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Abstract. Lane detection requires adequate global information due to
the simplicity of lane line features and changeable road scenes. In this pa-
per, we propose a novel lane detection Transformer based on multi-frame
input to regress the parameters of lanes under a lane shape modeling. We
design a Multi-frame Horizontal and Vertical Attention (MHVA) module
to obtain more global features and use Visual Transformer (VT) mod-
ule to get “lane tokens” with interaction information of lane instances.
Extensive experiments on two public datasets show that our model can
achieve state-of-art results on VIL-100 dataset and comparable perfor-
mance on TuSimple dataset. In addition, our model runs at 46 fps on
multi-frame data while using few parameters, indicating the feasibility
and practicability in real-time self-driving applications of our proposed
method.
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1 Introduction

Autonomous driving has been developing rapidly in recent years and has received
full attention from academia and industry. In perception task—the “eyes” of
autonomous driving, lane detection plays a significant role in understanding
road environment. It relates to the self-positioning, observance of traffic rules,
and subsequent decisions on control of autonomous vehicles.

Lane detection is challenging mainly due to two reasons. Firstly, the lanes1

are slender in shape, single in structure, and rare in appearance clues. In addi-
tion, lanes may disappear due to various reasons such as wear and tear, shadow
occlusion, road congestion, terrible weather conditions, or dazzling light. How-
ever, humans can easily determine the location of lane lines based on vehicle
alignment, road shape, visible local lane lines information, etc. Inspired by the
human visual system, people found that the global information containing addi-
tional visual clues is preferable to detecting the lane lines.

1 For academic consistency, we use “lane” to denote lane line in this paper.
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Fig. 1: Overall Framework. Continuous frames are compressed to 1/8 of origin
through the backbone network. Then the compressed features are fed into the
MHVA to pass messages between rows or columns. The VT modules are used to
generate “lane tokens” and enable interaction between lane instances. Finally,
the parameters are obtained through FFNs with the tokens as input

Many methods [12, 24, 16, 2, 7] focus on obtaining sufficient global fea-
tures from current frame. Among them, LSTR [7] proposes to use the most
conventional Transformer to capture global information, but it does not take
full advantage of the structural features of lane lines and the pixel-wise atten-
tion mechanism is computationally intensive. SCNN [12], on the other hand,
designs a special CNN to capture spatial relationships of pixels across rows and
columns. However, using the convolution operation which is good at processing
local features, it needs a large number of local information transfers(e.g. slice-
by-slice transfer, multiple iterations of convolution modules) to achieve global
information interaction. That is the reason why it is computationally intensive
and inefficient in terms of information interaction. The RESA [24] on top of it
does not solve the problem fundamentally.

The importance of global features to lane detection can not be ignored, but it
is obviously unrealistic and ill-considered to expect deep learning models which
only use individual frames as input and completely ignore more visual informa-
tion of previous frames in dynamic driving can infer complete and accurate de-
tection results. Although there are some lane methods[25, 23, 22] use multi-frame
input data, they are all segmentation-based. These methods need to classify each
pixel, which are indirect and lead to higher computational cost. Besides, they
also need extra post-processing steps to extract lane information.

To solve the above problems, we propose a novel end-to-end model using mul-
tiple frames as input, having the customized structure suitable for lane detection
based on Transformer. To extract more global information from frames, we de-
sign a Transformer-Based structure called Multi-frame Horizontal and Vertical
Attention (MHVA) module. It can solve the dilemma of SCNN, due to its ad-
vantage of establishing efficient and direct information interaction via attention
module across multiple frames. Here are the two main differences from previous
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work. First, MHVA builds the interaction among row and column features sepa-
rately via direct attention, which adopts the divide-and-conquer idea to reduce
the computation and fully makes use of horizontal and vertical features. Second,
MHVA can be easily extended to detection based on multiple frames.

