
PreTraM: Self-Supervised Pre-training via
Connecting Trajectory and Map

Chenfeng Xu⋆1, Tian Li⋆2, Chen Tang⋆⋆1, Lingfeng Sun1, Kurt Keutzer1,
Masayoshi Tomizuka1, Alireza Fathi3, and Wei Zhan1

1 University of California, Berkeley
2 University of California, San Diego

3 Google Research

Abstract. Deep learning has recently achieved significant progress in
trajectory forecasting. However, the scarcity of trajectory data inhibits
the data-hungry deep-learning models from learning good representa-
tions. While pre-training methods for representation learning exist in
computer vision and natural language processing, they still require large-
scale data. It is hard to replicate their success in trajectory forecasting
due to the inadequate trajectory data (e.g., 34K samples in the nuScenes
dataset). To work around the scarcity of trajectory data, we resort to an-
other data modality closely related to trajectories—HD-maps, which is
abundantly provided in existing datasets. In this paper, we propose Pre-
TraM, a self-supervised Pre-training scheme via connecting Trajectories
and Maps for trajectory forecasting. PreTraM consists of two parts:
1) Trajectory-Map Contrastive Learning, where we project trajectories
and maps to a shared embedding space with cross-modal contrastive
learning, 2) Map Contrastive Learning, where we enhance map repre-
sentation with contrastive learning on large quantities of HD-maps. On
top of popular baselines such as AgentFormer and Trajectron++, Pre-
TraM reduces their errors by 5.5% and 6.9% relatively on the nuScenes
dataset. We show that PreTraM improves data efficiency and scales well
with model size. Our code and pre-trained models will be released at
https://github.com/chenfengxu714/PreTraM.

Keywords: Trajectory Forecasting, Self-Supervised Learning, Pre-training,
Contrastive Learning, Multi-modality

1 Introduction

Trajectory forecasting is a challenging task in autonomous driving, which aims at
predicting the future trajectory conditioned on past trajectories and surrounding
scenes. Current deep learning models have dominated trajectory forecasting by
data-driven supervised learning. However, both the collection and the annotation
of trajectory data are extremely difficult and costly. Trajectory data is collected

⋆ Equal contribution
⋆⋆ Corresponding author

https://github.com/chenfengxu714/PreTraM

2 C. Xu et al.

A corner of one map

A local region with two agents (familiar)

A local region without agents (unseen)

Agent-centric map patch

Agent-centric map patch

Fig. 1. We have two key observation about maps and trajectories: 1) As shown in
the rightmost column, vehicles usually move in drivable areas and pedestrians usually
move along sidewalks. And the relationship learnt from familiar scenes can generalize
to unseen scenes. (Please zoom in for better view.) 2) Agent-centric map patches are
taken from a local region of the map, which is just a tiny part of the whole map.

by vehicles with sophisticated sensor systems. Then annotators need to label the
objects, associate their positions, generate and smoothen trajectories. This com-
plex procedure limits the scale of the data. The popular open-sourced trajectory
forecasting dataset nuScenes [3] has only 34K samples, much fewer than that
of the elementary small-scale image dataset MNIST (60K samples) [10]. The
scarcity of trajectory data prohibits the models from learning good trajectory
representation, and thus restrains their performance.

In the Natural Language Processing (NLP) and computer vision (CV) com-
munities, it was found effective to use self-supervised pre-training on vast un-
labeled datasets to learn language/visual representations. The classic methods,
such as autoregressive language modeling [2], masked autoencoding [12], and con-
trastive learning [6, 18], are conceptually simple, but require billions of training
data. Although recent results from CLIP [28] show that cross-modal contrastive
learning requires much fewer pre-training data (4x fewer), the amount of data
used is still far more than available trajectory data. Unlike NLP and CV, where
large-scale unlabeled datasets exist, the bottleneck for scaling trajectory datasets
lies in data collection and annotation. It poses the critical challenge for trajec-
tory forecasting to benefit from existing pre-training schemes. And to the best of
our knowledge, few efforts in trajectory forecasting have explored pre-training.

