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Fig. 1. The detail of our deep entropy model design.

1 Model Design

The detail of our deep entropy model is illustrated in Figure [I] Octant n;’s
information ¢; € R* consists of two parts, its located octree level and its cor-
responding spatial coordinates. The sibling and neighbor context of the octant
n; are presented as V;*** € R¥>*4*4 and V; € R%*9%Y in binary voxel representa-
tions. The numbers of the channel are one for both V; and V;*®®. The ancestor
information h¢" € R3? is an extracted feature map passed from the upper level.
hshild ¢ R32 is the feature map passed to n;’s children. The total number of
parameters in our deep entropy model is 1.77M.

2 Additional Quantitative Results

Indoor scene compression results. To show our proposed compression method
have consistent performance in both indoor and outdoor scenes, we further eval-
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BPPJ
Dataset Method Level 5 Level 6 Level 7 Level 8 Level 9
ScanNet [2] VoxelContext [4] 0.043 0.156 0.647 2.383 5.255

Ours 0.036 0.126 0.538 2.164 4.948

Table 1. The quantitative results on ScanNet datset [2] when compared to VoxelCon-
text without any refinement. The reconstructed point clouds of two methods are the
same at each level.

BPP|
Level 5 Level 6 Level 7 Level 8 Level 9

Ours w/o Surface 0.036 (+0.0%) 0.126 (+0.0%) 0.542 (+0.7%) 2.198 (+1.6%) 5.045 (+2.0%)

Ours 0.036 0.126 0.538 2.164 4.948

Table 2. Ablation study of our entropy model on ScanNet [2] without using context
from surface priors.

Method
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Fig.2. The cross-dataset quantitative results of our method on the Apollo-
DaoxiangLake dataset [5]. The result shows that our model has better generalization
ability than baselines.

uate the compression performance on the ScanNet dataset [2]. ScanNet is a large-
scale dataset that captures dense point clouds from real-world indoor scenarios.
We sample 80,000 points from each scan and use the official training/testing
splits [2] for training and testing. The training and the testing sets consist of
1,201 and 312 point clouds, respectively. We construct the octree with a maxi-
mum level of 9 in ScanNet dataset. The compression performance of our frame-
work is evaluated by truncating octree levels ranging from 5 to 9 to vary the
compression bitrates. The corresponding spatial quantization error ranges from
9.49 cm to 0.59 cm. As illustrated in Table[T} our method saves 6.21% to 24.13%
bitrates on the Scannet dataset compared to VoxelContext.

To show that surface priors are not only effective in the outdoor scene, we
further train the model of “w/o Surface” to compare with our whole model on
the ScanNet dataset [2]. As illustrated in Table 2| the result shows that “Ours
w/o Surface” triggers an additional bitrate cost of up to 2.0%, demonstrating
the surface priors’ effectiveness in indoor and outdoor scenes.

Cross-dataset results. To better show our model’s generalization ability,
we evaluate the cross-dataset performance on the Apollo-DaoxiangLake dataset [5]
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BPPJ
Level 8 Level 9 Level 10 Level 11 Level 12

Ours w/o Multi-level 0.158 (+6.0%) 0.435 (+6.4%) 1.067 (+6.8%) 2.290 (+7.2%) 4.189 (+s.0%)
Ours w/o Sibling 0.161 (+8.1%) 0.439 (+7.3%) 1.071 (+7.2%) 2.288 (+7.1%) 4.133 (+6.6%)
Ours W/O Neighbor 0.156 (+4.7%) 0.432 (+5.6%) 1.061 (+6.2%) 2.279 (+6.6%) 4.155 (+7.1%)

Ours 0.149 0.409 0.999 2.137 3.878

Table 3. Ablation study of our entropy model on KITTI [3]. The first row compares
a shared-weight version of our proposed entropy model to our multi-level framework.
The second and the third rows are the ablation studies of our entropy model without
using sibling context and neighbor context, respectively.