Besides, we use the VT module in our method. We notice a certain continuity
between lanes, such as they are parallel and always intersect at vanishing points.
Inspired by [19], we introduce the concept of “lane token” into lane detection to
get lane instance features. By utilizing the VT module, we can assign the features
obtained from MHVA to specific lanes, and establish relationship between lanes
to realize information interaction. Finally, the regression task is built on tokens
to get the parameters of each lane.

The main contributions of our method can be summarized as follows:
– We propose a novel curve-fitting lane detection method using multi-frame

information and achieve instance-level lane detection.
– We design a lane detection Transformer based on MHVA and VT modules

capturing more global information for parametric regression.
– The experiments on two public datasets verify the effectiveness of our

method. In addition, we achieve the state-of-the-art results on the VIL-100
dataset and competitive performance on the TuSimple dataset, both with real-
time speed.

2 Related Work

Early lane detection approaches are based on traditional computer vision meth-
ods. However, traditional methods have poor robustness in complex scenarios
due to their dependence on highly-specialized and hand-crafted features. Re-
cently, with the spring breeze of deep learning, the lane detection approaches
based on it have sprung up. They become the mainstream solutions relying on
powerful learning ability. We taxonomize these methods into four categories.

Segmentation-Based Method This kind of method regards lane detection as
a segmentation problem. Some semantic segmentation methods [25, 10, 1] only
distinguish the pixels of lanes from background, while others [9, 12, 24, 13, 8, 2]
regard each lane as an individual classification category by detecting a fixed
number of lanes. Methods [11, 3, 21] based on instance segmentation take each
lane as an instance of a lane category.

Based on multi-frame input, [25] and [22] only segment lanes from back-
ground and both need post-processing to distinguish lanes. Different from them,
MMANet [23] is an instance lane detection method using multi-frame input.
But it is inefficient and requires a redundant extraction step. Instead of using
segmentation-based paradigm, we choose to regress the parameters of curves.

Row-wise-classification-Based Method This kind of method is based on the
prior domain knowledge that the number of intersection points between a hori-
zontal line and each other lanes is most one. Thus, it formulates lane detection



4 H.Zhang et al.

as a row-wise classification problem by selecting the cell position for intersection
points. Finally, a complete lane can be composed of these intersection points.
This divide-and-conquer idea reduces the calculation cost, but they also need a
post-processing step to extract lanes. [20] and [14] are representative models of
this method.

Anchor-Based Method Inspired by Faster-RCNN [15], Line-CNN [6] proposes
the first anchor-based lane detection method. Its core design LPU (line proposal
unit) predicts lines from the original straight proposal line. However, due to the
lack of ability to capture global information, this method is inefficient. Based
on [6], LaneATT [16] proposes an anchor-based attention mechanism to capture
global information.

Curve-fitting-Based Method Lane detection is regarded as a parametric re-
gression problem which use polynomial curves to express lanes in curve-fitting-
based method. PolyLaneNet [17] connects a regression part after backbone net-
work. Although it is efficient, the lack of global information leads to a gap with
other methods in terms of performance. On this basis, R. Liu et al. [7] change the
lane modeling method and use Transformer to learn more global features. They
are both based on single-image input and discard the visual information in pre-
vious frames. Using continuous multi-frame input, we propose a more powerful
lane detection Transformer to capture more global information.

3 Approach

We propose a novel lane detection method based on curve fitting, whose frame-
work is shown in Fig. 1. It receives several time-ordered RGB images taken from
a camera mounted in the vehicle as input and outputs the parameters of the
predicted lanes. It consists of a backbone network, a MHVA module, several VT
modules, and feed-forward networks (FFNs) for parametric regression. Given
several continuous images in order, the backbone network first extracts a high-
level feature map F . Then, the feature map F and positional embedding E are
fed into the MHVA module to get the enhanced feature map F ′. After received
“lane tokens” through VT modules, FFNs will regress the parameters on them.
Hungarian fitting loss are used to train our network.

