
PreTraM: Self-Supervised Pre-training via
Connecting Trajectory and Map

Supplementary Material

Chenfeng Xu⋆1, Tian Li⋆2, Chen Tang⋆⋆1, Lingfeng Sun1, Kurt Keutzer1,
Masayoshi Tomizuka1, Alireza Fathi3, and Wei Zhan1

1 University of California, Berkeley
2 University of California, San Diego

3 Google Research

1 Data Efficiency

In section 4.3, we demonstrate with experiments that PreTraM boosts data effi-
ciency of the prediction model. Apart from the results shown there, we perform
experiments at other percentages of trajectory data, ranging from 80%, 70%,
60% to 20% and 10%. Besides, to ensure reliable results for lower percentages
including 20% and 10%, we repeat experiments for 5 and 10 times respectively.
For the other settings, we repeat 3 times as in section 4.3. We report the mean
performance as well as the variance in table 1. Note that these experiments are
all based on AgentFormer with ResNet18.

On this full set of experiment results, we observe that across all settings
of experiments, PreTraM mitigates prediction error and significantly reduces
variance of performance. For the mean value of using different random seeds
with using 70% data, PreTraM-AgentFormer gives 2.451 ADE-5 and 5.343 FDE-
5, which outperforms the baseline with 100% data. Note that for one specific
experiment with 10 % data, we observe that PreTraM-Agentformer can achieve
0.32 ADE-5 and 0.77 FDE-5 improvement, as reported in the main text.

Therefore, we conclude that PreTraM indeed enhances data efficiency.

2 Ablation Study on Augmentation Operation in MCL

MCL uses dropout as minimal augmentation. In section 3.2, we briefly discuss
why dropout works better for map representation learning (MCL) than the com-
monly used data augmentation applied on contrastive learning in computer vi-
sion.

To verify the argument, we conduct experiments with different augmenta-
tion operations including rotation, flip, color jitter, and gaussian noise. The
experiments are based on PreTraM-AgentFormer with ResNet18, and the re-
sults are reported in Table 2. We observe that MCL via any of the alternative

⋆ Equal contribution
⋆⋆ Corresponding author

2 C. Xu et al.

data augmentations even deteriorates the performance of AgentFormer, rather
than boosting it. They are worse than the baseline AgentFormer by at least
0.019 ADE-5 and 0.076 FDE-5. In contrast, PreTraM with MCL via dropout
drastically improves the baseline by 0.1 ADE-5 and 0.218 FDE-5. This sharp
contrast indicates that conventional augmentations do destroy the semantic and
the topology in the HD-map, while dropout acting as minimal augmentation
enhances the representation learning of HD-maps and consequently promotes
TMCL.

3 Implementation Details

All of our experiments are developed based on Pytorch and conducted on Intel
Haswell CPU platform with one single V100 GPU.

Reproduced AgentFormer.We refer to the official code of AgentFormer to
reproduce a new version that supports parallel computing. Specifically, original
AgentFormer only uses one single scene in each iteration due to the variant agent
number in different scenes. Therefore, to support parallel computing, we pad the
agent number to 20, and the padding agents will be masked in the models as
well as during loss computation so that the whole process is not influenced by
the padding agents. On the other hand, we do not use the step decay learning
rate scheduler in the original AgentFormer, but use the linear scheduler with
warmup provided by HuggingFace [2], which is commonly used in language-
targeted transformer models [1]. During training, we set the batch size as 8, the
initial learning rate as 10−4, the warmup rate as 0.1, and we train the model
with Adam optimizer for 100 epochs. During inference, we keep the same setting
as the original AgentFormer.

PreTraM on top of AgentFormer and Trajectron++. We simply con-
duct PreTraM on map encoder and past encoder of AgentFormer and Trajec-
tron++ in the pre-training phase. Trajectron++ is slightly different from Agent-
Former. The past feature encoding in Trajectron++ includes past trajectory en-

Table 1. Experiment results with part of the trajectory data. For percentages above
30%, experiments are repeated 3 times, while for 20% and 10% data, the experiments
are repeated 5 and 10 times respectively.

Percentage of
Trajectory

AgentFormer PreTraM-AgentFormer
ADE-5 FDE-5 ADE-5 FDE-5

100% 2.472 5.401 2.372 5.183
80% 2.556±0.035 5.599±0.071 2.439±0.017 5.329±0.059
70% 2.570±0.038 5.609±0.075 2.451±0.030 5.343±0.072
60% 2.586±0.051 5.621±0.123 2.524±0.031 5.477±0.103
50% 2.707±0.037 5.889±0.089 2.599±0.016 5.652±0.030
40% 2.780±0.079 6.055±0.195 2.721±0.018 5.888±0.081
30% 3.055±0.061 6.672±0.101 2.890±0.065 6.281±0.140
20% 3.388±0.115 7.339±0.256 3.180±0.089 6.840±0.181
10% 3.818±0.141 8.038±0.292 3.618±0.114 7.607±0.229

Title Suppressed Due to Excessive Length 3

Table 2. We use different augmentation operations to conduct MCL for comparison.
MCL via dropout is our proposed method.

