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Abstract. Dominated point cloud-based 3D object detectors in au-
tonomous driving scenarios rely heavily on the huge amount of accurately
labeled samples, however, 3D annotation in the point cloud is extremely
tedious, expensive and time-consuming. To reduce the dependence on
large supervision, semi-supervised learning (SSL) based approaches have
been proposed. The Pseudo-Labeling methodology is commonly used for
SSL frameworks, however, the low-quality predictions from the teacher
model have seriously limited its performance. In this work, we propose
a new Pseudo-Labeling framework for semi-supervised 3D object detec-
tion, by enhancing the teacher model to a proficient one with several
necessary designs. First, to improve the recall of pseudo labels, a Spatial-
temporal Ensemble (STE) module is proposed to generate sufficient seed
boxes. Second, to improve the precision of recalled boxes, a Clustering-
based Box Voting (CBV) module is designed to get aggregated votes
from the clustered seed boxes. This also eliminates the necessity of so-
phisticated thresholds to select pseudo labels. Furthermore, to reduce the
negative influence of wrongly pseudo-labeled samples during the training,
a soft supervision signal is proposed by considering Box-wise Contrastive
Learning (BCL). The effectiveness of our model is verified on both ONCE
and Waymo datasets. For example, on ONCE, our approach significantly
improves the baseline by 9.51 mAP. Moreover, with half annotations, our
model outperforms the oracle model with full annotations on Waymo.
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1 Introduction

With the rapid development of range sensors (e.g., LiDAR) and their wide appli-
cation in the field of robotics and autonomous driving, point cloud-based scene
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Fig. 1. The main idea of our ProficientTeachers. Given an unlabeled point cloud,
the spatial-temporal ensemble (STE) module first produces (a) seed boxes by combing
predictions from multiple augmented views. Then, the clustering-based box voting
(CBV) module adaptively aggregates these boxes to get (b) the final high-quality
pseudo labels. In this way, we not only achieve better detection results, but also remove
the necessity of sophisticated thresholds for selecting pseudo labels, as seen in (c).

understanding such as 3D object detection has received great attention recently.
With the great capabilities of deep neural networks (DNNs) and a huge number
of annotated samples, impressive performances have been achieved on different
public benchmarks [2,8,9,26]. VoxelNet [41], PointRCNN [22], PointPillars [11],
PV-RCNN [21] and CenterPoint [38] are several representative 3D object detec-
tion frameworks. Nevertheless, the results highly rely on huge annotations, while
the annotation in 3D data is extremely expensive and time-consuming, e.g., a
skilled worker may take hundreds of hours to annotate just one hour of driving
data [7, 12–14].

Semi-supervised learning (SSL) techniques, which train a model with a small
number of labeled samples together with an abundance of unlabeled data, are a
promising alternative to the fully-supervised learning frameworks. Compared to
labeled data, unlabeled data is obtained very conveniently and cheaply. However,
due to the inherent difficulty of point cloud (e.g., orderless, textureless, and spar-
sity), only a few SSL-based 3D object detection frameworks have been proposed.
Up to now, SESS [39] and 3DIoUMatch [29] are two pioneers of this domain.
To handle the unlabeled data, SESS leverages asymmetric data augmentation
and enforces consistency regularization between the predictions of teacher and
student models. Although noticeable improvements have been achieved upon a
vanilla VoteNet [16] on indoor datasets, other researchers [18,29] found that the
consistency regularization is suboptimal if it is uniformly enforced on all the
student and teacher predictions because the quality of these predictions may
be quite different. To well handle this limitation, 3DIoUMatch seeks a pseudo-
labeling approach and applies a confidence-based filtering strategy for pseudo-
label selection, where the confidence is defined as a combination of classifica-
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tion score and IoU estimation. Though achieving better performance, it takes
tremendous effort to select a suitable confidence score. Moreover, the pseudo
labels produced by its plain teacher model limit the final detection performance.

To address these challenges, we propose a new pseudo-labeling SSL frame-
work, ProficientTeachers, that not only provides high-quality pseudo labels via
an enhanced teacher model, but also reduces the necessity of deliberately se-
lected thresholds. To be specific, false negative (FN) and false positive (FP) in
the pseudo labels are two main challenges. The LiDAR point cloud is sparse and
noisy, and some street objects are of small sizes (e.g., less than 2m for pedestrian)
and unevenly distributed across a considerably wide range (e.g., 150m × 150m
in Waymo [26]). Thus it is prone to cause FN detections from only a single point
cloud view. To handle this, a spatial-temporal ensemble (STE) module is pro-
posed to generate sufficient seed boxes from spatially and temporally augmented
views. Aggregating predictions from different views reduces the prediction bias
of the teacher model, thus essentially boosting the recall. The redundant seed
boxes from STE inevitably involve FP detections. To further resolve the FP
problem, we propose a clustering-based box voting (CBV) module. Our CBV
module groups the seed boxes into different clusters and generates votes (i.e.,
a refined bounding box) for each box in a cluster. These votes are then aggre-
gated to produce a more accurate box for each cluster. In this way, more clean
and precise pseudo labels can be obtained by a simple NMS, removing the need
of selecting thresholds. Our CBV module significantly improves the precision
of pseudo labels produced by the STE module, without losing the recall. By
equipping the STE and CBV modules, the vanilla teacher model has become
to be proficient teachers model. Furthermore, we find that the original pseudo-
labeling method enforces a hard training target, where the inaccurate pseudo
labels will undermine the performance of the student. To alleviate this problem,
a soft training target is proposed by box-wise contrastive learning (BCL), which
aims to learn the cross-view feature consistency based on the informative boxes.