3.1 Lane Shape Model

Following the lane shape model in LSTR [7], we regress the cubic polynomial
parameters related to the internal and external parameters of the camera and
the angle between the camera with the ground plane. In the image coordinate
system, the modeling formula is as follows:

x =
k

(y − f)2
+

m

y − f
+ n+ b× y − b′, (1)
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Fig. 2: MHVA. It has a HAB branch for interaction among rows and a VHB for
interaction among columns. The final output is the sum of the results of the two
branches

where (x, y) is position coordinate, n and b′ are constants terms that cannot be
integrated, and k, f,m, b are variable parameters.

For one lane l, it relates to eight parameters (k, f,m, n, bl, b
′

l, αl, βl). The

first four parameters are shared parameters among all lanes, and bl and b
′

l are
particular parameters of lane l. αl and βl are vertical starting offset and ending
offset respectively. Kindly refer to [7] for more details.

3.2 The MHVA Module

Transformer is popular in computer vision due to its effectiveness in capturing
long-distance dependence. Therefore, to capture global content information from
a multi-frame feature map, the intuitive idea is to build attention connection at
pixel level by Transformer just as in [18]. However, when only focusing on lanes,
we construct a more efficient module called Multi-frame Horizontal and Vertical
Attention (MHVA) based on the prior knowledge of lane structure and frame
continuity.

When we input T frames, the feature map F ∈ RT×C×H×W is obtained from
the backbone network. Instead of building the pixel level connections, MHVA
models the relationships among all row features and all column features respec-
tively. It decomposes the THW×THW connection into TH×TH and TW×TW
connections. The two branches of MHVA are Horizontal Attention Branch(HAB)
and Vertical Attention Branch(VAB). Fig. 2 shows the architecture of MHVA.

Position Embedding To supplement precise position information in three
dimensions (temporal, horizontal, and vertical dimensions), we generate fixed
positional encoding features with the same size as F . We change the position
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embedding in the original Transformer to a 3D manner. For F ∈ RT×C×H×W ,
the position embedding with size T×C

3 ×H×W in three dimensions respectively
will be generated and concatenated in channel-wise dimension. Specifically, we
use Eq. 2 to calculate the embedding’s i-th channel of coordinate pos in each
dimension:

PE(pos, i) =

{
sin (pos · ωk), i = 2k,

cos (pos · ωk), i = 2k + 1,
(2)

where ωk = 1
10000

2k
C/3 .

Horizontal Attention Branch(HAB) The HAB enables message passing of
horizontal features. A self-attention operation is performed on all row features.
For F ∈ RT×C×H×W , the row num is TH and the feature channel size is CW .
Afterward, the feature map F and positional embedding E will be integrated
to TH×CW and fed into attention module, with query, key, and value tensors
(Qh,Kh, Vh) of the same dimension TH×d model as output. Then, a TH×TH
attention matrix Ah is obtained as Eq. 3:

Ah = softmax (
QhK

T
h√

d model
). (3)

where Aij represents the similarity between features of frame [i/h], row [i mod h]
and frame [j/h], row [j mod h]. Intuitively, the value of adjacent rows or cor-
responding rows in adjacent frames will be higher. Finally, we obtain a refined
feature map using the attention matrix Ah and Vh tensor as follows:

Fh = AhVh. (4)

Vertical Attention Branch(VAB) The VAB models the relationships be-
tween column features similar to that of HAB’s. Differently, the feature map F
and positional embedding E are resized to TW×CH , and the attention matrix
Av is TW×TW . Finally, Fv is given by the multiplication of Av and Vv.

Fh and Fv will be resized to T×C×H×W and added together to get the
final feature map F ′.

