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Abstract. Existing approaches for unsupervised point cloud pre-training
are constrained to either scene-level or point/voxel-level instance discrim-
ination. Scene-level methods tend to lose local details that are crucial for
recognizing the road objects, while point/voxel-level methods inherently
suffer from limited receptive field that is incapable of perceiving large ob-
jects or context environments. Considering region-level representations
are more suitable for 3D object detection, we devise a new unsuper-
vised point cloud pre-training framework, called ProposalContrast, that
learns robust 3D representations by contrasting region proposals. Specifi-
cally, with an exhaustive set of region proposals sampled from each point
cloud, geometric point relations within each proposal are modeled for cre-
ating expressive proposal representations. To better accommodate 3D
detection properties, ProposalContrast optimizes with both inter-cluster
and inter-proposal separation, i.e., sharpening the discriminativeness of
proposal representations across semantic classes and object instances.
The generalizability and transferability of ProposalContrast are verified
on various 3D detectors (i.e., PV-RCNN, CenterPoint, PointPillars and
PointRCNN) and datasets (i.e., KITTI, Waymo and ONCE).
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1 Introduction

3D object detection from LiDAR point clouds has received great interest in
recent years due to its significance to self-driving vehicles. Most existing 3D
detectors are trained on massive labeled data. However, annotating point clouds
is expensive and time-consuming. On the other hand, unlabeled point cloud data
can be easily generated by self-driving vehicles: it is estimated that a self-driving
car could collect 200k point cloud frames within only 8 working hours.

B: Corresponding author. †: Work done during an internship at Baidu Research.
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(a) Compared with our proposal-level pre-training, point-level pre-training tends to
produce incomplete object representations (as indicated by the dotted circle).

 LiDAR Point Cloud Point-wise Pre-training Proposal-wise Pre-training
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(b) By exploring larger context, our proposal-level pre-training successfully perceives
objects that are missed by the point-wise method (as indicated by the dotted circle).

Fig. 1. Comparison of VoxelNet representations learned from PointContrast [38]
and our ProposalContrast.

Self-supervised learning (SSL) [5,12,13,20,46] provides a feasible way to make
use of unlabeled data. SSL methods typically define a pretext task, where free
supervision signals can be derived from the data itself for representation learn-
ing. With a few labeled data of downstream tasks, the learnt representations
can be fine-tuned and show excellent performance. Recent advances in SSL can
be largely ascribed to contrastive learning [5, 6, 13, 14]. Contrastive learning ex-
plores the pretext task of instance discrimination, i.e., maximizing the agreement
of the feature embeddings between two differently augmented views of the same
data instance, and minimizing the agreement between different instances. The
instances are often defined as images in the 2D domain. Intuitively, the instance
discrimination pretext relies on an object-centric assumption [4, 48], where the
object of interest should lie in the center of an image such that different augmen-
tations can be applied to achieve cross-view consistency. Although this is hold
for some image datasets like ImageNet [9], it is suboptimal for LiDAR point
cloud datasets; taking Waymo [33] as an example, objects are of smaller sizes
(e.g., 4× 2m2 for car), and are unevenly distributed across a considerably wide
range (e.g., 150× 150m2 for a point cloud scene).

Therefore, how to define the instances is crucial for the adoption of con-
trastive SSL techniques in point clouds. However, previous approaches for point
cloud SSL either directly contrast different views of a whole point cloud scene [15,
47], or merely focus on point-/voxel-level instance discrimination [21, 38]. The
scene-level methods struggle to describe the locality of the road objects, while the
point-/voxel-level methods overemphasize fine-grained details, lacking object-



ProposalContrast 3

level characteristics. Each point cloud consists of several objects and the objects
such as vehicles typically contain numerous points and span several voxels. Thus
previous approaches take little consideration of the properties of point data,
hurting the utility of the learned representations in downstream tasks, such as
3D object detection. In light of the analysis above, we believe learning point rep-
resentations on the proposal-level is more desired (see Fig. 1 for more evidence).

In this work, we propose a proposal-level point cloud SSL framework, named
ProposalContrast, that conducts proposal-wise contrastive pre-training for 3D
detection-aligned representation learning. In particular, for each point cloud re-
gion proposal, its representation is designed to explicitly encode the geometrical
relations of the points inside the proposal. This is achieved by a cross-attention
based encoding module, which attends each point to its neighbors [22]. To better
align proposal-level pre-training with the nature of 3D detection, we propose to
jointly optimize two pretext tasks, i.e., inter-proposal discrimination (IPD) and
inter-cluster separation (ICS). IPD is for instance-discriminative representation
learning. Through minimizing a proposal-wise contrastive loss, proposal repre-
sentations are encouraged to gather instance-specific characteristics, eventually
benefiting the localization of objects. Differently, ICS is for class-discriminative
representation learning. Since class label is not available during pre-training,
ICS conducts cluster-based contrastive learning. It groups proposals into clus-
ters and enforces consistency between cluster predictions (i.e., pseudo and soft
class labels) of different views of each proposal. In this way, ICS encourages the
proposal representations to abstract instance-invariant, common patterns, hence
facilitating the semantic recognition of objects.

