40% and 20%). Recalling that the scene
flow estimation performance of the dynamic parts falls far behind that of the
static parts (Tab. 1), this large range of ratios of dynamic objects hints at dif-
ferent difficulties across the scenes. The median fractions of foreground points
are 16.2%/9.4% in Waymo/nuScenes, the median fractions of points on moving
objects are 3.5%/2.4%. In other words, roughly 75% of all foreground objects
are static. This motivates our strategy to start with motion segmentation, so as
to make explicit the large static component (including many objects that could
move) whose scene flow is identical to the ego-motion.
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Static part Dynamic foreground

Dataset Method EPE avg.↓ AccR↑ AccS↑ ROutlier↓ EPE avg. ↓ AccR↑ AccS↑ ROutliers ↓

Waymo

PPWC-Net [12] 0.475 ± 0.543 35.0 14.2 13.5 0.658 ± 0.696 27.1 7.9 22.9

FLOT [10] 0.381 ± 0.516 68.8 51.8 13.0 0.772 ± 0.711 30.1 11.2 31.9

WsRSF [3] 1.415 ± 1.352 34.6 23.0 56.9 1.764 ± 1.744 21.0 8.6 61.6

NSFPrior [7] 0.159 ± 0.231 87.1 73.5 4.3 0.355 ± 0.456 63.7 41.3 14.3

Ours 0.088 ± 0.237 91.6 81.9 2.3 0.169 ± 0.259 76.8 52.9 5.3

nuScenes

PPWC-Net [12] 0.488 ± 0.402 34.2 12.7 17.5 0.784 ± 0.547 22.8 6.9 35.0

FLOT [10] 0.597 ± 0.582 53.3 35.1 26.6 1.156 ± 0.714 13.2 3.7 56.5

WsRSF [3] 0.658 ± 0.483 47.5 31.1 31.5 0.925 ± 0.627 29.8 15.0 42.2

NSFPrior [7] 0.501 ± 0.344 57.8 37.7 21.3 0.743 ± 0.537 39.1 19.9 31.1

Ours 0.226 ± 0.206 72.3 46.7 7.4 0.394 ± 0.26 47.8 22.7 17.3

Table S1. Scene flow estimation results on Waymo and nuScenes datasets. Numbers
are averaged over all test scenes.

In Fig. S2, we show the ECDF curve of scene flow magnitudes (L2-norm of
scene flow vectors) for the dynamic portions of the two datasets. The motions
span a large range, but 75% of the flow vectors are of moderate magnitude <3m.
nuScenes has slightly larger overall flow magnitudes than Waymo, but Waymo
contains more instances of large motions (Fig. S2 (left)).

E Additional results

Results averaged over scenes. In Tab. 1 we report evaluation metrics
calculated over all the points in the test set. However, this does not fully reveal
the difficulties encountered in different scenes. Here, we first calculate evaluation
metrics per scene, then report the average over scenes in Tab. S1. For EPE avg.,
we additionally report the standard deviations. We can see that for both static
and dynamic parts, all methods have large standard deviations, which indicates
varying difficulty of the scenes, as well as gross errors from challenging samples.
Our model still achieves the smallest flow errors and standard deviations under
this evaluation setting, for both datasets .

Spatio-temporal instance association. We plot instance association met-
rics at different thresholds in Fig. S3. As can be seen, offset prediction improves
association recall and precision by >5%, across a range of thresholds. Such im-
provement becomes more significant as one increases the IoU threshold, reaching
≈10% at IoU = 0.9. We conclude that offset prediction is important to retain
high-quality spatio-temporal instances, which can subsequently improve the ac-
curacy of motion modelling for the dynamic parts (AccS increases by 9.2% in
Tab. 4).

Dynamic object motion modelling. We additionally compare the proposed
TubeNet to two baseline methods. We naively align each frame Xt

k (t > 1) of
an instance Xk to frame X0

k by translating the centroids, and term this method
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Fig. S3. Spatio-temporal instance association performance on Waymo with and with-
out offset prediction.

EPE avg.↓ EPE med.↓ AccS↑ AccR↑ ROutliers↓

Waymo

center 0.265 0.095 36.9 62.9 9.9

center + ICP 0.212 0.047 61.2 80.0 7.7

Ours 0.197 0.062 53.3 77.5 5.9

Ours + ICP 0.173 0.043 69.1 86.9 5.1

nuScenes

center 0.553 0.258 13.5 32.7 28.2

center + ICP 0.525 0.179 23.8 43.7 25.5

Ours 0.301 0.146 26.6 53.4 12.1

Ours + ICP 0.301 0.135 32.7 56.7 13.7

Table S2. Comparison to centroid-based motion estimation baseline.

center. For center+ICP we refine the simple translational alignment by a subse-
quent ICP. The detailed comparison is shown in Tab. S2. Our learned TubeNet
achieves the best performance on both datasets. The improvement is larger on
the challenging nuScenes data, where the point clouds are sparser and less com-
plete, so centroids computed from partial observations are not an accurate proxy
for the object location. Our learned TubeNet can implicitly exploit prior knowl-
edge about object shape and surface-level correspondence, leading to more robust
and accurate motion modelling.

F Qualitative results

We show additional qualitative results in Fig. S4 and Fig. S5. Benefiting from the
explicit multi-body assumption, our model achieves accurate scene flow estima-
tion of both static parts (Fig. S4 (1) and Fig. S5 (2)) and dynamic parts (Fig. S4
(3) and Fig. S5(1)). Errors in the automatically generated pseudo-ground truth



8 S. Huang, Z. Gojcic, J. Huang, A. Wieser, K. Schinder

(b) Ours (c) NSFPrior (d) FLOT

Error (cm) 0 60

(a) Input & GT reconstruction

(1)

(2)

Fig. S4. Qualitative results showing scene flow estimation (top) and surface recon-
struction (bottom) for three example scenes from the Waymo dataset.

are shown in Fig. S5(3), in this case our model achieves more accurate flow
estimation and reconstruction.
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(1)

(c) NSFPrior (d) FLOT
Error (cm) 0 80

(a) Input & GT reconstruction
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Fig. S5. Qualitative results showing scene flow estimation (top) and surface recon-
struction (bottom) for three example scenes from the nuScenes dataset.
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Fig. S6. Detailed network architecture. All convolutional layers have kernel size 3×3.
(n,m) in Conv, UpConv, DownConv, and Linear layers denote the input and output
feature dimensions.
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