To summarize, we propose a new 3D SSL framework, ProficientTeachers, for
LiDAR-based 3D object detection, which is achieved by promoting the plain
teacher model to proficient teachers inspired by ensemble learning. Our frame-
work not only performs better results, but also removes the necessity of confidence-
based thresholds for filtering pseudo labels. In our model, spatial-temporal en-
semble (STE) and clustering-based box voting (CBV) modules are developed
to improve the recall and precision of pseudo labels. Furthermore, a box-wise
contrastive learning (BCL) strategy has been advocated to explore representa-
tion learning based on expressive 3D boxes. Comprehensive evaluations have
been conducted on ONCE and Waymo. Our ProficientTeachers can improve the
baseline detector by 9.51 mAP on ONCE, and save half annotations on Waymo.

2 Related Work

3D Object Detection. 3D object detection from LiDAR point cloud has been
studied for decades with various approaches being proposed. The mainstream
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methodologies can be divided into two categories: voxel-based [4, 35, 36, 38, 41]
and point-based [22, 23, 34, 40]. Voxel-based expression is a popular way of pro-
cessing the point cloud in deep learning, and has been widely applied for 3D
object detection with the development of sparse convolution [33]. Voxelnet [41]
splits the LiDAR data into voxels and sends the points in each voxel into a
voxel feature encoding layer to get voxel-wise features. To accelerate the speed,
PointPillars [11] uses a pillar representation to replace the voxel representation.
Different from the above approaches, the point-based approaches take the point
cloud directly into the DNNs. PointRCNN [22] is representative of this, which
employs the Pointnet++ [17] as the backbone for semantic segmentation first,
and then regions of interest (RoIs) are generated based on foreground points. Be-
sides this, PV-RCNN [21] proposes to combine both point cloud and multi-scale
voxel representation and achieve high performance.

Semi-supervised Learning (SSL). SSL has been studied for a long time
and many approaches have been proposed [28, 42]. The recently popular SSL
approaches such as Temporal Ensembling [19], Mean Teacher [27] and Noisy
Student [31] have achieved impressive performance on the 2D tasks. The tempo-
ral model, which explores consistency in the prediction level, tries to minimize
the difference between the predictions from the current step and the EMA (an
exponential moving average) predictions over multiple previous training epochs.
The EMA predictions can largely improve the quality of the predictions. Mean
Teacher [27] further improves the temporal model by replacing network predic-
tion average with network parameter average. It contains two network branches,
i.e., teacher and student, with the same architecture. The parameters of the
teacher are the EMA of the student, while the parameters of the student are
updated by stochastic gradient descent. The student network is trained to yield
consistent predictions with the teacher network. Noisy Student [31] deliberately
injects noise to the student model from both input level and model level to
strengthen the student. Then it makes the student a new teacher and performs
iterative self-training to further improve performance.

SSL on 3D Object Detection. Most of the SSL approaches are proposed for
classification tasks [1,24] and a few SSL approaches have been proposed to lever-
age the object detection task [10, 25], especially 3D object detection. SESS [39]
and 3DIoUMatch [29] are two typical recently proposed approaches for 3D ob-
ject detection from point cloud data. The SESS, which is built based on the
Mean Teacher paradigm by updating the parameters of the teacher network with
an EMA technique, employs asymmetric data augmentation and enforces three
kinds of consistency losses between the teacher and student predictions. Different
from SESS, 3DIoUMatch proposes a series of handcrafted strategies to achieve
better pseudo labels such as joint class, objectness, localization confidences-based
pseudo-label filtering, and IoU-guided lower-half suppression for deduplication,
etc. The proposed framework works well on PV-RCNN [21]. By contrast, our
method benefits from an enhanced teacher model, without sophisticated thresh-
olds selection, and can be flexibly applied on popular LiDAR-based 3D detectors,
e.g., SECOND [33], CenterPoint [38] and PV-RCNN [21].
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Fig. 2. The framework of our ProficientTeachers model. It consists of a spatial-
temporal ensemble (STE) module and a clustering-based box voting (CBV) module.
STE produces sufficient seed boxes and CBV adaptively fuses them to obtain better
pseudo labels. Besides, a consistency loss based on box-wise contrastive learning (BCL)
is applied on the student model to explicitly learn from informative box features.

3 Proposed Approach

3.1 SSL Framework

Semi-supervised 3D object detection is very valuable and practical in real self-
driving scenarios. Here, we explore the pseudo-labeling framework, which is a
popular methodology in semi-supervised learning. Typical pseudo-labeling meth-
ods [31] exploit a teacher model to produce pseudo labels which are used to
supervise a student model. We argue that the low-quality predictions produced
by the vanilla teacher model limit the performance. In this work, we propose to
promote the vanilla teacher model to a proficient one, as seen in Fig. 2.