We comprehensively demonstrate the generalizability of our ProposalContrast
on prevalent 3D detection network architectures, i.e., PV-RCNN [30], Center-
Point [45], PointPillars [19], and PointRCNN [31], as well as empirically vali-
date the transferability on three popular self-driving point cloud datasets, i.e.,
Waymo [33], KITTI [11], and ONCE [24]. Moreover, ProposalContrast can signif-
icantly save the annotation cost, e.g., with only half annotations, our pre-trained
PV-RCNN outperforms the scratch model trained with full annotations.

2 Related Work

3D Object Detection. Existing solutions for 3D object detection can be
broadly grouped into two classes in terms of point representations, i.e., grid-
based and point-based. Specifically, grid-based methods [19, 39, 43, 44, 49] typi-
cally first discretize the raw point clouds into regular girds (e.g., voxels [39] or
pillars [19]), which can then be processed by 3D or 2D convolutional networks.
Point-based methods [25, 26, 28, 31, 40] directly extract features and predict 3D
objects from raw point clouds. In general, grid-based approaches are efficient
but suffer from information loss in the quantification process. Point-based meth-
ods yield impressive results, but the computational cost is high for large-scale
point clouds. Hence some recent detectors [30], built upon the hybrid of voxel-
and point-based architectures, are developed to enjoy the best of both worlds.
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In this work, we show that a wide range of modern 3D detectors can benefit
from our self-supervised pre-training algorithm, which can learn meaningful and
transferable representations from large-scale unlabeled LiDAR point clouds.
Self-supervised Learning (SSL) in Point Cloud. SSL [14,16,18,27,41,46] is
to learn expressive feature representation without manual annotations. Recently,
contrastive learning based SSL algorithms [5, 13, 14, 36, 42] proved impressive
results on various downstream tasks, even surpassing the supervised alterna-
tives. In this article, we follow this paradigm with a proposal-level pretraining
method specifically designed for the task of point cloud object detection. Con-
current to our study, PointContrast [38], DepthContrast [47], GCC-3D [21], and
STRL [15] also exploit the potential of contrastive SSL in point cloud pretrain-
ing. Though impressive, these methods have a few limitations. First, [15, 47]
takes the whole point cloud scene as the instance, neglecting the underlying
object-centric assumption [4, 48], since self-driving point cloud scenes typically
comprise of multiple object instances. Second, other methods like [21, 38] only
take into account instance discrimination at the point-/voxel-level. Thus they are
hard to acquire object-level representations that are compatible with 3D object
detection. Third, [15, 38, 47] overlook the semantic relations among instances,
focusing on modeling low-level characteristics instead of high-level informative
patterns. In [21], although an extra self-clustering strategy is introduced for
capturing semantic properties, it only provides supervisory signals on moving
voxels which are too sparse to cover potential object candidates, and leads to a
complicated two-stage pipeline that trains the 3D encoder and 2D encoder sepa-
rately. Differently, our point cloud pretraining method encourages discrimination
between proposal instances and clusters, hence comprehensively capturing the
properties of point cloud data and well aligning with 3D detection. Although
RandomRooms [29] also considers region-level representations, it refers to syn-
thetic CAD objects in indoor environments. In contrast, we automatically mine
potential object instances from raw point data in self-driving scenes.

3 Approach

In Sec. 3.1, we first briefly describe our proposal-level pre-training method specif-
ically designed for 3D object detection. Then, we detail the crucial components,
i.e., region proposal encoding module (in Sec. 3.2) and joint optimization of
inter-proposal discrimination and inter-cluster separation (in Sec. 3.3).

3.1 Overview of ProposalContrast

Due to the specific characteristics of 3D LiDAR point cloud data, such as the ir-
regular and sparse structures across large perception ranges, simply applying 2D
pre-training techniques to point clouds cannot get satisfactory results. This calls
for better adapting existing pre-training techniques to the inherent structures
of point cloud data. Rather than current point cloud pretraining methods in-
vestigating the unsupervised representation learning on the scene-/point-/voxel-
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Fig. 2. Illustration of our ProposalContrast framework. Given augmented point
cloud with different views, we first sample paired region proposals and then extract the
features with a region proposal encoding module. After that, inter-proposal discrimi-
nation and inter-cluster separation are enforced to optimize the whole network.

level [15, 38, 38, 47], our ProposalContrast learns representations by contrasting
directly on region proposals.

