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Abstract. Depth estimation, visual odometry (VO), and bird’s-eye-
view (BEV) scene layout estimation present three critical tasks for driv-
ing scene perception, which is fundamental for motion planning and nav-
igation in autonomous driving. Though they are complementary to each
other, prior works usually focus on each individual task and rarely deal
with all three tasks together. A naive way is to accomplish them inde-
pendently in a sequential or parallel manner, but there are three draw-
backs, i.e., 1) the depth and VO results suffer from the inherent scale
ambiguity issue; 2) the BEV layout is usually estimated separately for
roads and vehicles, while the explicit overlay-underlay relations between
them are ignored; and 3) the BEV layout is directly predicted from the
front-view image without using any depth-related information, although
the depth map contains useful geometry clues for inferring scene lay-
outs. In this paper, we address these issues by proposing a novel joint
perception framework named JPerceiver, which can simultaneously esti-
mate scale-aware depth and VO as well as BEV layout from a monoc-
ular video sequence. It exploits the cross-view geometric transformation
(CGT) to propagate the absolute scale from the road layout to depth
and VO based on a carefully-designed scale loss. Meanwhile, a cross-
view and cross-modal transfer (CCT) module is devised to leverage the
depth clues for reasoning road and vehicle layout through an attention
mechanism. JPerceiver can be trained in an end-to-end multi-task learn-
ing way, where the CGT scale loss and CCT module promote inter-task
knowledge transfer to benefit feature learning of each task. Experiments
on Argoverse, Nuscenes and KITTI show the superiority of JPerceiver
over existing methods on all the above three tasks in terms of accu-
racy, model size, and inference speed. The code and models are available
at https://github.com/sunnyHelen/JPerceiver.
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1 Introduction

Autonomous driving has witnessed great progress in recent years, where deep
learning is playing an increasing role in perception [37,27,61], planning [6,48],
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Fig. 1: The proposed JPerceiver can predict BEV semantic layout (middle top, white for roads, blue
for cars and cyan for the ego car), scale-aware depth map (middle bottom) and VO result (bottom
right) simultaneously from a monocular video sequence (top left). The drivable area is visualized
in green (bottom left) by projecting the BEV road layout onto the image plane. The ground truth
BEV layout is shown in top right.

navigation [2,44], and decision making [18,21]. Among them, scene perception is
the basis for other subsequent procedures in autonomous driving [56], which in-
cludes various sub-tasks for different perception purposes, e.g., depth estimation
for 3D measurement [14,17], ego motion estimation for localization and visual
odometry (VO) [49,25,62,58], as well as bird’s-eye-view (BEV) or front-view
(FV) layout estimation for detecting obstacles and drivable areas [31,36,54,10].
Although these tasks have underlying relations to each other intuitively, they
are usually tackled separately in prior works [17,54]. The joint estimation for
all these tasks has not drawn enough attention so far, and the benefits and
challenges of doing so remain unclear, which is the focus of this paper.

Depth and VO estimation are two closely related computer vision tasks that
have been studied for decades [45,33]. Recent self-supervised learning methods
use the photometric consistency between consecutive frames to achieve the si-
multaneous estimation of scene depth and VO from monocular video sequences,
where no ground truth depth labels are required [60,17,42]. On the other hand,
BEV scene layout estimation refers to the task of estimating the semantic occu-
pancy of roads and vehicles in the metric-scale BEV plane directly from FV im-
ages [31,36,54,20]. Though significant progress has been made in each individual
task, they still suffer from some inherent problems: i.e., (1) the scale ambigu-
ity in monocular depth and VO estimation since the photometric error between
corresponding pixels is equivalent up to an arbitrary scaling factor w.r.t. depth
and translation, and (2) the lack of geometry priors for predicting complex BEV
layout. Consequently, monocular depth and VO predictions need to be rescaled
with a scaling ratio derived from ground truth [17,4], which is not appealing in
real-world applications. And previous BEV methods [31,36,54] usually predict
the BEV layout of different semantic categories separately and ignore potentially
useful geometry clues such as the depth order between cars.

In this paper, we propose to handle these three tasks simultaneously and pro-
vide complementary information for each other to address the aforementioned
issues. We are inspired by the following two key observations. First, we note
that the BEV road layout can provide absolute scale under the weak assump-
tion that the road is flat, which allows us to exploit the cross-view geometric
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transformation and obtain a depth map with an absolute scale corresponding to
the distance field that existed in the layout. As a result, the absolute scale can
be introduced into our depth and VO predictions, resolving the scale ambiguity
problem. Second, the learned depth predictions can provide useful priors about
scene geometry (e.g., the relationship between near and far as well as overlay and
underlay between objects and roads in the scene) to help solve the challenges
(e.g., occlusions) in BEV layout estimation.