3.3 The VT Module

Inspired by [19], we define the “lane tokens” to represent the lane instance, and
use the Visual Transformer (VT) module to learn the compact lane instance
features from the high-level features. A VT module involves three steps. The first
step is to group pixels into lane instances to generate a serial of corresponding
lane tokens. Then, a transformer module is performed to the lane tokens to
model the relationships between them. Finally, we reproject the lane tokens to
pixel level to obtain an augmented feature map. If multiple VT modules are
used continuously, the module V Ti will build on the reprojected feature map of
the previous VT module V Ti−1. In last VT module, the third step is omitted
directly to regress parameters on lane tokens.
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Tokenizer The function of tokenizer is to convert feature maps into compact
sets of lane tokens. Formally, we resize feature map F ′ to THW×C and denote
it as input by X ∈ RN×C(N = THW ). The lane tokens are denoted as T ∈
RL×C , where L is the fixed maximum number of lanes. The core mechanism for
calculating tokens is attention. Firstly, an attention map A ∈ RN×L is generated
where Aij represents the contribution of one pixel pi ∈ RC to the lane instance
j. Next, we compute the weighted averages of pixels in X to form lane tokens
by multiplying A and X. Formally,

T = ATX. (5)

There are two ways to generate the attention map A for modules in different
locations as shown in Fig 3. For the first VT module, we generate it as follows:

A = softmax
N
(XWA), (6)

the WA ∈ RC×L in Eq. 6 forms lane instance groups from X, and the softmax
operation converts the values into normalized attention values.

While for the subsequent VT modules, we use the output lane tokens Tlast of
its previous module to guide the extraction of current new lane tokens. Formally,

WR = TlastWT→R,

A = softmax
N
(XWR),

(7)

in which WT→R ∈ RC×C , WR ∈ RC×L.

Transformer After Tokenizer, we need to establish the relationship between
lanes to realize information interaction. To dynamically model interactions, a
standard transformer with minor changes is used, in which self-attention gener-
ates the input-dependent weights.

T ′
out = Tin + softmax

L
(TinWK(TinWQ)

T )Tin,

Tout = T ′
out + δ(T ′

outF1)F2,
(8)

where Tin, T
′
out, Tout ∈ RL×C are lane tokens, WK and WQ are key weight and

query weight with size C ×C, and F1, F2 ∈ RC×C are linear weights. δ(·) is the
ReLu function.

Projector When we overlay multiple VT modules, the role of the projector in
the current VT is to generate the input feature map for the next VT module.
When using only one VT module, there is no need to generate feature maps for
the subsequent modules, parametric regression will be operated at lane tokens.

Xout = Xin + softmax
L
((XinWQ)(TWK)T )T, (9)

where Xin, Xout ∈ RN×C . WQ, WK ∈ RC×C are the weights for query and key
tensors. The product of key and query determines how to project information
encoded in lane tokens to the pixel level feature map.
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3.4 FFNs

Given the lane tokens T ∈ RL×C , we use three branches to predict the parame-
ters. In the classification branch, we use a linear operation to generate C ∈ RL×2,
which indicates the probability of lane instances represented by each lane token.
On another two branches, we use three-layer perceptrons to predict four shared
parameters and four lane-specific parameters respectively. Those shared param-
eters will be averaged between lanes.

3.5 Loss Function

Our proposed method infers the predicted parameters of lane instances, which
are stochastic in order. Thus we match them with the ground truth lanes first
by utilizing the Hungarian algorithm. The regression loss is optimized based on
the above matching result.

The L predicted curves are denoted as H = {hi|hi = (ci,mi)}Li=1, where m is
the set of eight parameters and c ∈ {0, 1} represents the possibility of existence
of lanes. The ground truth labels of lanes are represented by a set of key points
s = (x, y)Rr=1, where yi+1 > yi, and the ground truth curves are denoted as
L = {li|li = (c′i, s

′
i)}Li=1. Since L is larger than the number of ground truth

lanes, L will be padded with non-lane values.

Bipartite Matching In order to find a bipartite matching between the pre-
dicted parameters and the ground truth lanes, a permutation of L elements δ is
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searched with the lowest cost:

δ̂ = argmin
δ

L∑
i

D(li, hδ(i)), (10)

where D is a pair-wise matching cost between the i-th ground truth lane and a
predicted curve with index δ(i).