To work around the scarcity of trajectories, we resort to another modality of
data that is closely related to trajectories—HD-maps. In fact, we observe two
important facts about maps:

– An agent’s trajectory is correlated to the map around it [13,24]. A represen-
tative example is that the shape of trajectory usually follows the topology

PreTraM 3

of the HD-map. As shown in the rightmost column of Figure 1, vehicles usu-
ally move in drivable areas, and pedestrians usually move along sidewalks.
More importantly, the relationships between trajectory and map can be gen-
eralized to other scenes. For example, in the middle of Figure 1, the model
learns from the upper scene that the moving car should follow the boundary
of the road. By capturing this relationship, the model knows that a car in
the unseen bottom scene should also follow the boundary of the road.

– Existing works in trajectory forecasting only take advantage of the agent-
centric map patches, the local regions containing at least one annotated
trajectory, but significantly under-utilize other parts of the maps, which
cover much larger areas. As shown in Figure 1, agent-centric map patches
are tiny compared with the leftmost global map.

Based on the above observations, we propose PreTraM, a self-supervised pre-
training scheme via connecting trajectories and maps for trajectory forecasting.
Specifically, we jointly pre-train the trajectory encoder and the map encoder
of a model in two ways: 1) Trajectory-Map Contrastive Learning (TMCL): In-
spired by CLIP [28], we constrast trajectories with corresponding map patches
to enforce the model to capture their relationship. 2) Map Contrastive Learn-
ing (MCL): We train a stronger map encoder with contrastive learning on large
quantities of trajectory-decoupled map patches, which outnumber the agent-
centric ones by 782x. In short, PreTraM is a synergy of TMCL and MCL: a
better trajectory representation is learned via bridging the map and trajectory
representations with TMCL, so that the trajectory encoder benefits from the
map representation enhanced by MCL.

Our method reduces the prediction error of a variety of popular prediction
models including AgentFormer [35] and Trajectron++ [29] by 5.5% and 6.9%
relatively on the nuScenes dataset [3]. More importantly, we find that PreTraM is
able to achieve larger performance gain when less data is available. Impressively,
using only 70 % of the trajectory data, PreTraM on top of AgentFormer show
superior performance than AgentFormer trained on 100 % trajectory data. This
demonstrates the proposed pre-training scheme brings strong data efficiency.
Furthermore, we apply PreTraM to larger versions of AgentFormer and observe
it consistently improves prediction accuracy when the model scales up. We also
conduct sufficient ablation studies and shed light on how PreTraM works.

In summary, our key contributions are as follows:

– We propose PreTraM, a novel self-supervised pre-training scheme for tra-
jectory forecasting by connecting trajectories and maps, which consists of
trajectory-map contrastive learning and map contrastive learning.

– We show with experiments that PreTraM achieves up to 6.9 % relative im-
provement in FDE-10 upon popular baselines.

– PreTraM enhances the data efficiency of prediction models, using 70% train-
ing data but beating the baseline with 100% training data, and generalizes
to models of larger scales.

– Through ablation studies and analysis, we demonstrate the efficacy of TMCL
and MCL respectively, and shed light on how PreTraM works.

4 C. Xu et al.

2 Background

2.1 Problem Formulation of Trajectory Forecasting

In trajectory forecasting, we aim to predict the future trajectories of multiple
target agents in a scene. Typically, a set of history states x for all agents and
the surrounding HD-map patches M are input to the model fω and the model
predicts the future trajectories of each agent y = fω(x,M).

The HD-map contains rich semantic information (e.g., drivable area, stop
line, and traffic light) [3]. In this work, we employ rasterized top-down semantic
images around each of the agents as the input HD-map patches M , i.e., M =
{mi}i∈{1,...,A},mi ∈ RC×C×3, where C is the context size and 3 denotes the RGB
channels. Note that each color has its specific semantic meaning in HD-maps.

As for the history states, denoting the number of agents in the scene as A, and

the history time span as T , then x = s
(−T :0)
1,...,A ∈ RT×A×D, where si is the history

states of agent i, and 0 denotes the current timestamp. D is the dimension of
features that generally contain the agent’s 2D or 3D coordinates, as well as other
information such as its heading and its speed.