To this end, we propose a novel joint perception network named JPerceiver
that can estimate scale-aware depth and VO as well as BEV layout of roads and
vehicles simultaneously, as shown in Fig. 1. JPerceiver follows the multi-task
learning framework, consisting of three networks for depth, pose and layout,
respectively, which can be efficiently trained in an end-to-end manner. Specifi-
cally, we design a cross-view geometric transformation-based (CGT) scale loss to
propagate the absolute scale from the road layout to depth and VO. Meanwhile,
a cross-view and cross-modal transfer (CCT) module is devised to leverage the
depth clues for inferring the road and vehicle layouts through an attention mech-
anism. Our proposed scale loss and CCT module not only promote inter-task
knowledge transfer but also benefit the feature learning of each task via network
forward computation and gradient back-propagation.

The contributions of this paper are summarized as follows: 1) we propose
the first joint perception framework JPerceiver for depth, VO and BEV layout
estimation simultaneously; 2) we design a CGT scale loss to leverage the absolute
scale information from the BEV layout to achieve scare-aware depth and VO; 3)
we devise a CCT module that leverages the depth clues to help reason the spatial
relationships between roads and vehicles implicitly, and facilitates the feature
learning for BEV layout estimation; and 4) we conduct extensive experiments
on public benchmarks and show that JPerceiver outperforms the state-of-the-art
methods on the above three tasks by a large margin.

2 Related Work

Self-supervised depth estimation and VO. SfMLearner [60] is one of the
first works that propose to optimize depth and pose jointly in a self-supervised
manner, utilizing the photometric consistency among continuous frames. Though
this self-supervised learning scheme has drawn great attention from researchers
and achieved promising results [47,29,17,42,17], current monocular unsupervised
methods still suffer from the scale ambiguity problem. McCraith et at. [32] fit
sample points to get the road plane estimation in the 3D world during test
to obtain scale hint, but the hard formulation limits its general applicability.
DNet [52] proposed to recover the scale by calculating the ratio of the estimated
camera height and a given one, which requires a visible ground plane to be
detected during inference. Wagstaff and Kelly [46] also use the camera height
as the scale hint by training a plane segmentation network, which is the most
similar work to ours. However, they use a three-stage training strategy to train
networks separately which is much more complex than our end-to-end method.
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BEV-based environment perception. Due to the limited field of view
(FOV) of FV cameras, BEV representation is commonly used in environment
perception and motion planning for autonomous driving [50,39]. Traditional
methods usually predict depth and segmentation from front images, and then
warp them to BEV through inverse perspective mapping (IPM) [30,43], which
loses a large amount of information and cause distortions due to potential occlu-
sions. Recently deep learning-based methods have been developed to estimate
the road and vehicle layout in the orthographic BEV plane, taking the advantage
of the strong hallucination ability of CNN [26,31,54,36,20,1]. The newly released
self-driving datasets like Argoverse [7] and Nuscenes [5] provide a large number
of BEV maps that contain annotations of drivable areas, which makes it possi-
ble to train models for BEV perception using real-world data. Compared with
prior methods, we explore the incorporation of self-supervised depth learning
explicitly, which provides an important perception output with useful geometric
clues for BEV layout estimation. Dwivedi et al. [13] also conduct explicit depth
estimation but just take it as an intermediate process to model 3D geometry
rather than a joint learning perception task. Besides, prior works usually predict
different semantic categories separately, while JPerceiver exploits the synergy of
different semantics and predicts the layouts of all categories simultaneously.

MTL-based environment perception. Recently, some multi-task learn-
ing works [55,63,38,59,24,11,41,12] propose to combine related perception tasks
with depth estimation and VO to exploit complementary information such as
segmentation [38,24,41] and optical flow [55,63,12], which effectively boost the
network performance. However none of them tackles the scale ambiguity prob-
lem of monocular depth and VO via multi-task learning, which is one of our key
purposes in this paper.