For the prediction curve with index δi, the probability of class c′i is denoted
as pδ(i)(c

′
i), and the prediction key points sδ(i) can be calculated by Eq. 1 based

on parameters mδ(i). The matching cost D is defined as:

D =− ω1pδ(i)(c
′
i) + 1(c′i = 1)ω2L1(s

′
i, sδ(i))

+ 1(c′i = 1)ω3L1(α
′
i, αδ(i), β

′
i, βδ(i)),

(11)

where 1 is the indicate function, ω1, ω2 and ω3 are the effect parameters, and
L1 is the mean absolute error.

Regression Loss After getting the matching results, we calculate the regression
loss as follows:

L =

L∑
i=1

−ω1pδ(i)(c
′
i) + 1(c′i = 1)ω2L1(s

′
i, sδ(i))

+ 1(c′i = 1)ω3L1(α
′
i, αδ(i), β

′
i, βδ(i)).

(12)

4 Experiments

In this section, we evaluate the performance of our proposed method with the
widely-used metrics on two public datasets TuSimple2 and VIL-100 [23]. After-
ward, we provide a detailed ablation study to prove the rationality of our design
and the selected hyperparameters.

4.1 Dataset

VIL-100 VIL-100 is the first video instance-level lane detection dataset with
all frames annotated. It contains 100 videos, 100 frames per video within 10
seconds, in total 10000 labeled frames. Among 100 videos, 97 are collected by the
monocular forward-facing camera, and the remaining three videos are from the
Internet. Besides, it contains one normal scenario and nine challenging scenarios.
The training set has 80 videos and the rest belongs to the testing set.

TuSimple The TuSimple dataset is a widely-used dataset collected on Amer-
ica’s highway with constant illumination and weather in the daytime. It consists
of 6408 sequences, each of which contains 20 continuous frames collected in one
second. We take the annotated 3626 clips for training and adopt the remaining
2782 clips for testing.

2 https://github.com/TuSimple/TuSimple-benchmark.
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4.2 Evaluation Metrics

On the TuSimple dataset, we use its three official metrics Accuracy , FP and
FN . Accuracy refers to the average number of correct points per image. The
standard for “correct points” is that when the vertical coordinate is the same,
the horizontal distance between the predicted point and the ground truth point
is smaller than 20 pixels. Accuracy can be defined in the following way:

Accuracy =

n∑
i=1

Ci

Si
, (13)

where Ci is the number of correct points and Si is the total number of ground-
truth points in frame i, n is the number of total frames.

The false positive (FP) and false negative (FN ) are computed as:

FP =
Fpred

Npred
, (14)

FN =
Mpred

Ngt
, (15)

where Fpred is the wrongly predicted lanes, Mpred represents the number of
missed lanes, Npred is the total number of predicted lanes, Ngt is the total
number of ground-truth lanes.

On the VIL-100 dataset, in addition to the above three metrics, we also
use the F1 metric. F1 is a region-based metric based on the intersection-over-
union (IoU). For one lane instance, we can get the predicted key points using
the predicted parameters. A binary mask can be obtained by connecting these
points with a line of 30 pixels in width. Then, if the IoU between the predicted
mask and the ground truth label is larger than 0.5, the predicted lane can be
considered as true positive (tp), otherwise, it is a false positive (fp). The missed
lanes are denoted as fn. The metric F1 is formulated as:

F1 =
2× precision × recall

precision + recall
, (16)

precision =
tp

tp + fp
, (17)

recall =
tp

tp + fn
. (18)

4.3 Implementation Details

The input data for our model are 5 continuous frames with size 360 × 640.
Same data augmentation methods are used for these continuous frames, such as
shadow, flipping horizontally, rotating, and color jittering.

The backbone network we use is a reduced ResNet18 which is the same as
[7]. The output channels of four blocks are changed from “64, 128, 256, 512” to
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Fig. 4: Visualization results for VIL-100 and TuSimple dataset. The colors are
just to distinguish different lane instances

“16, 32, 64, 128” and the downsampling factor is set to 8. We use the multi-head
self-attention in all attention modules and the head number is set to 2. The
number of VT modules is 2. The fixed number of predicted curves L is set to 7
and the loss coefficients ω1, ω2, ω3 are set to 3, 5 and 2 respectively.