Our ProficientTeachers model, as described in Sec. 3.2, contains a spatial-
temporal ensemble (STE) module and a clustering-based box voting (CBV) mod-
ule, which are designed to handle false negative (FN) and false positives (FP)
in pseudo labels, respectively. In particular, STE produces multi-group boxes
based on augmented and assembled views to recall the missed objects. To fur-
ther remove the redundant FP boxes, the original pseudo-labeling approaches
apply a fixed threshold to filter out boxes with lower confidence scores, which
is unstable and inefficient. In contrast, our CBV adaptively aggregates the seed
boxes to reduce FP and also improves the precision by voting the boxes within a
cluster. Furthermore, we propose a soft supervision signal in Sec. 3.3, i.e., Con-
trastive Student model, by involving box-wise contrastive learning (BCL). Next,
we elaborate on each module in subsequent sections.
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3.2 Proficient Teachers Model

Assuming that we have total N training samples, including Nl labeled sam-
ples PL = {pL

i ,y
L
i }

Nl
i=1 and Nu unlabeled samples PU = {pU

i }
Nu
i=1, where pi ∈

Rn×{3+r} represents a point cloud sample pi that has n points with 3-dimensional
coordinates and other r-dimensional attributes such as intensity, timestamps,
etc. The core idea of our ProficientTeachers model is to produce high-quality
pseudo labels {yU

i }
Nu
i=1 for the unlabeled point clouds {pU

i }
Nu
i=1.

Spatial-Temporal Ensemble Module. As described above, predictions pro-
duced by vanilla teacher inevitably encounter the FN problem, which will cause
the student model to treat a foreground object as a negative example, thus
degenerating the detection performance. Motivated from this observation, we
attempt to improve the recall of the teacher model with the STE module, which
generates sufficient candidate pseudo boxes with a spatial ensemble module and
a temporal ensemble module.

The spatial ensemble in the STE aims to produce multi-group detections
based on differently augmented point cloud views, which is inspired by test time
augmentation [20]. Detections on a certain view may exist bias and miss objects.
By combining detections from multiple views after reverse transformation, less
FN will happen, thus improving the recall. Formally, given an unlabeled data
pU
i ∈ PU , we first apply fixed data augmentation to spatially transform the input

point cloud into different views. This can be deemed as a form of weak augmen-
tation compared with the random train-time augmentation policies, which is:

{pU1
i ,pU2

i , . . . ,pUK
i } = T (pU

i ), (1)

where T (·) is the augmentation function and K is the number of augmented
views. More details about our data augmentation can be found in Sec. 4.2.

Then, we use the teacher network fTEA(·) to give predictions for each view:

{yU1
i ,yU2

i , . . . ,yUK
i } = fTEA({pU1

i ,pU2
i , . . . ,pUK

i }), (2)

With the spatial ensemble module, objects not detected in one view may be
detected in another view. All detection results are then projected to the original
coordinate with reverse transformations.

Moreover, we can also incorporate a temporal ensemble module. In particular,
previous pseudo label methods update weight of teacher model by student model
from a certain epoch. We argue that models from different epochs exist bias, and
temporal aggregation of models from different epochs can alleviate this problem.
This is presented as:

{yUT
1

i ,y
UT

2
i , . . . ,y

UT
K

i } = fT
TEA({pU1

i ,pU2
i , . . . ,pUK

i }), (3)

where fT
TEA(·) denotes the teacher model updated by student model from epoch

T . We consider the models from recent epochs for temporal ensemble. Afterward,
we collect all the predictions produced by both the spatial and temporal ensemble
modules. As seen in Table 1, our STE improves the recall by 5.6%, compared
with the original teacher model. Here, simple post-processing like Non-maximum
Suppression (NMS) can be directly applied to aggregate these predictions.
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AggregationFig. 3. Illustration of clustering-based box voting (CBV) module, which con-
tains four steps: seed box clustering, RoI feature extraction, box voting and votes
aggregation. By adaptively fusing the high-recall candidate boxes output by the STE,
CBV significantly improves the precision of pseudo labels.

Clustering-based Box Voting Module. Though the proposed STE module
has ensured a higher recall by combing sufficient pseudo boxes, some inaccurate
candidate boxes will also lead to a lower precision (i.e., from 47.2% to 27.4%,
as seen in Table. 1), which undermines the quality of pseudo labels. Thus, the
main purpose of the CBV module is to address these redundant candidate boxes.

Table 1. Recall and precision of “Vehicle”
class based on SECOND detector trained
with different SSL settings. “c” represents
the threshold of the confidence score.