As shown in Fig. 2, to achieve proposal-level pre-training, ProposalContrast
has five core components: data augmentation, correspondence mapping, region
proposal generation, region proposal encoding, as well as a joint optimization of
inter-proposal discrimination (IPD) and inter-cluster separation (ICS).
Data Augmentation. LetX0∈RL0×3denote an input point cloud with L0 points
(here we describe point cloud with 3D coordinates for simplicity). We apply two
different data augmentation operators T1, T2 on X0 to produce two augmented
views X1, X2:

X1 = T1(X0)∈RL1×3, X2 = T2(X0)∈RL2×3, (1)

where L1 and L2 are number of points of X1 and X2. The data augmentation
strategies include random rotation, flip, scaling and random point drop out (see
Sec. 4.1 for detailed definition). Note that random rotation is only applied on
the upright axis since we are aware of self-driving scenarios.
Correspondence Mapping. Before generating proposals, we first get the cor-
respondence mapping M between point sets in X1 and X2. This can be easily
achieved by recording the index of each point in the original view X0. M is later
used for sampling and grouping region proposals.
Region Proposal Generation. Some SSL methods for 2D representation
learning make use of image proposals in the form of 2D bounding boxes [4]. For
point clouds, straightforwardly representing proposals as 3D bounding boxes,
however, is not a feasible choice, due to the significantly enlarged space of object
candidates in 3D scenarios. In addition, generating a dense set of 3D bounding
boxes will lead to unacceptable high computational cost. These considerations
motivate us to adopt spherical proposals, instead of 3D bounding box proposals.
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Fig. 3. Illustration of the region proposal encoding module (Sec. 3.2). The
encoding module adopts a cross-attention mechanism that attends the center query
point with its neighbor key points, for collecting expressive proposal representations.

Specifically, given the input point cloud X0, we first abandon the road plane
points so as to sample less from the background [1]. Then we perform farthest
point sampling (FPS) [28] on X0 to sample a total of N points as the centers
of N spherical proposals (the corresponding samples in X1 and X2 can also
be identified according to the correspondence M). FPS encourages the sam-
pled points to be away from each other and thus guarantees the diversity of
the sampled proposals. Next, spherical proposals are generated by searching K
points around each sampled center point within a pre-defined radius r. Finally,
we get two sets of spherical proposals P1, P2∈RN×K×3 from the two views, i.e.,
P1 ∈ X1, P2 ∈ X2.
Region Proposal Encoding. An encoding module is further adopted to ex-
tract expressive proposal representations, by considering the geometric relations
of the points inside each proposal. Given the scene-level representations, i.e., F1

and F2, of X1 and X2, extracted by the backbone network, the proposal encod-
ing module outputs geometry-aware proposal representations Y1,Y2∈RN×C for
P1 and P2:

Y1 = fEn(P1,F1), Y2 = fEn(P2,F2), (2)

where the encoding module fEn is achieved by a neural attention mechanism,
which will be detailed in Sec. 3.2.
Joint Optimization. The proposal features Y1, Y2 from different views are
learned by enforcing both cluster-based class consistency and instance-wise dis-
crimination. This endows Y1, Y2 with desired properties for 3D object detection.
The detailed design is presented in Sec. 3.3.

3.2 Region Proposal Encoding Module

The relations among points in a proposal provide crucial geometry information
for describing the proposal. To extract better proposal representations, we lever-
age the cross-attention [10] to capture the geometric relations between points.

For a point cloud scene X and corresponding proposals P , we extract its
global scene-wise representation through a backbone network, i.e., F =fBbone(X).
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Popular 3D backbones like VoxelNet [39] and PointNet++ [28] can be used to
instantiate fBbone.

Then we obtain initial representation P ∈RN×K×C for all the proposals P
by applying bilinear interpolation function I(·) over F , i.e., P = I(P,F ), where
N is the proposal number of one view, K is the point number inside a proposal
and C is the backbone channel number.

After that, we capture the geometrical relation between points via cross at-
tention, i.e., attending a query point with other key points. Let p ∈ P with
K×C size denote the initial representation of a proposal p∈P . As illustrated in
Fig. 3, we set the center point feature xq∈R1×C of proposal p, i.e., xq∈p as the
query, since the center point is more informative [45]. Next, we get the neighbor
features xk∈RK×C , where xk∈p, and use the difference between xk and xq as
keys to encode the asymmetric geometry relation as recommended by [37]. The
point coordinate of xq and xk are also integrated to provide explicit position
information.

Formally, the xq and xk are first projected to query, key, and value vectors
through:

wq=θ(xq), wk=ϕ(xk−xq), wv=g(xk−xq), (3)

where θ(·), ϕ(·), and g(·) are linear layers. Afterwards, we compute the attention
weight A ∈ [0, 1]K based on normalized similarities between the query wq and
each key wk. The attention weight is then applied on the value vector wv to
aggregate information from all the keys:

wo =
∑

wk

A(wq,wk) ·wv, A(wq,wk) =
w⊤

q wk∑
wk

w⊤
q wk

. (4)

As seen, the attention weight encodes the geometry relation of each point pair un-
der a metric space, which makes the center point aware of the informative neigh-
borhoods and thus encourages effective information exchange between points
inside a proposal. Finally, the representation of proposal p is given as:

y = xq + h(wo), (5)

where h(·) is a linear layer. In this way, by applying Eqs. (3-5) on each the
region proposal in X1 and X2, we got all the proposal representations, i.e.,
Y1,Y2 ∈ RN×C , which will be trained by joint optimization of inter-proposal
discrimination and inter-cluster separation.