3 Method

3.1 Overview of JPerciver

As shown in Fig. 2, JPerceiver consists of three networks for depth, pose and
layout, respectively, which are all based on the encoder-decoder architecture.
The depth network aims to predict the depth map Dt of the current frame
It, where each depth value indicates the distance between a 3D point and the
camera. And the goal of the pose network is to predict the pose transformations
Tt→t+m between the current frame and its adjacent frames It+m. The layout
network targets to estimate the BEV layout Lt of the current frame, i.e. semantic
occupancy of roads and vehicles in the top-view Cartesian plane. The three
networks are jointly optimized during training. The overall objective function
consists of the loss items of all the three tasks and can be formulated as:

ℓtotal = ℓdp + ℓlayout, (1)

where ℓdp is the loss of depth and VO estimation in the self-supervised learning
scheme, and ℓlayout is the loss of the layout estimation task. We explain the
details of ℓdp and ℓlayout in Sec. 3.2 and Sec. 3.3, respectively.



JPerceiver: Joint Perception Network 5

Fig. 2: JPerceiver consists of three networks for depth, pose and layout estimation, and is trained in
the end-to-end manner. Fd, Ff , Fp represent the feature learned for three tasks and CCT denotes
the cross-view and cross-modal transfer module.

3.2 Self-supervised Depth Estimation and VO

We adopt two networks to predict depth and pose, respectively, which are jointly
optimized using the photometric loss and the smoothness loss in a self-supervised
manner, following the baseline method [17]. We additionally devise a CGT scale
loss to address the scale ambiguity problem of monocular depth and VO estima-
tion. We describe the loss items of depth and pose networks in this section.

Self-supervised monocular depth and pose estimation is achieved by lever-
aging the geometry consistency among continuous frames. During training, the
depth Dt of current frame It and the poses {Tt→t−1, Tt→t+1} between It and its
adjacent frames {It−1, It+1} are used to obtain the reconstructed current frames
{Ît−1→t, Ît+1→t} via the differentiable warping function ω from {It−1, It+1}:

Ît+m→t = ω(KTt→t+mDtK
−1It+m), m ∈ {−1, 1}. (2)

Then, the photometric differences between It and its reconstructed counterparts
Ît−1→t, Ît+1→t are minimized to train the depth and pose networks. We quantify
the photometric differences using the SSIM and L1 losses:

ℓph = min
m∈{−1,1}

α(1− SSIM(It, Ît+m→t))

2
+ (1− α)|It − Ît+m→t|, (3)

where α is set to 0.85. Following our baseline method [17], we also take the per-
pixel minimum of the photometric loss and adopt the auto-masking strategy.

To overcome the discontinuity of the predicted depth map, a smoothness loss
[16,17] is adopted based on the gradient of It:

ℓsm = |∂xµDt | e−|∂xIt| + |∂yµDt | e−|∂yIt|, (4)

where µDt
denotes the normalized inverse depth. By minimizing the above losses,

the depth network and the pose network can be optimized simultaneously.
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Fig. 3: The demonstration of CGT scale loss. Fig. 4: The structure of cross-view and
cross-modal transfer (CCT) module.

CGT Scale Loss. To accomplish scale-aware environment perception, we
propose the cross-view geometric transformation-based (CGT) scale loss for
depth estimation and VO by utilizing the scale information in the BEV layout.
Since BEV layouts demonstrate the semantic occupancy in the BEV Cartesian
plane, covering the range of Z meters in front of the ego vehicle and horizon-
tally covering Z

2 meters to the left and right, respectively. It provides a natural
distance field z with each pixel having a metric distance value zij with respect
to the ego vehicle, as shown in Fig. 3. By assuming that the BEV plane is a
flat plane on the ground with its origin just below the origin of the ego vehicle
coordinate system, the BEV plane can then be projected to FV using the camera
extrinsic parameters via a homography transformation:

Hcam
bev = K T cam

ego T ego
bev , T cam

ego and T ego
bev ∈ SE(3), (5)

where cam, ego, bev represent the camera coordinate system, the ego vehicle
coordinate system and the BEV ground system, respectively. T ego

bev and T cam
ego are

the SE(3) transformations that transform the BEV plane coordinate system to
the ego-vehicle coordinate system and then transform to the camera coordinate
system, respectively. Therefore, the BEV distance field z can be projected into
FV as zfv as shown in Fig. 3, which is then utilized to regulate the predicted
depth d, leading to our proposed CGT scale loss:

ℓCGT =
1

hdwd

hd∑
j=1

wd∑
i=1

|zfvij − dij |
zfvij

, if zfvij ̸= 0. (6)

To learn the scale-aware depth and pose in a self-supervised manner, we take
the weighted sum of ℓph, ℓsm, and ℓCGT as the final depth-and-pose objective:

ℓdp = ℓph + ℓsm + β · ℓCGT , (7)

where β is a hyper-parameter and set to 0.1 empirically.