Methods Recall Precision
SECOND [33] (Baseline) 78.3% 47.2%
SECOND [33] + STE 83.9% 27.4%

SECOND [33] + STE (c = 0.3) 80.4% 74.6%
SECOND [33] + STE + CBV 83.6% 76.5%

An intuition way is to define a score
to formulate the quality of the pseudo
boxes, and filter the low-quality boxes
under a certain threshold. For in-
stance, FixMatch [24] directly uses the
classification score to filter the pseudo
boxes. Later, 3DIoUMatch [29] lever-
ages a predicted IoU score for filtering
objects. However, there are potential
limitations in these threshold-based fil-
tering methods. First of all, it requires
manual experience and elaborate ex-
periments to choose a suitable threshold for a class, and different datasets or
detectors might not share the same thresholds. Secondly, the predicted box con-
fidence score either formulates class probability, e.g., classification score, or the
localization accuracy, e.g., IoU, individually, which requires a sophisticated com-
bination from different aspects. Thirdly, they separately consider each individual
box, ignoring the relations of boxes in a cluster covering the same ground truth.
To this end, we propose a Clustering-based Box Voting (CBV) module to obtain
more clean and accurate pseudo labels via a learnable voting process, as well as
eliminate the need of sophisticated threshold selection.

The detailed pipeline of the CBV module can be found in Fig. 3. Specifically,
given the pseudo labels produced by the STE module, we first cluster these
boxes based on the IoU criterion. For example, the boxes are first arranged by
the scores. Then, for the box with the highest score, we select other boxes that
have a larger IoU with it as the same cluster. This process is iteratively performed
for all the boxes to produce all the clusters. Assuming the k-th cluster has M

′
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boxes, i.e., {bk
m}M

′

m=1, we aim to aggregate these boxes and get a refined box bk

via box voting and votes aggregation. For box voting, we first obtain features
of each box via a pre-trained RoI network [5], i.e., b̃k

m=fRoI(b
k
m). Then, we let

each box in a cluster predict a vote, based on the context-aware features of the
box. The voting network is realized by a shared-weight two-layer MLP, and is
trained to regress the offset to the ground-truth box. This can be denoted as

vk
m=fVote(b̃

k
m). In this way, we have the vote results {vk

m}M
′

m=1, where each vote
vk
m presents a refined bounding box. Furthermore, we also predict an objectness

skm to describe the quality of a box. This is achieved by training another two-
layer MLP head for foreground and background classification. Accordingly, we
can aggregate these votes to get a more accurate box bk for the k-th cluster, by
weighting the votes vk

m with the objectness skm, which is denoted as:

bk =

∑M
′

m=1 s
k
m · vk

m∑M ′

m=1 s
k
m

, (4)

In this way, more clean pseudo labels are produced. The objectness sk is also
obtained by considering the average scores and the detection number in this
cluster. Then, NMS can be directly applied to get the final pseudo labels, i.e.,
yU = {bk}Mk=1, where M is the total pseudo box number.

In Table. 1, we find that the CBV module significantly improves the precision
from 27.4% to 76.5%, and even improves the recall by 5.3%, due to the votes
aggregation in clusters. We also implement a heuristic method by selecting better
confidence threshold, i.e., c = 0.3, to filter boxes as in [24]. As seen in Table. 1,
such a method is inferior to ours according to both recall and precision metrics.

3.3 Contrastive Student Model

In this section, we introduce the learning of the student model. Concretely, our
student model takes as input both the labeled data {pL,yL} ∈ PL and the
unlabeled data pU ∈ PU . For training the labeled data pL, we directly obtain
the predictions of the student model, and optimize with the detection loss:

LL
det = LL

cls + LL
smooth-ℓ1 , (5)

For training the unlabeled data pU , we seek a soft learning target besides the
pseudo label-based detection loss. To be specific, though our ProficientTeach-
ers model has significantly improved the quality of pseudo labels, it inevitably
contains inaccurate predictions. Learning towards these noisy pseudo targets
will affect the student performance. To alleviate this problem, we propose to
further mine the information in unlabeled data pU , which is achieved by box-
wise contrastive learning (BCL). Though contrastive learning [3, 30, 32, 37] has
been explored in 3D point cloud, our BCL is different from those by directly
contrasting expressive box-level features based on the pseudo predictions.

In particular, our BCL module enforces the feature consistency of the same
box instance from different augmented views. Formally, given an unlabeled point
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cloud pU , we first apply two random augmentations to generate different views
pU1 and pU2 . Then, we get the pseudo labels of the two views:

yU1 = fSTU(p
U1),yU2 = fSTU(p

U1), (6)

where yU1 ∈ RM1×7, yU2 ∈ RM2×7 and M1,M2 are the number of the predicted
bounding boxes in each view with 7-d attributes. Next, we transform yU1 and
yU2 to the same view, and build positive and negative sample pairs by a greedy
matching, i.e., box pairs with the smallest distance are treated as positives and
other boxes are viewed as negatives. This results in M matched positive box
pairs. Afterwards, we extract box features by a point-wise interpolation method,
which is inspired by CenterPoint [38]. More precisely, we use the center points
features from the six faces of a 3D bounding box to present a box, by applying
bilinear interpolation on the bird-eye-view (BEV) feature maps FU . Due to op-
erating on BEV, the center points of the six faces of a 3D box are equal to the
center points of the four sides of a 2D box plus one box center. This essentially
simplifies the box feature extraction process. We formulate this as:

hU1 = I(yU1 ,FU1),hU2 = I(yU2 ,FU2), (7)

where I(·) is the bilinear interpolation function, and hU1 and hU1 are resultant
box features from different views. These features are then collected and arranged
as {hk}2Mk=1, where the even indexes denote the boxes from hU1 and the odd ones
present boxes from hU2 . Later, a projection head ϕ(·) that contains two 1 × 1
convolutional layers is used to map the box features to an embedding space, such
that zk = ϕ(hk). Then, InfoNCE loss [15] is exploited to build the soft target:

ℓ(p, q) = − log
exp(zp · zq/τ)∑2M

k=1 1[k ̸=q] exp(zp · zk/τ)
, (8)

LU
con =

1

2M

∑M

k=1
[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)], (9)

where p, q ∈ [1, . . . , 2M ] and p ̸= q. τ is a temperature hyper-parameter that is
set to 0.1. Furthermore, we leverage the high-quality pseudo labels produced by
the ProficientTeachers to construct the detection loss, which is denoted as:

LU
det =

1

2
(LU1

cls + LU1

smooth-ℓ1
+ LU2

cls + LU2

smooth-ℓ1
). (10)

Finally, the overall loss of the student model is defined as:

L = LL
det + LU

det + αLU
con, (11)

where α is a coefficient and we set it to 0.05 empirically.

4 Experimental Results

In this work, we first introduce the datasets and the implementation details
of our model in Sec. 4.1 and Sec. 4.2, respectively. Then, we report the main
evaluation results by comparing with other SSL approaches in Sec. 4.3. Finally,
the ablation studies are presented in Sec. 4.4.
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4.1 Datasets

ONCE Dataset. ONCE [12] is a large-scale autonomous driving dataset with
1 million LiDAR point cloud samples. Only 15,000 samples are with annotations
which have been divided into training, validation, and testing split with 5K, 3K,
and 8K samples, respectively. In this dataset, five kinds of foreground objects
have been annotated i.e., “Car”, “Bus”, “Truck”, “Pedestrian” and “Cyclist”,
while “Car”, “Bus” and “Truck” are merged into one class “Vehicle” during
evaluation. In particular, a specific setting is designed for SSL approaches evalu-
ation, i.e., 5K labeled samples and all the unlabeled samples have been divided
into 3 subsets: Small, Medium and Large to explore the effects of different data
amounts for SSL-based 3D detection. The small unlabeled set Small contains 70
sequences (100k samples), the medium set Medium contains 321 sequences (500k
samples) and the large set Large contains 560 sequences (about 1M samples) in
total. Similar to other 3D object detection benchmarks, mean AP (average pre-
cision) [6] over all the classes is employed for evaluation, based on the 3D IoU
thresholds 0.7, 0.3 and 0.5 for “Vehicle”, “Pedestrian” and “Cyclist”, respec-
tively. In addition, three different perception ranges, ‘0-30m”, “30-50m”, and
“50m-inf”, are specified to well evaluate the performance of 3D detectors.
Waymo Open Dataset. Waymo [26] provides a large-scale LiDAR point cloud
dataset that contains 798 sequences (158,361 frames) for training and 202 se-
quences (40,077 frames) for validation. Since it does not provide additional un-
labeled raw data for semi-supervised training. We thus manually tailor a semi-
supervised learning dataset following the setting in ONCE [12]. Specifically, we
divide the 798 Waymo training sequences equally into two splits, i.e., labeled
split PL and unlabeled split PU (without using the original labels), with each
containing 399 sequences. Then, we randomly sample 5%, 10%, 20% and 50%
sequences from PL, which lead to the ratio of labeled data and unlabeled data
PL : PU as 1:20, 1:10, 1:5 and 1:2, respectively. mAP and mAPH under LEVEL 2
metric are used to evaluate the 3D object detection performance on the full val-
idation set, where 3D IoU thresholds for “Vehicle”, “Pedestrian” and “Cyclist”
are 0.7, 0.5 and 0.5, respectively.

4.2 Implementation Details

For the STE module in the teacher model, we have empirically defined the fixed
(weak) augmentation types as rotation and double flip. Grid search is conducted
to find the more effective rotation parameters, i.e., {0◦,+22.5◦,−22.5◦}. The
final number of augmented views K is computed by the product of flip times
and rotation times, i.e., 4×3 = 12 in our case. The strong augmentation includes
random rotation and flip and scaling, which is the same as that in [33]. For the
CBV module, we offline train the RoI network [5] for 10 epochs based only on
the labeled data, with a stop-gradient operation to detach from the backbones.
We define positive and negative box samples according to the boxes classification
scores and the IoU between ground truths. For example, boxes with classification
scores below 0.1 or IoU below 0.3 are treated as negatives, and other boxes are
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Table 2. Evaluation results on ONCE validation set with different amounts of
unlabeled samples (e.g., “Small”, “Medium” and “Large”) following the official imple-
mentation in ONCE [12]. For better understanding, the best overall result in each class
has been highlighted in bold and the relative gains of each SSL method compared to
the baseline model (i.e., SECOND [33] trained with only labeled samples) have been
illustrated in colors where the positive gains in blue and negative gains are in green.