3.3 Joint Optimization of Inter-proposal Discrimination and
Inter-cluster Separation

A good point cloud representation for 3D detection is desired to be discrimina-
tive across both instances and classes; object instance-sensitive representation
benefits the localization of 3D objects, while class-discriminative representation
is crucial for the recognition of object categories. We therefore propose to opti-
mize with both inter-proposal discrimination (IPD) and inter-cluster separation
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(ICS) simultaneously. Because annotations for object bounding box and seman-
tics labels are not given during pretraining, IPD is designed to contrast the
representations on the proposal-level, while ICS discovers stable and informa-
tive 3D patterns through grouping the proposals into clusters.
Inter-proposal discrimination (IPD). For object instance-sensitive repre-
sentation learning, we conduct proposal-level contrastive learning [5]. Specifi-
cally, given the proposal representations, i.e., Y1,Y2∈RN×C , from the two dif-
ferent views X1, X2. We aim to pull positive pairs (e.g., the same proposal with
different views) close, as well as push negative pairs (e.g., the different proposals)
apart.

Following the common practice in contrastive learning, we first adopt a pro-
jection layer fProj(·) to project each proposal representation y ∈ {Y1,Y2} to a
ℓ2-normalized embedding space:

z =
fProj(y)

||fProj(y)||2
∈ [0, 1]C . (6)

Given the sets of normalized proposal embeddings Z1,Z2 ∈ [0, 1]N×C , the IPD
loss is designed in a form of the InfoNCE loss [27]:

LIPD=
1

N

∑
zn
1 ∈Z1

−log
exp(zn⊤

1 ·zn′

2 /τ)∑
zm
2 ∈Z2

exp(zn⊤
1 ·zm

2 /τ)
+

1

N

∑
zm
2 ∈Z2

−log
exp(zm⊤

2 ·zm′

1 /τ)∑
zn
1 ∈Z1

exp(zm⊤
2 ·zn

1 /τ)
, (7)

where τ is a temperature hyper-parameter. For zn
1 , z

n′

2 refers to a positive sam-
ple; zn

1 and zn′

2 correspond to a same proposal in X0. Similarly, zm
2 is a negative

sample for zn
1 , i.e., z

m
2 ̸=zn′

2 .
Inter-cluster Separation (ICS). For class-discriminative representation learn-
ing, we group the spherical proposals into different clusters, which can be viewed
as pseudo class labels. Inspired by recent clustering-based contrastive SSL [2],
ICS is designed to maximize the agreement between cross-view cluster assign-
ments.

For each normalized proposal feature zn
1 ∈Z1 from view X1, we first apply

a predictor fPred(·) to map it to vector qn
1 ∈RO that represents its pseudo-class

embedding, such that qn
1 = fPred(z

n
1 ), where the output channel dimension O

of qn
1 refers to the number of pseudo classes. To get cluster assignment, i.e.,

q̂n
1 ∈ [0, 1]O, we stop gradient on qn

1 and adopt Sinkhorn-Knopp algorithm [7] to
group all the proposals in each training batch into O clusters. Then the training
target of ICS is defined as:

LICS =
1

N

∑
qn
1

−q̂n
1 log σ(qn′

2 ) +
1

N

∑
qm
2

−q̂m
2 log σ(qm′

1 ), (8)

where σ(·) refers to the softmax function that maps the pseudo-class embedding
into class probability distribution. LICS encourages the cross-view clustering con-
sistency of each proposal, i.e., use the cluster assignment q̂n

1 (resp. q̂m
2 ) of view

X1 (resp. X2) as pseudo grouptruth to supervise the class probability distribu-
tion σ(qn′

2 ) (resp. σ(qm′

1 )). Note that q̂n
1 and qn′

2 correspond to a same proposal
in X0.
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Finally, the overall self-supervised learning loss is defined as:

L = αLIPD + βLICS, (9)

where α and β are the balancing coefficients, respectively. In Sec. 4.3, we provide
analysis on the effectiveness of the two optimization targets.