3.3 BEV Layout Estimation

For layout estimation, an encoder-decoder network structure is adopted, follow-
ing the prior work [54]. It is noteworthy that we use one shared encoder as the
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feature extractor and different decoders to learn BEV layouts of different se-
mantic categories simultaneously instead of training networks for each category
individually as in prior works [31,54,36]. In addition, a CCT module is designed
to strengthen feature interaction and knowledge transfer between tasks, and im-
pose 3D geometry information for the spatial reasoning in BEV. To regularize
the layout network, we combine various loss items to form a hybrid loss and
achieve a balanced optimization for different categories.

CCT Module. To enhance feature interaction and impose 3D geometry
information for BEV perception, we devise CCT to investigate the correlation
between the FV feature Ff , the BEV layout feature Fb, the retransformed front
feature F ′

f and the FV depth feature Fd, and refine the layout feature accordingly,
as shown in Fig. 4. We describe CCT in two parts, i.e. CCT-CV and CCT-CM
for the cross-view module and the cross-modal module, respectively. CCT is
inspired by prior work [54], but uses different structures and modal information.
In CCT, Ff and Fd are extracted by the encoders of the corresponding perception
branches, while Fb is obtained by transforming Ff to BEV with a view projection
MLP, which is then re-transformed to F ′

f using the same MLP constrained by
a cycle loss, following prior work [54]. All the features are set to the same size,
i.e., Ff , Fd, Fb, F

′
f ∈ RH×W×D. In CCT-CV, a cross-attention mechanism is used

to discover the geometry correspondence between FV and BEV features, which
is then utilized to guide the FV information refinement and prepared for BEV
reasoning. To fully exploit the FV image features, Fb and Ff are projected to
patches Qbi ∈ Qb(i ∈ [1, ...,HW ]) and Kbi ∈ Kb(i ∈ [1, ...,HW ]), acting as
the Query and Key respectively. Then each location in the FV will retrieve the
correlation from every location in BEV to form a correlation matrix:

Cb =
QbK

T
b√

D
∈ RH×W×H×W , (8)

where the normalization factor 1√
D

is used to restrict the value range. The cross-

view correspondence can be identified by finding the location with the largest
correlation value in Cb, which is differentiable by using the softmax operation:

Mb = softmax(Cb) ∈ RH×W×H×W . (9)

Since F ′
f is obtained by first transforming the FV features to BEV and then

back to FV, it contains both FV and BEV information. We thus project F ′
f to

patches Vbi ∈ Vb(i ∈ [1, ...,HW ]) and concatenate it with Ff to provide the
Value for the cross-view correlation after a convolution layer:

Fcv = Conv(Concat(F ′
f , Vb))⊙Mb. (10)

Except for utilizing the FV features, we also deploy CCT-CM to impose
3D geometry information from Fd. Since Fd is extracted from FV images, it is
reasonable to use Ff as the bridge to reduce the cross-modal gap and learn the
correspondence between Fd and Fb. Thus, similar to CCT-CV, Fb and Ff are
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regarded as the Query Qd and the Key Kd to calculate the correlation matrix:

Cd =
QdK

T
d√

D
∈ RH×W×H×W . (11)

Fd plays the role of Value so that we can acquire the valuable 3D geometry
information correlated to the BEV information and further improve the accuracy
of layout estimation. The final CCT-CM feature Fcm is then derived as:

Md = softmax(Cd) ∈ RH×W×H×W ,

Fcm = Fd ⊙Md.
(12)

In the end, the original FV feature Ff , the cross-view correlated feature Fcv and
the cross-modal correlated feature Fcm are summed up as the input of the layout
decoder branch to conduct subsequent learning: Fout = Ff + Fcv + Fcm.

Hybrid Loss. BEV layout estimation is a binary classification problem for
each semantic category in the BEV grid to determine whether an area belongs to
roads, cars, or backgrounds. Thus, this task is usually regularized by minimizing
the difference Diff(·) between the predictions Lpred and the ground truth Lgt

using Cross-Entropy (CE) or L2 loss in prior works [54,20]:

ℓclayout = Diff(Lpred − Lgt), c ∈ {croad, cvehicle}. (13)