Methods
Vehicle AP (%) Pedestrian AP (%) Cyclist AP (%)

mAP (%)
overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf

Baseline [33] 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61 51.89

Small (100K unlabeled Samples)

Pseudo Label 72.80 84.46 64.97 51.46 25.50 28.36 22.66 18.51 55.37 65.95 50.34 34.42 51.22 (- 0.67)
Noisy Student [31] 73.69 84.69 67.72 53.41 28.81 33.23 23.42 16.93 54.67 65.58 50.43 32.65 52.39 (+ 0.50)
Mean Teacher [27] 74.46 86.65 68.44 53.59 30.54 34.24 26.31 20.12 61.02 72.51 55.24 39.11 55.34 (+ 3.45)

SESS [39] 73.33 84.52 66.22 52.83 27.31 31.11 23.94 19.01 59.52 71.03 53.93 36.68 53.39 (+ 1.50)
3DIoUMatch [29] 73.81 84.61 68.11 54.48 30.86 35.87 25.55 18.30 56.77 68.02 51.80 35.91 53.81 (+ 1.92)

Our Mehtod 76.07 86.78 70.19 56.17 35.90 39.98 31.67 24.37 61.19 73.97 55.13 36.98 57.72 (+ 5.83)

Medium (500K unlabeled Samples)

Pseudo Label 73.03 86.06 65.96 51.42 24.56 27.28 20.81 17.00 53.61 65.26 48.44 33.58 50.40 (- 1.49)
Noisy Student [31] 75.53 86.52 69.78 55.05 31.56 35.80 26.24 21.21 58.93 69.61 53.73 36.94 55.34 (+ 3.45)
Mean Teacher [27] 76.01 86.47 70.34 55.92 35.58 40.86 30.44 19.82 63.21 74.89 56.77 40.29 58.27 (+ 6.38)

SESS [39] 72.11 84.06 66.44 53.61 33.44 38.58 28.10 18.67 61.82 73.20 56.60 38.73 55.79 (+ 3.90)
3DIoUMatch [29] 75.69 86.46 70.22 56.06 34.14 38.84 29.19 19.62 58.93 69.08 54.16 38.87 56.25 (+ 4.36)

Our Mehtod 78.07 87.43 72.5 59.51 38.38 42.45 34.62 25.58 63.23 74.70 58.19 40.73 59.89 (+ 8.00)

Large (1M unlabeled Samples)

Pseudo Label 72.41 84.06 64.54 50.05 23.62 26.80 20.13 16.66 53.25 64.69 48.52 33.47 49.76 (- 2.13)
Noisy Student [31] 75.99 86.67 70.48 55.60 33.31 37.81 28.19 21.39 59.81 70.01 55.13 38.33 56.37 (+ 4.48)
Mean Teacher [27] 76.38 86.45 70.99 57.48 35.95 41.76 29.05 18.81 65.50 75.72 60.07 43.66 59.28 (+ 7.39)

SESS [39] 75.95 86.83 70.45 55.76 34.43 40.00 27.92 19.20 63.58 74.85 58.88 39.51 57.99 (+ 6.10)
3DIoUMatch [29] 75.81 86.11 71.82 57.84 35.70 40.68 30.34 21.15 59.69 70.69 54.92 39.08 57.07 (+ 5.18)

Our Mehtod 78.12 87.22 72.74 59.58 41.95 48.09 35.13 26.01 64.12 75.85 58.04 41.45 61.40 (+ 9.51 )

viewed as positives. The votes objectness is optimized by a sigmoid focal loss and
the votes localization is optimized by smooth-ℓ1 loss. The IoU score for clustering
boxes is fixed as 0.5. For the semi-supervised training configuration, we follow
the Noisy Student implementation provided by ONCE official benchmark [12],
i.e., a model pre-trained on the full training set is used to warm up both the
student and teacher model. Then the student is trained for 25 to 75 epochs
depending on the amount of unlabeled data with learning rate 0.001, and the
teacher is updated every 25 epochs.

4.3 Main Results

ONCE Results. First of all, we aim to compare our ProficientTeachers with
other state-of-the-art SSL approaches on the ONCE dataset [12]. Here, we bor-
row all the evaluation results from the official benchmark1 [12], where five typi-
cal SSL approaches have been included, i.e., Pseudo Label, Noisy Student [31],
Mean Teacher [27], SESS [39], 3DIoUMatch [29]. For a fair comparison, the
SECOND [33] detector trained with only the labeled samples has been adopted
as the baseline. All the comparison results are given in Tab. 2. Compared to
the baseline model that is trained with only the labeled samples, all these SSL
frameworks can obtain positive gains, with the help of large amounts of unla-
beled samples except for the Pseudo Label method. This may be because the

1 https://once-for-auto-driving.github.io/benchmark.html#benchmark
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Table 3. Generalizability on differ-
ent detectors with our SSL method.