4 Experimental Results

4.1 Pre-training Settings

Datasets. We adopt the common experimental protocol of SSL, i.e., first pre-
training a backbone network with large-scale unlabeled data and then fine-tuning
it on downstream tasks with much fewer labeled data. Some previous 3D SSL
methods make use of ShapeNet [3] and ScanNet [8] datasets to pre-train the
3D backbones, thus they only focus on the indoor setting and suffer from large
domain gap when transferring to the self-driving setting. In our experiments,
we adopt Waymo Open Dataset [33] for the self-supervised pre-training. The
Waymo dataset contains 798 scenes (158,361 frames) for training and 202 scenes
(40,077 frames) for validation; it is 20× larger than KITTI [11]. We adopt the
whole training set to pre-train various 3D backbones without using the labels.
Network Architectures. For thorough examination of the efficacy and versa-
tility of our approach, we investigate the performance of ProposalContrast on
diverse 3D backbone architectures, including grid-based, i.e., VoxelNet [39] and
PointPillars [19], as well as point-based, i.e., PointNet++ [28]. The projection
layer, fProj(·), in Sec. 3.3 is implemented as two linear layers, with the first layer
followed by a batch normalization (BN) layer and a ReLU. The channel dimen-
sion of the output is set as C = 128. The predictor fPred(·), implemented as a
linear layer, outputs a 128-d vector as the pseudo-class embedding, i.e., O=128.
All the functions in the proposal encoding module are instantiated by linear
layers with 128 channels. The attention linear head h(·) transforms the attended
features to the original backbone channels.
Implementation Details. We empirically consider four types of data augmen-
tations to generate different views, including random rotation ([−180◦, 180◦]),
random scaling ([0.8, 1.2]), random flipping along X-axis or Y-axis, and random
point drop out. For random point drop out, we sample 100k points from the orig-
inal point cloud for each of the two augmented views. 20k points are chosen from
the same indexes to ensure a 20% overlap for the two augmented views, while
the other 80k points are randomly sampled from the remained point clouds. We
sample N=2048 spherical proposals for every point cloud frame; each proposal
contains K =16 points within r=1.0 m radius. The parameters for the Voxel-
Net [39] backbone are the same as the corresponding 3D object detectors. The
temperature parameter τ in the IPD loss LIPD (Eq. 7) is set to 0.1. The coeffi-
cients α and γ in Eq. 9 are both set to 1 empirically. We pre-train the models for
36 epochs, and use Adam optimizer [17] to optimize the network. Cosine learning
rate schedule [23] is adopted with warmup strategy in the first 5 epochs. The
maximum learning rate is set to 0.003.
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Table 1. Data-efficient 3D Object Detection on KITTI. We pre-train the back-
bones of PointRCNN [31] and PV-RCNN [30] on Waymo and transfer to KITTI 3D ob-
ject detection with different label configurations. Consistent improvements are obtained
under each setting. Our approach outperforms all the concurrent self-supervised learn-
ing methods, i.e., DepthContrast [47], PointContrast [38], GCC-3D [21], and STRL [15].

Fine-tuning with Pre-train. mAP Car Pedestrian Cyclist

various label ratios
Detector

Schedule (Mod.) Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Scratch 63.51 88.64 75.23 72.47 55.49 48.90 42.23 85.41 66.39 61.74

20% (∼ 0.7k frames)

PointRCNN
Ours 66.20+2.69 88.52 77.02+1.79 72.56 58.66 51.90+3.00 44.98 90.27 69.67+3.28 65.05

Scratch 66.71 91.81 82.52 80.11 58.78 53.33 47.61 86.74 64.28 59.53
PV-RCNN

Ours 68.13+1.42 91.96 82.65+0.13 80.15 62.58 55.05+1.72 50.06 88.58 66.68+2.40 62.32

Scratch 66.73 89.12 77.85 75.36 61.82 54.58 47.90 86.30 67.76 63.26

50% (∼ 1.8k frames)

PointRCNN
Ours 69.23+2.50 89.32 79.97+2.12 77.39 62.19 54.47-0.11 46.49 92.26 73.25+5.69 68.51

Scratch 69.63 91.77 82.68 81.9 63.70 57.10 52.77 89.77 69.12 64.61
PV-RCNN

Ours 71.76+2.13 92.29 82.92+0.24 82.09 65.82 59.92+2.82 55.06 91.87 72.45+3.33 67.53

Scratch 69.45 90.02 80.56 78.02 62.59 55.66 48.69 89.87 72.12 67.52

DepthCon. [47] 70.26+0.81 89.38 80.32-0.24 77.92 65.55 57.62+1.96 50.98 90.52 72.84+0.72 68.22

100% (∼ 3.7k frames)

PointRCNN

Ours 70.71+1.26 89.51 80.23-0.33 77.96 66.15 58.82+3.16 52.00 91.28 73.08+0.96 68.45

Scratch 70.57 - 84.50 - - 57.06 - - 70.14 -

GCC-3D [21] 71.26+0.69 - - - - - - - - -

STRL [15] 71.46+0.89 - 84.70+0.20 - - 57.80+0.74 - - 71.88+1.74 -

PointCon. [38] 71.55+0.98 91.40 84.18-0.32 82.25 65.73 57.74+0.68 52.46 91.47 72.72+2.58 67.95

PV-RCNN

. Ours 72.92+2.35 92.45 84.72+0.22 82.47 68.43 60.36+3.30 55.01 92.77 73.69+3.55 69.51

4.2 Transfer Learning Settings and Results

In this paper, we investigate self-supervised pre-training in an autonomous driv-
ing setting. We evaluate our approach on several widely used LiDAR point cloud
datasets, i.e., KITTI [11], Waymo [33] and ONCE [24]. Specifically, we compare
our ProposalContrast with other pre-training methods by fine-tuning the de-
tection models. Different amounts of labeled data are used for fine-tuning to
show the data-efficient ability. Besides, various modern 3D object detectors are
involved to demonstrate the generalizability of our pre-trained models.
KITTI Dataset. KITTI 3D object benchmark [11] has been widely used for
3D object detection from LiDAR point cloud. It contains 7,481 labeled samples,
which are divided into two groups, i.e., a training set (3,712 samples) and a
validation set (3,769 samples). Mean Average Precision (mAP) with 40 recall
positions are usually adopted to evaluate the detection performance, with a 3D
IoU thresholds of 0.7 for cars and 0.5 for pedestrians and cyclists.