In the process of exploring our joint learning framework to predict different
layouts simultaneously, we observe that a great difference exists in the charac-
teristics and distributions of different semantic categories. For characteristics,
the road layout in driving scenes usually needs to be connected, while differ-
ent vehicles instead must be separated. And for distributions, more scenes with
straight roads are observed than scenes with turns, which is reasonable in real-
world datasets. Such difference and imbalance increase the difficulty of BEV
layout learning, especially for predicting different categories jointly, due to the
failure of the simple CE or L1 losses in such circumstances. Thus, we incorpo-
rate several kinds of segmentation losses including the distribution-based CE
loss, the region-based IoU loss, and the boundary loss into a hybrid loss to pre-
dict the layout for each category. First, the Weighted Binary Cross-Entropy Loss
is adopted, which is most commonly used in semantic segmentation tasks:

ℓWBCE =
1

hlwl

hlwl∑
n=1

M∑
m=1

−wm[ymn · logxm
n + (1− ymn ) · log(1− xm

n )], (14)

where xn and yn denote the n-th predicted category value and the counterpart
ground truth in a layout of size hlwl, respectively. M = 2 means whether a pixel
belongs to foreground roads or cars, while wm is the hyperparameter for tackling
the issue of sampling imbalance between different labels. We set wm to 5 and 15
for roads and vehicles respectively following [54].

Since the CE loss treats each pixel as an independent sample and thus ne-
glects the interactions between nearby pixels, we then adopt the Soft IoU Loss
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ℓIoU to ensure the connectivity within the region:

ℓIoU = − 1

M

M∑
m=1

∑hlwl

n=1 xm
n ymn∑hlwl

n=1 (x
m
n + ymn + xm

n ymn )
, M = 2. (15)

For the integrity of the region edges, we further use the Boundary Loss ℓBound

to constrain the learning of the boundary predictions, which has proven effective
for mitigating issues related to regional losses in highly unbalanced segmentation
problems such as medical image segmentation [22,28,53]. It is calculated as the
Hadamard product of the signed distance (SDF) map of the ground truth layout:

ℓBound = MSDF (Lgt)⊙ Lpred, (16)

MSDF (Lgt) =


− inf

y∈Lb
gt

||x− y||2, x ∈ Lin
gt ,

+ inf
y∈Lb

gt

||x− y||2, x ∈ Lout
gt ,

0, x ∈ Lb
gt,

where Lin
gt , L

out
gt , and Lb

gt represent regions inside, outside and at the foreground
object boundaries in the ground truth, respectively. ||x − y||2 is the Euclidian
distance between x and y.

The final loss of the layout estimation for each category then reads:

ℓcilayout = ℓciWBCE + λ · ℓciIoU + λ · ℓciBound, (17)

where λ = 20 and ci ∈ {croad, cvehicle}.
Different from prior works [54,36], our joint learning framework predict all

semantic categories simultaneously instead of training a network separately for
each category. The final optimization loss for our layout network reads:

ℓlayout =
∑
ci

ℓcilayout, ci ∈ {croad, cvehicle}. (18)

4 Experiments

Since there is no previous work that accomplishes depth estimation, visual odom-
etry and BEV layout estimation simultaneously, we evaluate the three tasks
on their corresponding benchmarks and compared our method with the SOTA
methods of each task. In addition, extensive ablation studies are performed to
verify the effectiveness of our joint learning network architecture and loss items.

4.1 Datasets.

We evaluate our JPerceiver on three driving scene datasets, i.e., Argoverse [8],
Nuscenes [5] and KITTI [15]. Argoverse and Nuscenes are relatively newly pub-
lished autonomous driving datasets that provide high-resolution BEV semantic
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Table 1: Quantitative comparisons (top part) and ablation study (bottom part) on Argoverse [8].
“CCT-CV” and “CCT-CM” denote the cross-view and cross-modal part in CCT.

Methods
Argoverse Road Argoverse Vehicle

mIoU(%) mAP(%) mIoU(%) mAP(%)
VED [26] 72.84 78.11 24.16 36.83
VPN [34] 71.07 86.83 16.58 39.73

Monolay [31] 73.25 84.56 32.58 51.06
PYVA [54] 76.51 87.21 48.48 64.04

JPeceiver(“1-1”) 77.86 90.59 49.94 65.44
JPerceiver(“1-2”) 77.50 90.21 49.45 65.84

Baseline(“1-1”) 76.66 87.17 46.97 63.36
+CCT-CV 77.76 88.42 49.33 64.05

+CCT-CV+CCT-CM 77.80 89.00 49.39 64.86
Ours(“1-1”+CCT+HLoss) 77.86 90.59 49.94 65.44