Methods mAP(%) Gain
AP (%)

Vehicle Pedestrian Cyclist

SECOND [33] 51.89 - 71.19 26.44 58.04
Our Method 59.89 +8.00 78.07 38.38 63.23

PV-RCNN [21] 57.24 - 79.35 29.64 62.73
Our Method 63.40 +6.16 81.09 41.55 67.57

CenterPoint [38] 62.99 - 75.26 51.65 65.79
Our Method 68.22 +5.23 77.77 56.34 70.55

Table 4. Performance on the the
ONCE test set.

Methods mAP (%)
AP (%)

Vehicle Pedestrian Cyclist

SECOND [33] 51.90 69.71 26.09 59.92

Pseudo Label 49.29 70.29 21.85 55.72
Noisy Student [31] 56.61 74.50 33.28 62.05
Mean Teacher [27] 59.99 76.60 36.37 66.99

SESS [39] 58.78 74.52 36.29 65.52
3DIoUMatch [29] 57.43 74.48 35.74 62.06

Our Method 61.44 76.85 41.27 66.19

official implementation of Pseudo Label includes no augmentation when training
the student. Interestingly, the improvements increase gradually with the increase
of the number of unlabeled samples. Compared to the other SSL methods, our
framework achieves the best performance among all the three splits, which ob-
tains 5.83, 8.00, 9.51 mAP improvements, respectively.

Since our method removes the necessity of threshold selection, we compare it
with the confidence-based filtering method, i.e., Noisy Student [31] with different
pseudo-label threshold c. In our implementation, pseudo boxes with scores above
c are viewed as positive samples, meanwhile, we also ignore the pseudo boxes
with scores below c to avoid taking potential true positives as negatives. As
shown in Fig. 1 (c), c = 0.3 achieves better performance (55.75 mAP), which is
even stronger than Mean Teacher [27], while our method still surpasses it a lot.

We also verify our SSL method on two more baselines, which are PV-RCNN
[21] and CenterPoint [38]. PV-RCNN is a hybrid point-voxel approach that in-
herits the advantages from both point [17] and voxels features [41]. CenterPoint
is a voxel-based anchor-free framework that has achieved SOTA results in sev-
eral benchmarks. All the methods are trained with the “Medium” unlabeled
subset. From Tab. 3, we can see that our method works well on these different
detectors, e.g., still yielding 5.23 points improvements over the strong detector
CenterPoint. This indicates the good generalizability of our SSL method.

The results on the testing split of the ONCE benchmark are presented in
Table. 4, where the results of other SSL methods are reported in terms of the
official benchmark. All the SSL methods are based on the SECOND detector
for a fair comparison. Among all the competitors, our method shows remarkable
superiority. It outperforms the strong competitor Mean Teacher by 1.45 points,
and also exceeds the recently proposed SESS and 3DIoUMatch by a large margin.
Waymo Results. For evaluating on Waymo, we compare our model with the
strongest competitor verified on ONCE, i.e., Noisy Student [31] with a care-
fully selected threshold c = 0.3. Since this filtering strategy derives from Fix-
match [24], we name it Fixmatch for simplicity. The SECOND [33] detector
trained with different amounts of labeled data is used as the baseline. As shown
in Table 5, impressive results are obtained. Both Fixmatch and our Proficient-
Teachers achieve better results than the full-supervised baseline, which proves
the advantage of semi-supervised learning. In particular, Fixmatch surpasses the
baseline by 1.90 to 2.95 mAPH. By contrast, our method obtains much better
results than Fixmatch, i.e., improving the baseline by 4.34 to 5.35 mAPH. More-
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Table 5. Semi-supervised 3D Object Detection on Waymo dataset. We train
the SECOND [33] baseline with different fractions of labeled data. Then, we compare
our ProficientTeachers model with a strong competitor, Fixmatch [24]. It shows that
our model can consistently improve the detection performance.

Different Performance 3D AP/APH @0.7 (LEVEL 2)
Label Amounts

Training Paradigm
Gain Overall Vehicle Pedestrian Cyclist

Baseline [33] -/- 45.78/40.40 50.03/49.52 45.77/34.98 41.53/36.69
5% (∼ 4k Labels)

Fixmatch [24] +3.02/+2.95 48.80/43.35 51.87/51.27 48.28/36.56 46.26/42.21
PL : PU = 1 : 20 ProficientTeacher +5.32/+5.35 51.10/45.75 53.04/52.54 50.33/38.67 49.92/46.03

Baseline [33] -/- 50.00/45.83 54.90/54.25 48.45/38.44 46.66/44.79
10% (∼ 8k Labels)

Fixmatch [24] +2.28/+1.90 52.28/47.73 56.60/55.99 51.60/40.63 48.63/46.56
PL : PU = 1 : 10 ProficientTeacher +5.01/+4.60 55.01/50.43 57.59/56.92 54.28/43.19 53.15/51.18

Baseline [33] -/- 53.09/49.11 57.40/56.81 51.54/41.91 50.33/48.62
20% (∼ 16k Labels)