We assess the transferability of our pre-trained model by pre-training on
Waymo then fine-tuning on KITTI. Two typical 3D object detectors, i.e., PointR-
CNN [31] and PV-RCNN [30], are used as the baselines. The two detectors
are based on different 3D backbones (i.e., point-wise or voxel-wise networks),
covering most cases of mainstream 3D detectors. A crucial advantage of self-
supervised pre-training is to improve data efficiency for the downstream task
with limited annotated data. To this end, we evaluate the data-efficient 3D ob-
ject detection. In particular, the training samples are split into three groups,
with each containing 20% (0.7k), 50% (1.8k) and 100% (3.7k) labeled samples,
respectively. The experimental results are shown in Table 1. On both 3D detec-
tors, our self-supervised pre-trained model effectively improves the performance
in comparison to the model trained from scratch. Our model also outperforms
several concurrent works. For example, based on PV-RCNN detector, our model
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Table 2. Comparisons between our model and other self-supervised learn-
ing methods on Waymo. All the detectors are trained by 20% training samples
following the OpenPCDet [34] configuration and evaluated on the validation set. Both
PV-RCNN [30] and CenterPoint [45] are used as beseline detectors.

Transfer Overall Vehicle Pedestrian Cyclist
3D Object Detector

Paradigm AP/APH AP/APH AP/APH AP/APH

SECOND [39] Scratch 55.08/51.32 59.57/59.04 53.00/43.56 52.67/51.37

Part-A2-Anchor [32] Scratch 60.39/57.43 64.33/63.82 54.24/47.11 62.61/61.35

PV-RCNN [30] Scratch 59.84/56.23 64.99/64.38 53.80/45.14 60.72/59.18

GCC-3D (PV-RCNN) [21] Fine-tuning 61.30/58.18(+1.46/+1.95) 65.65/65.10 55.54/48.02 62.72/61.43

Ours (PV-RCNN) Fine-tuning 62.62/59.28(+2.78/+3.05) 66.04/65.47 57.58/49.51 64.23/62.86

CenterPoint [45] Scratch 63.46/60.95 61.81/61.30 63.62/57.79 64.96/63.77

GCC-3D (CenterPoint) [21] Fine-tuning 65.29/62.79(+1.83/+1.84) 63.97/63.47 64.23/58.47 67.68/66.44

Ours (CenterPoint) Fine-tuning 66.42/63.85(+2.96/+2.90) 64.94/64.42 66.13/60.11 68.19 67.01

CenterPoint-Stage2 [45] Scratch 65.29/62.47 64.70/64.11 63.26/58.46 65.93/64.85

GCC-3D (CenterPoint-Stage2) [21] Fine-tuning 67.29/64.95(+2.00/+2.48) 66.45/65.93 66.82/61.47 68.61/67.46

Ours (CenterPoint-Stage2) Fine-tuning 68.06/65.69(+2.77/+3.22) 66.98/66.48 68.15/62.61 69.04/67.97

exceeds STRL [15] and GCC-3D [21] by 1.46% and 1.66%, respectively. Our
model also surpasses DepthContrast [47] and PointContrast [38], thanks to the
proposal-level representation. Besides, the classes with fewer labeled instances
(e.g., pedestrian and cyclist) are improved a lot, showcasing the ability to address
imbalanced class distribution. More importantly, with our pre-trained model,
PointRCNN and PV-RCNN using half annotation achieve comparative perfor-
mance compared with the counterparts with full annotations. This also suggests
the potential of our approach in reducing the heavy annotation burden.

Waymo Open Dataset. Waymo dataset [33] contains three classes: vehicles,
pedestrians, and cyclists. 3D Average Precision (AP) and Average Precision with
Heading (APH) are defined as the evaluation metrics for all classes. The AP and
APH are based on IoU thresholds of 0.7 for vehicles and 0.5 for pedestrians and
cyclists. Two difficulty levels, i.e., LEVEL 1 and LEVEL 2 are defined according
to the points number in the bounding boxes, where we mainly consider the
LEVEL 2 metric.