Baseline(“1-2”) 76.52 86.54 42.77 59.39
+CCT-CV 76.91 87.19 46.46 61.02

+CCT-CV+CCT-CM 77.38 88.40 47.19 61.43
Ours(“1-2”+CCT(S)+HLoss) 76.81 89.39 48.06 63.61
Ours(“1-2”+CCT+HLoss) 77.50 90.21 49.45 65.84

occupancy labels for roads and vehicles. We evaluate the performance of BEV
layout estimation on Argoverse with 6,723 training images and 2,418 validation
images within the range of 40m × 40m, and on Nuscenes with 28,130 training
samples and 6,019 validation samples under two settings (in Supplementary).
The ablation study for layout estimation is performed on Argoverse. Two se-
mantic categories are included in the evaluated BEV layouts, i.e. roads and
vehicles. We adopt the mean of Intersection-over-Union (mIoU) and Average
Precision (mAP) as the evaluation metrics, following prior works [31,54]. Due to
the insufficient annotations in KITTI, we follow prior works to use three splits
for the tasks, i.e., the KITTI Odometry split (15,806 and 6,636 items for train-
ing and validation) for depth, VO, as well as road layout estimation, the KITTI
Raw split (10,156 and 5,074 items for training and validation) for road layout
estimation, and the KITTI 3D Object split (3,712 and 3,769 items for training
and validation) for vehicle layout estimation, all within the range of 40m×40m.

Implementation Details. We adopt the encoder-decoder structure for the
three networks, all using pre-trained ResNet18 [19] as the encoder backbone ex-
cept that we modify the pose network to take two-frame pairs as input. Following
the prior method [54], the input sizes of the depth and layout networks are both
set to 1024 × 1024, while a smaller input size 192 × 640 is used for the pose
network to save computation resources since its outputs are not pixel-wise. Our
model is implemented in PyTorch [35] and trained for 80 epochs using Adam [23],
with a learning rate of 10−4 for the first 50 epochs and 10−5 for the remaining
epochs. The details of the network structure are presented in Supplementary.
And there is a potential promising improvement using more powerful network
backbones (e.g. transformer [51,57]) in our method.
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Fig. 5: The qualitative results of depth and layout on the three
datasets. White and blue regions indicate road and vehicle
layouts.

Fig. 6: Visualization of features
and attention maps aligned with
the corresponding views.

4.2 Layout Estimation

Argoverse. We first quantitatively compare JPerceiver with SOTA methods on
Argoverse [8], including VPN [34], Monolay [31] and PYVA [54]. We compare
two variants of our method, i.e., (1) JPerceiver(“1-1”) that trains two layout
estimation networks separately for each category, which is also the common
practice in the compared methods, and (2) JPerceiver(“1-2”) that predicts the
two kinds of layouts jointly with one shared encoder. As shown in the top part of
Table 1, the two variants both show superiority over other approaches in the road
and vehicle layout estimation. Moreover, JPerceiver(“1-2”) achieves comparable
performance with JPerceiver(“1-1”), even if JPerceiver(“1-2”) only uses a shared
encoder and thus is more efficient in terms of memory and computation.
Ablation. To investigate the effect of the component and the hybrid loss in our
model, we conduct ablation studies on Argoverse and report the results in the
bottom part of Table 1. We take a basic “1-1” structure as our baseline, i.e.,
an encoder-decoder structure trained for each semantic category with a CE loss.
We then use CCT and jointly train the depth network, pose network, as well as
layout network together. Specifically, we ablate the cross-view module CCT-CV
and the cross-modal module CCT-CM, respectively. As can be seen, both the
cross-view and the cross-modal modules improve the performance of the baseline,
and the complete CCT brings a gain of 1.14% mIoU and 1.83% mAP for road
layout estimation and 2.42% mIoU and 1.5% mAP for vehicle layout estimation,
respectively. After using the hybrid loss (HLoss), the performance reaches the
best, i.e., 77.86% mIoU and 90.59% mAP for roads as well as 49.94% mIoU and
65.44% mAP for vehicles, respectively. We then conduct the same ablation study
on the “1-2” structures. It is observed that using one encoder to learn represen-
tations for both two semantic layouts significantly decreases the performance of
baseline models, especially for the vehicle layout, i.e., from 46.97% mIoU and
63.36% mAP to 42.77% mIoU and 59.39% mAP. After using the proposed CCT
module and hybrid loss, the performance drop can be recovered, where the final
model achieves comparable results as the “1-1” structure. We further investigate
the performance of using a shared CCT module for the two semantic layouts,
denoted as “CCT(S)” in Table 1. As can be seen, its results are much worse
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than using separate CCT for each category. It is probably due to the distinct
geometry characteristics of road and vehicle, where different regions should be
paid attention to as illustrated in Fig. 6.