Fixmatch [24] +2.72/+2.34 55.81/51.45 58.94/58.37 54.37/44.23 54.11/51.75
PL : PU = 1 : 5 ProficientTeacher +5.50/+5.05 58.59/54.16 59.97/59.36 57.88/46.97 57.93/56.15

Baseline [33] -/- 57.07/53.26 60.93/60.37 55.98/46.68 54.31/52.74
50% (∼ 40k Labels)

Fixmatch [24] +2.72/+2.45 59.79/55.71 61.88/61.34 58.64/49.00 58.85/56.78
PL : PU = 1 : 2 ProficientTeacher +4.57/+4.34 61.64/57.60 63.06/62.50 61.53/51.33 60.33/58.97

Baseline [33] -/- 59.63/55.94 62.78/62.24 59.45/50.44 56.67/55.13
100% (∼ 80k Labels) Fixmatch [24] +2.43/+2.02 62.06/57.96 63.50/62.98 62.00/52.52 60.69/58.37

PL : PU = 1 : 1
ProficientTeacher +3.33/+3.20 62.96/59.14 63.56/63.06 62.34/53.19 62.97/61.18
Oracle Model [33] +2.80/+2.93 62.43/58.87 65.43/64.91 61.82/52.93 60.03/58.76

over, we also run an oracle model that trains the detector with the full 158,361
labels, while our model with only half labels outperforms it. This further demon-
strates the generalization of our method over different datasets.
Qualitative Results. We visualize some examples of pseudo labels on ONCE
in Fig. 4. The false positives and false negatives are highlighted in circles. We
compare our STE and CBV modules with the threshold-based method Fix-
Match [24]. It incurs FN when detecting distant objects with sparse points, and
it gives FP when detecting a hard distractor as shown in the circles in (b) (plz
zoom in for a better view). In contrast, by gathering boxes from different views,
our STE successfully addresses the FN object. As for the FP box, its score will be
refined and re-scaled in our CBV such that a box with low detection frequency
will be removed accordingly. Moreover, for boxes that are close to GTs, their
box coordinates will also be refined after voting in a cluster. All these designs
lead to high-quality pseudo labels.

4.4 Ablation Studies

A series of ablation studies are set to verify the effectiveness of different mod-
ules and all the results are given in Tab. 6. All the experiments are conducted
based on the SECOND detector with the “Small” unlabeled subset. Our Profi-
cientTeachers model is mainly based on the Noisy Student implementation in
ONCE, and the default confidence threshold c for filtering the noisy pseudo la-
bels is 0.1. To explore a more effective threshold, we perform grid search and
find that c = 0.3 gives better detection results, as shown in Fig. 1 (c). Thus we
use this threshold for the subsequent experiments. STE, CBV and BCL are the
three necessary modules proposed in this work, and we ablate the contribution
of each module. First, the STE module has been used to generate more pseudo
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(a) (b) (c)STE FixMatch STE+CBV

FN
FP

Fig. 4. Visualization of pseudo labels produced by our STE and CBV modules, or
by threshold-based FixMatch [24]. Predictions are in red and GTs are in green.

Table 6. Ablation studies to verify the effect of different modules. The ex-
periments are conducted based on the SECOND with the “Small” unlabeled subset.

Module Aspect mAP (%) Gain
AP (%)

Vehicle Pedestrian Cyclist

Noisy Student (Baseline) c = 0.3 55.75 - 74.66 32.25 60.34

BCL Module c = 0.3, w/o STE or CBV 56.54 +0.79 75.70 33.65 60.28

STE Module c = 0.3, w/o BCL or CBV 56.21 +0.46 75.62 33.14 59.87
STE+CBV Modules w/o BCL 57.17 +1.42 75.98 34.86 60.67

Full Model w/ STE, CBV and BCL 57.72 +1.97 76.07 35.90 61.19

boxes. We evaluate it by using c = 0.3 to filter the boxes. This improves the
baseline by 0.46 points. Next, we replace the confidence-based thresholding with
the proposed CBV module to adaptively aggregate these pseudo boxes. This
exceeds the baseline by 1.42 points. Finally, thanks to the BCL module, our full
model achieves 57.72% mAP, improving the baseline by 1.97 points.

5 Discussion and Conclusion

In this work, we proposed a new SSL framework for LiDAR-based 3D object
detection. In particular, our work focuses on improving the FP and FN in the
pseudo labels produced by the teacher model. First, to address the FN, a spatial-
temporal ensemble (STE) module is introduced to produce sufficient seed boxes
and ensure a high recall. This is realized by a spatial data augmentation and
a temporal model ensemble. Second, to resolve the FP predictions and improve
the precision, we developed a clustering-based box voting (CBV) module that
performs voting and aggregating based on boxes in a cluster. More importantly,
our CBV can yield high-quality pseudo labels without the need of deliberately
selecting thresholds. The STE and CBV modules enhance the original teacher to
proficient teachers. Finally, we proposed a box-wise contrastive learning (BCL)
strategy to optimize the student towards cross-view feature consistency, reducing
the effect of inaccurate pseudo labels. Experiments on the large-scale ONCE and
Waymo datasets demonstrated the superiority of our method.
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