Method

with our model trained on the KITTT Odometry dataset. The Apollo-DaoxiangLake
dataset [B] captures point clouds in different driving scenes with the same type
of LiDAR as the KITTI Odometry dataset. As shown in Fig. [2] the evalua-
tion results show our models still have competitive compression performance
over the baselines with better reconstruction quality. In terms of bitrates, our
method saves 11.2-13.7% compared to VoxelContext, 56.91-137.35% to Draco,
and 68.83-125.08% to G-PCC, respectively.

3 Additional Ablation Study

To demonstrate the effectiveness of our multi-level framework design, we train a
shared-weight entropy model for all octree levels to compare with our multi-level
framework. The experiment results are shown in the first row of Table 3| The
results show that it is essential to train an independent entropy model for each
level to capture resolution-specific context across different levels.

We further ablate over the contextual feature by training the model without
exploiting features from neighbors. In this experimental setting, we deleted the
neighbor dependence branch as shown in Fig[l] and used the feature map from
the Surface Priors branch as the ancestor information passed to the next level.
To fairly compare with the other ablation experiments, we increase the channel
number of h{® from 32 to 96. As shown in the second and the third row of
Table (3| incorporating sibling context leads to a more significant performance
than the neighbor context. The ablation results in Table [3] demonstrate that our
newly proposed sibling context is the main factors contributing to non-trivial
compression improvement.

4 Model Complexity

We evaluate the average inference time of our whole model and models without
incorporating specific context on a single frame point cloud data. As illustrated
in Table [ the results are calculated by averaging the run time of our entropy
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Run Time(s)
Level 8 Level 9 Level 10 Level 11  Level 12

Ours w/o Sibling 0.029 0.045 0.053 0.057 0.061
Ours w/o Surface 0.037 0.064 0.092 0.097 0.101
Ours w/o Ancestor  0.070 0.133 0.161 0.166 0.171
Ours 0.068 0.135 0.174 0.180 0.185

Table 4. Model inference time on a single frame point cloud data on different octree
levels. The results are the average run time over our training dataset sampled from
KITTI Odometry [3].

Method

Method MACs  #Params
Ours w/o Sibling 16.83M 1.03M
Ours w/o Surface 34.28M 1.59M
Ours w/o Ancestor 37.32M 1.76M
Ours 37.34M 1.77M

Table 5. Ablation study on model complexity in terms of the number of multiply-
accumulate operations (MACs) and the number of parameters (#Params).

model on the training dataset sampled from KITTI Odometry [3] with 6000
frames. The model inference time is evaluated across different octree levels.

As illustrated in Table the number of multiply-accumulate operations
(number of parameters) of “our model”, “w/o siblings”, “w/o surface”, and “w/o
ancestor” are 37.34M (1.77M), 16.83M (1.03M), 34.28M (1.59M), and 37.32M

(1.76M), respectively.

5 Additional Qualitative Results

We demonstrate additional qualitative results of our method against VoxelCon-
text [4] cross different octree levels on two datasets KITTI Odometry [3] and
nuScenes [I], as illustrated in Figure [3| The first set of the graph indicates the
reconstructed point cloud at level 10, the second set of the graph indicates the
reconstructed point cloud at level 11, and the third set of the graph indicates
the reconstructed point cloud at level 12. The result shows that our model can
reconstruct point clouds with a smaller error at lower bitrates compared to Vox-
elContext.



Supplementary 5

KITTI

nuScenes

KITTI

VoxelContext:PSNR:68.61 BPP:2.334

\ g~ 5

nuScenes

T
0.030

0.060

VoxelContext:PSN

Ours:PSNR:85.16 BP

KITTI

Ours:PSNR:69.57 BPP:3.225

nuScenes

T T
0.000 0.008 0.016 0.024 0.032

Fig. 3. Additional qualitative results of our method compared with VoxelContext on
the KITTI Odometry dataset (first row of each figure) and the nuScenes dataset (second
row of each figure) cross different octree levels. The first figure indicates level 10, the
second figure indicates level 11, and the third figure indicates level 12.
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