We follow the schedule of OpenPCDet [34] to fine-tune the detectors on
20% training samples for 30 epochs. In particular, we first report the training-
from-scratch results of SECOND [39], Part-A2-Anchor [32], CenterPoint [45]
(VoxelNet version) and PV-RCNN [30], in terms of GCC3D [21]. After that, we
apply our ProposalContrast on two strong baselines, CenterPoint [45] and PV-
RCNN [30], to verify our model. According to Table 2, with our self-supervised
pre-training, the performances of popular 3D detectors are substantially im-
proved. For PV-RCNN [30], we improve the model training from scratch by
3.05% APH, as well as outperform GCC-3D [21] by 1.10% APH on average. We
further evaluate our pre-trained model on CenterPoint with VoxelNet backbone.
The experimental results show that our approach improves 2.9% and 1.06%
APH, compared with training from scratch and GCC-3D [21], respectively. Fur-
thermore, based on the two-stage CenterPoint, our model reaches 65.69% APH,
improving the model trained from scratch by 3.22%.
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Table 3. Data-efficient 3D object detection on Waymo dataset. Our Pro-
posalContrast consistently improves the performance of modern 3D object detectors,
especially when only limited labeled data are available. In each row, we present the
results trained from scratch on the top and show the fine-tuning results at the bottom.

Fine-tuning with 3D AP/APH (LEVEL 2)
various label ratios

Detector Relative Gain
Overall Vehicle Pedestrian Cyclist

23.05/18.08 27.15/26.17 30.31/18.79 11.68/9.28

1% (∼ 0.8k frames)
PointPillars [19] +8.60/+8.26

31.65/26.34 35.88/35.08 37.61/25.22 21.47/18.73
20.88/17.83 21.95/21.45 27.98/20.52 12.70/11.53

VoxelNet [39] +17.48/+16.95
38.36/34.78 37.60/36.91 39.74/31.70 37.74/35.73

51.75/46.58 54.94/54.32 54.01/41.53 46.31/43.88

10% (∼ 8k frames)
PointPillars [19] +2.33/+2.85

54.08/49.43 57.54/56.93 56.97/45.25 47.74/46.1
54.04/51.24 54.37/53.74 51.45/45.05 56.30/54.93

VoxelNet [39] +4.96/+5.06
59.00/56.30 58.83/58.23 57.75/51.75 60.42/58.91

59.77/55.58 61.89/61.32 61.89/51.26 55.54/54.16

50% (∼ 40k frames)
PointPillars [19] +1.06/+1.08

60.83/56.66 63.01/62.44 62.57/52.02 56.91/55.53
63.51/61.05 63.18/62.66 63.35/57.67 63.99/62.82

VoxelNet [39] +1.14/+1.05
64.65/62.10 64.07/63.54 64.64/58.71 65.24/64.04

61.68/57.92 63.95/63.39 62.91/53.38 58.17/57.01

100% (∼ 80k frames)
PointPillars [19] +0.54/+0.40

62.22/58.32 64.05/63.85 63.51/53.69 58.66/57.41
64.84/62.29 64.38/63.86 66.05/60.06 64.09/62.95

VoxelNet [39] +0.55/+0.61
65.39/62.90 64.67/64.16 66.52/60.65 64.97/63.88

Table 4. 3D Object Detection Performance on ONCE validation set. The
improved CenterPoint achieves the best performance among these SOTA detectors.

Orientation-aware AP
Methods mAP

Vehicle Pedestrian Cyclist

PointPillars [19] 44.34 68.57 17.63 46.81

SECOND [39] 51.89 71.19 26.44 58.04

PV-RCNN [30] 53.55 77.77 23.50 59.37

CenterPoint [30] 60.05 66.79 49.90 63.45

PointPainting [35] 57.78 66.17 44.84 62.34

CenterPoint∗ [45] 64.24 75.26 51.65 65.79

Ours (CenterPoint∗) 66.24+2.00 78.00+2.74 52.56+0.91 68.17+2.38

We also evaluate our model under a data-efficient 3D object detection set-
ting. To be specific, we split the Waymo training set into two groups, with each
group containing 399 scenes (∼80k frames). We first conduct pre-training on one
group without using the labels, and then fine-tune the pre-trained model with
labels on another group. During fine-tuning, various fractions of training data
are uniformly sampled: 1% (0.8k frames), 10% (8k frames), 50% (40k frames)
and 100% (80k frames). Two different backbones, i.e., PointPillars [19] and Vox-
elNet [39] based on CenterPoint, are involved to measure the performance of
our pre-trained model. The detection model trained from random initialization
is viewed as the baseline. The advantage of our pre-trained model over the base-
line is presented in Table 3. In essence, our pre-trained model can consistently
promote detection performance on both backbones, especially when the labled
data is scarce, i.e., improving 8.26% and 16.95% APH with 1% labeled data.
Our model also outperforms the baselines under all label settings.
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Table 5. Ablation studies on different granularities of instance features.

Methods Initialization Overall (mAP/mAPH) Vehicle Pedestrian Cyclist

Baseline Random Initialization 59.63/56.96 58.96/58.40 56.72/50.77 63.20/61.70

PointContrast [38] Point-level Pre-train 60.32/57.75(+0.69/+0.79) 60.47/59.85 56.67/50.78 63.82/62.63

DepthContrast [47] Scene-level Pre-train 60.71/57.96(+1.08/+1.00) 60.11/59.62 58.42/52.27 63.59/62.00

ProposalContrast Proposal-level Pre-train 62.75/60.13(+3.12/+3.17) 61.20/60.64 60.75/54.83 66.29/64.93

Table 6. Ablation studies on each module of ProposalContrast.