We train our model on one TitanX GPU with batch size 8 in PyTorch. For
both datasets, we use Adam optimizer with the base learning rate of 0.0001. The
learning rate policy is StepLR with stepsize 300. The numbers of total training
epochs are 1000 for TuSimple and 1200 for VIL-100 dataset separately.

4.4 Results

In this section, we treat LSTR as the baseline model since it is also a curve-
fitting method based on Transformer. To show our performance, we compare
our method with other state-of-the-art methods. Apart from the video instance
lane detection method MMANet [23], the input of other methods are almost one
image. However, because MMANet has not been trained on TuSimple, we only
compare with it on VIL-100 dataset. Besides the above-mentioned four metrics,
the FPS and the total number of parameters are also compared.

VIL-100 Table 1 shows the performance on VIL-100 dataset. Our proposed
method outperforms the mentioned state-of-the-art lane detectors on four above-
mentioned metrics. Compared with baseline method LSTR, ours shows signifi-
cant improvement on four metrics, especially the FP is reduced by half. Com-
pared with MMANet, the performance of our model raises 0.7% on F1 , 0.5%
on Accuracy , 2.9% on FP , and 1.0% on FN with 15 × fewer parameters and 5
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Table 1: Quantitative comparisons on VIL-100 dataset. The FPS is evaluated
using a single batch of inputs on the TitanX GPU, which means that our method
is performed using a 5-frame batch. The PP means the requirement of post-
processing

Methods F1(%) Accuracy(%) FP(%) FN(%) FPS Para PP

LaneNet [11] 72.1 85.8 12.2 20.7 36 1.48 Y
SCNN [12] 49.1 90.7 12.8 11.0 16 20.72 Y
ENet-SAD [2] 75.5 88.6 17.0 15.2 14 0.98 Y
UFSA [14] 31.0 85.2 11.5 21.5 - - Y
LSTR [7] 70.3 88.4 16.3 14.8 48 0.77 N
MMA [23] 83.9 91.0 11.1 10.5 9 57.91 Y

Ours 84.6 91.5 8.2 9.5 46 3.87 N

× faster speed. The large improvement on the challenging dataset fully demon-
strates the effectiveness of our proposed method.

Besides quantitative comparisons, we show our results qualitatively through
visualization in Fig. 4. We visualize the performance of our method in various
challenging scenarios, such as shadows, bright light, darkness, congestion and
foggy weather. Based on the visualization results, we notice that our method
can adequately capture global features and detect lanes well even when the
visual information of lanes is very scarce.

TuSimple The results on TuSimple are shown as Table 2. It can be noted
that our method achieves comparable results compared with other methods.
The visualization results are shown in the Fig 4. We can notice that our method
performs well, even can detect lanes not labeled in the ground truth(shown in
row 3).

Compared to LSTR, our method does not improve significantly. We guess
that the root cause may lie in the limitations of the dataset itself. Firstly, as
mentioned in [5, 16, 6], it is a relatively simple dataset because the highway sce-
nario is easier than street scenes and not congested. Thus, it’s hard to expose the
model’s advantages in realistic complex scenes and has more saturated results.
Besides, the road scene with no congestion and stable illumination results in the
high similarity of multi-frame input data, which makes the use of multi-frame
input meaningless. Combined with the results of the VIL-100 dataset, the results
on the TuSimple dataset confirm the effectiveness of multi-frame input for global
content information in the complex real driving environment.

4.5 Ablation Study

Because the TuSimple dataset cannot clearly reflect the difference among meth-
ods, we conduct ablation experiments on the VIL-100 dataset.