PreTraM-AgentFormer with different MCL ADE-5 FDE-5

AgentFormer (baseline) 2.472 5.401
PreTraM-AgentFormer (MCL via dropout) 2.372(-0.100) 5.183(-0.218)

PreTraM-AgentFormer (MCL via random rotation) 2.508(+0.036) 5.477(+0.076)
PreTraM-AgentFormer (MCL via random flip) 2.491(+0.019) 5.499(+0.098)
PreTraM-AgentFormer (MCL via color jitter) 2.505(+0.033) 5.505(+0.104)

PreTraM-AgentFormer (MCL via gaussian noise) 2.541(+0.069) 5.601(+0.200)

coding and edge encoding, and we concatenate them as the trajectory features
in PreTraM.

We avoid taking great pains to tune hyperparameters of the pre-training
phase and use the same training recipe as the finetuning phase. The only differ-
ence of our experiment on AgentFormer and Trajectron++ is that we pre-train
the latter with fewer epochs (20 epochs for AgentFormer and 5 epochs for Tra-
jectron++). Besides, we set λ in equation (4) to 1. These choices, though simple,
turn out to work well for PreTraM.

We provide a numpy-like pseudocode of PreTraM, as shown below.

1 # past_trajectory_encoder: Transformer Encoder in AgentFormer

or LSTM in Trajectron ++

2 # map_encoder: Map_CNN or ResNet with dropout

3 # s[N_traj , T, D]: input trajectories

4 # m[N_traj , C, C, 3]: agent -centric map patches paired with s

5 # m_mcl[N_map , C, C, 3]: trajectory -decoupled maps

6 # W_traj[d_s , d_e]: learned projection of trajectory to embed

7 # W_map[d_m , d_e]: learned projection of map to embed (TMCL)

8 # W_mcl[d_m , d_e]: learned projection of map to embed (MCL)

9 # t_traj: learned temperature parameter for TMCL

10 # t_map: learned temperature parameter for MCL

11 # lamda: hyperparameter for balancing MCL and TMCL

12

13 ####################

14 ## For TMCL

15 ####################

16 # extract feature

17 h_traj_timed = past_trajectory_encoder(s) # [N_traj , T, d_t]

18 h_map = map_encoder(m) # [N_traj , d_m]

19

20 # mean pooling over time dimension

21 h_traj = h_traj_timed.mean(axis =1) # [N_traj , d_t]

22

23 # linear projection to embedding space [N_traj , d_e]

24 h_traj_norm = l2_normalize(np.dot(h_traj , W_traj), axis =1)

25 h_map_norm = l2_normalize(np.dot(h_map , W_map), axis =1)

26

4 C. Xu et al.

27 # compute pairwise similarities [N_traj , N_traj]

28 logits_tmcl = np.dot(h_traj_norm , h_map_norm.T) / t_traj

29

30 # symmetric loss

31 labels = np.arange(N_traj)

32 loss_traj = cross_entropy_loss(logits_tmcl , labels)

33 loss_map = cross_entropy_loss(logits_tmcl.T, labels)

34 loss_TMCL = (loss_traj + loss_map)/2

35 ####################

36 ## For MCL

37 ####################

38 # extract feature [N_map , d_m]

39 h_dp1 = map_encoder(m_mcl)

40 h_dp2 = map_encoder(m_mcl) # different dropout mask

41

42 # shared linear projection [N_map , d_e]

43 h_dp1_norm = l2_normalize(np.dot(h_dp1 , W_mcl), axis =1)

44 h_dp2_norm = l2_normalize(np.dot(h_dp2 , W_mcl), axis =1)

45

46 # compute pairwise similarities [N_map , N_map]

47 logits_mcl = np.dot(h_dp1_norm , h_dp2_norm.T) / t_map

48

49 # contrastive loss

50 labels = np.arange(N_map)

51 loss_MCL = cross_entropy_loss(logits_mcl , labels)

52

53 # Total loss

54 loss_total = loss_TMCL + lamda * loss_MCL

Listing 1.1. Numpy-like pseudocode of PreTraM.

References

1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/

N19-1423 2
2. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,

Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,
Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush,
A.M.: Transformers: State-of-the-art natural language processing. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. pp. 38–45. Association for Computational Linguistics, Online (Oct
2020), https://www.aclweb.org/anthology/2020.emnlp-demos.6 2

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map Supplementary Material