Modules Aspect Param. mAP/mAPH

Baseline Random Init. - 59.63/56.96

MaxPooling N=2048, r=1.0 - 62.09/59.32

Proposal
1024 62.10/59.47

Attentive

Proposal

Encoder

Number (N)
2048 62.75/60.13

4096 62.54/59.91

0.5 62.43/59.81
Spherical Radius

1.0 62.75/60.13
(r)

2.0 62.36/59.55

Modules Aspect Param. mAP/mAPH

Baseline Random Init. - 59.63/56.96

IPD task w/o ICS - 62.17/59.56

64 61.47/58.87

ICS task

#Cluster
128 61.77/59.16

(w/o IPD)
256 61.36/58.91

w/o SKC 128 57.29/54.52

IPD + ICS #Cluster 128 62.75/60.13

ONCE Dataset. ONCE [24] is a newly released dataset for 3D object detec-
tion in autonomous driving. It involves 5k frames for training or fine-tuning and
3k frames for validation. An orientation-aware AP is introduced to account for
objects with opposite orientations. ONCE evaluates 3 categories for 3D object
detection: vehicle, pedestrian and cyclist. The official ONCE benchmark pro-
vides some results from popular 3D detectors on the validation set. Since our
implemented CenterPoint∗ achieves much better results than the official version,
we use it as the baseline. We pre-train the VoxelNet backbone of CenterPoint∗

on Waymo with our ProposalContrast and fine-tune it with the ONCE training
set. Then we give a performance comparison with several 3D detectors on the
validation set. As shown in Table 4, our model improves the baseline by 2.00%
mAP, achieving better performance on the validation set. This gives another
evidence of the transferability of our pre-trained model.

4.3 Ablation Study

In this section, we examine our ProposalContrast model in depth. We conduct
each group experiment by pre-training the VoxelNet backbone on the full Waymo
training set in an unsupervised manner, and evaluate the performance by fine-
tuning the detector on Waymo 20% training data. CenterPoint trained from
random initialization is viewed as the baseline. 1× schedule (12 epochs) in [45]
is used to save computation on the large-scale Waymo.

Comparison to Point-/Scene-level Pre-training. The main contribution of
this work is to propose a proposal-wise pre-training paradigm. To show its merits
over previous contrastive learning methods in point cloud, we re-implement the
pioneer works like PointContrast [38] and DepthContrast [47] based on the Vox-
elNet backbone of CenterPoint. As seen in Table 5, ProposalContrast achieves
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much better results when transferring to 3D object detection in large-scale Li-
DAR point clouds, thanks to the more suitable representation.
Effectiveness of the Proposal Encoding Module. Next, we ablate the de-
sign choices in the proposal encoding module. We first apply a heuristic method
(MaxPool) that directly pools the point features inside a proposal and uses liner
layers for embedding. As shown in Table 6, this has obtained improvement over
the baseline due to operating on more informative candidate proposals. After
being equipped with the attentive proposal encoder, better results are achieved
(+0.81 mAPH). This shows the importance of modeling the geometry structures
of proposals. After that, we also search the proposal number N and proposal
radius r. It turns out that N = 2048 and r= 1.0 m give better results. We in-
fer that more proposals or a larger proposal radius will cause overlaps between
neighbor proposals, which may confuse the instance discrimination process.
Effectiveness of the Joint Optimization Module. We further investigate
the effect of the two learning targets in Table 6. We first consider only the inter-
proposal discrimination (IPD) task for self-supervised learning, which improves
the baseline by 2.60% mAPH. Then, we evaluate the pre-training model with
only the inter-cluster separation (ICS) task and check the effect of class (cluster)
number, i.e., the output dimensions of the predictor. After that, we examine the
importance of Sinkhorn-Knopp clustering (SKC). As seen, the performance drops
a lot (-2.44 mAPH) without SKC. Finally, the joint learning of the two tasks
further improves the performance.

5 Conclusion

This paper presented ProposalContrast, a proposal-wise pre-training framework
for LiDAR-based 3D object detection. Despite the previous works for scene-level
or point/voxel-level instance discrimination, we argue that the proposal-level
representation is more suitable for 3D object detection in the large-scale Li-
DAR point cloud, which is not well addressed by previous works. To achieve
proposal-wise contrastive learning, we carefully designed a proposal generation
module, a region proposal encoding module and a joint optimization module.
In particular, the proposal generation module samples dense and diverse spher-
ical proposals with different augmented views. The proposal encoding module
abstracts proposal features to model the intrinsic geometry structure of propos-
als by considering relationships of points inside proposals. To further build a
comprehensive representation, we proposed to jointly optimize an inter-proposal
discrimination task and an inter-cluster separation task. Extensive experiments
on diverse prevalent 3D object detectors and datasets show the effectiveness of
our model. We expect this work will encourage the community to explore the
unsupervised pre-training paradigm in driving scenarios.
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