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1 Elaborated Implementation Details

Depth Bins Discretization. As shown in Figure 2 of the main content, we
obtain feature maps F from the last layer of the backbone. The feature maps F
are used to generate the image-voxel features. Following [3, 2], we utilize discrete
representations of depth. We categorize the continuous depth map into depth
bin intervals since the estimation of long-range regions inherently yields large
errors and thus needs to be relatively suppressed. In the designed depth range
[d min, d max], and each of depth bin interval is set as β. Then, the length of
the next bin is always β longer than the previous bin. The calculation of the
interval length β is provided in Equation 1:

β =
2× (d max− d min)

T × (T + 1)
(1)

The T categorizes it into 80 intervals while the background depth is set to non-
category.
Inference Settings. At the inference stage, we first perform non-maximum
suppression (NMS) in the RPN with IoU threshold 0.7 and keep the top 100
region proposals as the input of detect head. Then, after refinement, NMS is
applied again with IoU threshold 0.1 and score threshold 0.65 to remove the
redundant predictions.

1.1 BEV Visualization

To verify the effectiveness of the proposed modules for better cross-modal fu-
sion, we visualize the original point cloud features and the fused features through
different feature fusion methods in BEV, as shown in Fig. 1. Apparently, the pro-
posed IVLM and QFM can better leverage richer image information to enhance
the point cloud features. Adopting the VFIM is conducive to producing sharper
and more accurate features that are useful for 3D detection.
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Fig. 1: The image with 3D ground-truth boxes is shown on the top row. (a)
Original point cloud features without fusing images. (b) Fused features without
lifting images to 3D voxel space. (c) Fused features by lifting images to 3D voxel
space. (d) Fused features with our HMFI. Regions with large differences are
highlighted using red rectangles.

2 More Ablation Study

Effect of the location of IVLM. As shown in Table 4 of the main content,
we can find that the performance of the fusion model without IVLM is worse
than achieving feature fusion on image voxel features generated by the IVLM.
In this section, we also explore the impact of the IVLM’s location on feature
interactions. We consider two positions of IVLM: before QFM and after QFM.
The former is our proposed HMFI pipeline. While the latter is that the QFM
is applied to the 2D image representations directly, then introducing the IVLM
lifts the 2D image representations into image voxel features. Finally, we adopt
the VFIM on these two pipelines to achieve the cross-modal feature interaction.
From Table 1 (a), our HMFI can achieve better performances than the scheme
of introducing the IVLM after feature fusion by QFM, which also indicates that
the homogeneous structure is a preferred way to build the cross-modal feature
fusion and interaction.

Effect of the hyperparameter γ. In the proposed HMFI method, VFIM can
bring significant performance gains and the feature interaction plays a crucial
role in cross-modal feature fusion. Hyperparameter γ is set to optimize VFIM
together with the whole network. Hence, we explore the effect of the hyperpa-
rameter γ. From the Table 1 (b), it shows that setting γ as 0.1 can achieve the
optimal performance. Therefore, we choose γ = 0.1 for joint feature interaction.
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Table 1: APEasy, APMod., and APHard are the mAP performance of easy, mod-
erate, and hard levels respectively.

(a) The location of IVLM.

Position of IVLM APEasy APMod. APHard

Baseline [1] 81.34 71.76 67.09

Before QFM (HMFI) 83.36 73.89 68.98
After QFM 82.21 72.26 67.43

(b) Hyperparameter γ

γ APEasy APMod. APHard

0.05 82.96 73.21 68.61
0.1 83.36 73.89 68.98
0.5 82.76 73.13 68.51

3 The Performance of HMFI on Single Stage Detector

To further verify the effectiveness of our HMFI, we also adopt the HMFI includ-
ing the IVLM, QFM and VFIM on the commonly-used single stage detector [4].
We still use the anchor-based assignment following [4]. Other modules and con-
figurations are kept the same to ensure fair comparison. It suggests that our
HMFI can bring a significant performance gain of over 1.8 AP on all difficulty
levels of the KITTI val set. In particular, HMFI achieves a remarkable gain of
+2.48 AP on the hard level, which strongly demonstrates the effectiveness and
generalization of our method.

Table 2: The Effectiveness of HMFI on Single Stage Detector [4].
Method APEasy APMod. APHard

Baseline [4] 75.71 65.71 62.59

HMFI (Ours) 77.69 67.72 65.07

Improvements +1.98 +2.01 +2.48
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