Effectiveness of the Multi-frame Mechanism To verify the effectiveness of
multiple frames, we improve the Transformer in LSTR to adapt to multi-frame
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Table 2: Quantitative comparisons on TuSimple dataset. * means our re-
implemented results on TuSimple

Method Accuracy(%) FP(%) FN(%)

SCNN [12] 96.53 6.17 1.80
Enet-SAD [2] 96.64 4.67 5.18
UFSA [14] 95.82 19.05 3.92
Line-CNN [6] 96.87 4.42 1.97
PINet [4] 96.75 3.10 2.50
LaneATT [16] 95.57 3.56 3.10
PolyLaneNet [17] 93.36 9.42 9.33
LSTR* [7] 96.03 3.26 3.44

Ours 96.17 3.50 3.38

feature maps. Specifically, at the core self-attention part, the attention between
pixels in a single frame is replaced by the relationship modeling among all pixels
in multiple frames, which is similar to the video instance segmentation method
[18]. In addition to this, single-frame input experiments are also conducted on
our method.

As shown in Table 3, compared with original LSTR(method A), method B
with multi-frame input outperforms it by 0.43% on F1 , 0.89% on Accuracy ,
3.49% on FP . On our model, the multi-frame continuous input brings an im-
provement of 5.49% on F1 , 2.33% improvement on Accuracy , a reduction of
3.43% on FP , and a reduction of 4% on FN .

To exclude the influence of complexity, we experiment on our method with
5 same frames as input and the results are shown as method D. We found that
compared to single frame input, all metrics are worse. This result excludes the
influence of complexity and fully demonstrates the effectiveness of multi-frame
input.

Effectiveness of Our Model Based on method B, we generate the method
C, replacing the Transformer encoder part with our MHVA module. As shown
in Table 3, we find that method C outperforms B by 9.81% on F1 , 1.1% on
Accuracy , 3.53% on FP , and 3.97% on FN . It shows that the strategic informa-
tion passing is more effective than blind full-pixel information interaction, which
indicates the rationality and effectiveness of our MHVA design.

The difference between method C and our method is the decode part. We
replace the Transformer decoder with VT modules. Compared with method C,
we can see that the addition of the VT module in method F has largely improved
the values of metrics. The value of F1 increases 4.1%, and Accuracy increases
1.1%, while FN decreases 2.07%, and FP decreases 1.9%.

Besides, based on single frame input, the comparison of method D and
method A can prove the superiority of our model. We can notice that our model
can bring an improvement of 4.05% on F1 , 0.81% improvement on Accuracy , a
reduction of 4.5% on FP , and a reduction of 0.76% on FN .
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Table 3: Quantitative results of different models with two kinds of input
methods model input F1(%) accuracy(%) FP(%) FN(%)

A
LSTR

single 70.30 88.40 16.30 14.30
B 5 frames 70.73 89.31 13.93 14.37

C +MHVA 5 frames 80.54 90.43 10.44 11.44

D
our

single 79.51 89.21 11.80 13.54
E 5 same 76.85 89.05 14.17 14.34
F 5 frames 84.59 91.54 8.37 9.54

Table 4: Quantitative results of our method with different sampling numbers
Frames F1(%) Accuracy(%) FP(%) FN(%)

3 (frames) 83.68 90.68 9.47 10.82
5 (frames) 84.59 91.54 8.37 9.54
7 (frames) 84.34 91.80 8.41 9.34

Selection of Sampling Number To test the influence of the choice of different
sampling numbers, we experiment with different frame sampling numbers 3, 5
and 7. The results are shown in Table 4. It can be found that the result of 5
frames outperforms that of 3 frames significantly, and is comparable with the
result of 7 frames under smaller GPU memory and less inference time. Therefore,
we choose 5 frames as the final sampling number of input data.

5 Conclusions

In conclusion, we propose a novel lane detection Transformer using multiple
frames as input. Based on curve fitting, it can detect lanes directly and effi-
ciently. Besides, the customized MHVA can capture more global information in
two directions, and the VT modules are very effectual in improving detection
result. Our method can achieve real-time results despite the use of multi-frame
information, which enables the deployment in practical applications.
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