KITTI. We train our layout network for roads on the KITTI Odometry and
the KITTI Raw splits, and the layout for vehicles on the KITTI Object split.
As shown in Table 2 (left), our performance on KITTI Odometry is superior
to other methods w.r.t. both mIoU and mAP. The evaluation results on KITTI
Raw are listed in Table 2 (middle). We report our reproduced result of PYVA
[54] within parentheses because their reported results are trained with processed
ground truth. Even so, our method still outperforms their reported results with
a gain of 5.39% in mAP. We observe a performance degradation from KITTI
Odometry to KITTI Raw, potentially because the ground truth of the latter
comes from registered semantic segmentation of Lidar scans while the former
obtains the ground truth from the more accurate Semantic KITTI dataset [3],
both collected by [31]. For vehicle layout estimation, we show the quantitative
results in Table 2 (right). Our method exceeds other works by a large margin,
i.e., 2.06% and 6.97% w.r.t. mIoU and mAP.

4.3 Depth Estimation and Visual Odometry

KITTI presents the most commonly used dataset for depth estimation and VO.
And we report our scale-aware depth and VO results on KITTI Odometry.

Depth Estimation. We compare with several self-supervised depth estima-
tion methods on the KITTI Odometry test set, shown in Table 3. The scaling
factor is calculated as the average of all depth map scale ratios, which is the ratio
of the median of depth values and the median of ground truth values. We use
Monodepth2 [17] as the baseline and DNet [52] as a representative competitor
of the scale-aware methods. Though Monodepth2 [17] achieves good up-to-scale
accuracy, however, without the scaling factor, its performance significantly de-
grades. DNet [52] predicts a camera height during inference and calculates the
ratio between the ground truth camera height and the predicted one to get the
scaling factor. However, its output depths still need to be scaled. Differently,
thanks to the CGT scale loss, our depth prediction naturally contains the ab-
solute metric scale and does not require any scaling operation. As shown in the
top part of Table 3, our scale factor computed during inference is 1.065 with a
variance of 0.071, while a comparable precision is also achieved.
Ablation. We further conduct the ablation study for depth and report the
results in the bottom part of Table 3 with the input resolution of 512 × 512.
Introducing CCT on the baseline structure boosts the depth estimation results
no matter with or without scaling, and the scaling factor is similar to the baseline
counterpart. We then add the CGT scale loss to the baseline to validate its
feasibility, resulting in a nearly perfect scaling ratio. However, since our CGT
scale loss only takes regional pixels in ground areas into account instead of using
all pixels and is based on an assumption that the ground plane is flat, a less
accurate result is observed for the overall prediction. Our full model achieves
comparable depth performance with the baseline but up to a metric scale. Of note
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Table 2: Quantitative comparisons of BEV layout estimation results on KITTI Odometry, KITTI
Raw and KITTI 3D Object.

Methods
KITTI Odometry Road KITTI Raw Road KITTI 3D Object
mIoU(%) mAP(%) mIoU(%) mAP(%) mIoU(%) mAP(%)

VED [26] 65.74 67.84 58.41 66.01 20.45 22.5
Mono3D [9] - - - - 17.11 26.62
OFT [40] - - - - 25.24 34.69
VPN [34] 66.81 81.79 59.58 79.07 16.80 35.54

Monolay [31] 76.81 85.25 66.02 75.73 30.18 45.91
PYVA [54] 77.49 86.69 68.34 (65.52) 80.78 (79.52) 38.79 50.26
JPeceiver 78.13 89.57 66.39 86.17 40.85 57.23

Table 3: Quantitative comparisons and ablation study for depth estimation. “w” and “w/o” denote
evaluation results with or without rescaling by the scale factor, which is calculated during inference.

Methods Resolution ScalingAbs Rel (↓)Sq Rel(↓)RMSE(↓)RMSE log(↓) Scale factor

Monodepth2 [17]1024 × 1024
w 0.113 0.526 3.656 0.181 42.044 ± 0.076

w/o 0.976 13.687 17.128 3.754 –

DNet [52] 1024 × 1024
w 0.121 0.582 3.762 0.192 34.393 ± 0.077

w/o 0.970 13.528 17.028 3.545 –

JPerceiver 1024 × 1024
w 0.116 0.517 3.573 0.180 1.065 ± 0.071

w/o 0.112 0.559 3.817 0.196 –

Baseline 512 × 512
w 0.120 0.550 3.670 0.184 39.452 ± 0.077

w/o 0.974 13.616 17.073 0.179 –

+CCT 512 × 512
w 0.108 0.505 3.574 0.179 37.711 ± 0.067

w/o 0.973 13.616 17.083 3.645 –

+scale loss 512 × 512
w 0.135 0.633 3.860 0.194 1.088 ± 0.093

w/o 0.125 0.643 4.092 0.211 –

Ours 512 × 512
w 0.128 0.574 3.739 0.189 1.099 ± 0.085

w/o 0.122 0.628 3.952 0.205 –

is that all variants with our scale loss obtain lower Abs Rel error without scaling
while worse results in other metrics compared with the results with scaling. It
may be because the calculation of our Scale loss is the same as the Abs Rel metric.
Different ways of calculating and utilizing the scale loss on other baselines might
be explored to further improve the estimation accuracy in future work.

Visual Odometry. We train Perceiver on the KITTI Odometry sequences
01-06 and 08-09, and use the sequences 07 and 10 as our test set for evaluat-
ing our model for VO. We compare with several self-supervised visual odometry
methods in Table 4, including SfMLearner [60], GeoNet [55], Monodepth2 [17],
SC-Sfmlearner [4], which are trained on sequence 00-08. “Scaling” means the
scaling method is used during inference. “GT” means the scaling factor for cor-
recting the predictions comes from the ground truth. Dnet [52], LSR [46] and
Ours all borrow information from the road plane to recover the scale but in differ-
ent ways. Of note is that Dnet [52] needs invisible ground plane to predict camera
height during inference for scale recovery, which is not required by our method.
While LSR [46] incorporates a front-view ground plane estimation task, their
networks are trained in a serial way, i.e. unscaled depth and VO network, plane
segmentation network, and then scaled depth and VO network. In comparison,
our method can produce scaled VO results during inference without any hint
by using our CGT scale loss. In addition, our method is superior to other com-
petitors w.r.t. the average translational and rotational RMSE drift metrics. The
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Table 5: The Analysis of model complexity with input resolution 512 × 512 using one single GPU.

Methods Task Params(M) Flops(G) FPS(BS=1) FPS(BS=6)
Monodepth2 [17] depth & pose 39.33 26.93 30.3 36.9

PYVA [54] layout 29.73 20.42 65.2 72
Monodepth2 [17]

depth & pose & layout 69.06 47.35 15.6 18.6
+2×PYVA [54]

JPerceiver depth & pose & layout 57.15 37.69 19.8 26.9

comparison of VO trajectories with other methods without rescaling is shown in
Fig. 7, which further proves the effectiveness of our scale loss.

Fig. 7: The comparison of VO
trajectories on sequence 07.

Table 4: The comparison of Visual Odometry. terr is the average
translational RMSE drift (%) on length from 100, 200 to 800 m,
and rerr is average rotational RMSE drift (◦/100m) on length
from 100, 200 to 800 m.

Methods Scaling
Sequence 07 Sequence 10
terr rerr terr rerr

SfMLearner [60] GT 12.61 6.31 15.25 4.06
GeoNet [55] GT 8.27 5.93 20.73 9.04

Monodepth2 [17] GT 8.85 5.32 11.60 5.72
SC-Sfmlearner [4] GT 8.29 4.53 10.74 4.58

Dnet [52] Camera height - - 13.98 4.07
LSR [46] None - - 10.54 4.03

JPerveiver None 4.57 2.94 7.52 3.83

4.4 Model Complexity

We compare the complexity of our JPerciever with the single-task competitors
and the simply combined model in Table 5. Since our method can predict the
depth, VO, and BEV layouts of the two semantic categories simultaneously, it is
less complex in terms of parameters (M), computations (FLOPs), and inference
speed (FPS) compared with the combined model while producing better predic-
tion in all the three tasks. Besides, our JPerciever benefits more from parallel
acceleration as shown in the last column, where a batch size of 6 is used.

5 Conclusion

In this paper, we propose a joint perception framework named JPerceiver for the
autonomous driving scenarios, which accomplishes scale-aware depth estimation,
visual odometry, and also BEV layout estimation of multiple semantic categories
simultaneously. To realize the joint learning of multiple tasks, we introduce a
cross-view and cross-modal transfer module and fully make use of the metric scale
from the BEV layout to devise a cross-view geometry transformation-based scale
loss to obtain scale-aware predictions. Our method achieves better performance
towards all the above three perception tasks using less computation resource
and training time. We hope our work can provide valuable insight to the future
study of designing more effective joint environment perception model.
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