2.2 Contrastive Learning

Contrastive learning is a powerful method for self-supervised representation
learning that was made popular by [6–8,18]. Using instance discrimination as the
pretext task, they pull the semantically-close neighbors together and push away
non-neighbors [14]. For example, in SimCLR [6], given a mini-batch of inputs,
each input xi is transformed into a positive sample x+

i . Let hi, h
+
i denote the

hidden representation of xi, x
+
i . Then on a mini-batch of N pairs of (xi, x

+
i), it

adopts the InfoNCE loss [25] as its training objective.
In particular, we are interested in one specific work that explored contrastive

learning in NLP: SimCSE [14]. Instead of using word replacement or deletion
as augmentation, it uses different dropout masks in the model as the minimal
augmentation for the positive samples. This simple approach turns out to be
very effective in that it fully preserves the semantic of the text, compared with
other augmentation operations. To preserve the semantic of HD-map, we also
adopt dropout for the positive samples in map contrastive learning.

More recently, CLIP [28] demonstrated the power of cross-modal contrastive
learning conditioned on huge amounts of data. It collects paired images and
captions from the Internet and asks the model to pair an image with the cor-
responding text, using large batches. For a mini-batch of N pairs of images Ii
and texts Ti, denoting their hidden representations as (hI

i , h
T
i), it applies cross-

entropy loss on the N ×N similarity matrix over all pairs of images and texts,
stated as follows:

li = − log
esim(hI

i ,h
T
i)/τ∑N

j=0 e
sim(hI

i ,h
T
j)/τ

(1)

PreTraM 5

Map
Encoder

Past
Trajectory
Encoder

Map
Encoder

share weights

trajectory-decoupled map patch

Map
Encoder

Map
Encoder

Negative sample

Positive sample

agent-centric map patch

Forward twice with
standard dropout

agent
trajectory

m1 m2 m3

s1 s2 s3 Similarity
Matrix

Map Contrastive Learning (MCL)

Trajectory-Map Contrastive Learning
(TMCL)

m1·s1

m2·s1

m1·s2 m1·s3

m2·s2 m2·s3

m3·s1 m3·s2 m3·s3

Fig. 2. Top: Map Contrastive Learning (MCL). On the contrary to agent-centric map
patches, the trajectory-decoupled ones do not necessarily contain agent trajectories.
During training, we randomly crop those patches from the whole map around positions
on the road. Bottom: Trajectory-Map Contrastive Learning (TMCL).

where sim(·, ·) is a measurement of similarity, typically the cosine similarity, and
τ is the temperature parameter. Note that it can be seen as the InfoNCE loss
using the corresponding text as the positive sample of an image.

Intuitively, using natural language as supervision of images, CLIP puts image
and text in a shared embedding space. Besides, equation (1) enforces similarity
between the correct pair of images and text, and thus learns the pattern of
image-text relationship. Following this intuition, we design a trajectory-map
contrastive learning objective to capture the relationship between them.

3 Method

We propose a novel self-supervised pre-training scheme by connecting trajectory
and map (PreTraM) to enhance the trajectory and map representations when
there are small-scale trajectory data, but large-scale map data. We jointly pre-
train a trajectory encoder and a map encoder to obtain good trajectory repre-
sentation by encoding the trajectory-map relationship into the representation.

As illustrated in Figure 2, the proposed PreTraM is composed of two parts: 1)
A simple trajectory-map contrastive learning (TMCL) that is conducted between
map encoder and trajectory encoder, using limited number of trajectories and
the paired map patches. 2) A simple map contrastive learning (MCL) that is
conducted on map encoder using large batch size on trajectory-decoupled map
patches, where there are not necessarily agent trajectories. After pre-training,
we load the pre-trained weights and finetune under the prediction objective with
the same training schedules as the original models.

6 C. Xu et al.

3.1 Trajectory-Map Contrastive Learning (TMCL)

We propose to use a cross-modal contrastive learning method that facilitates
both trajectory encoder and map encoder. Specifically, given a mini-batch of
scenes, for all the input history states x, we split them into single agent tra-
jectories and treat them independently, i.e., S = {si|si ∈ x, ∀x ∈ B}, where
B denotes the mini-batch. For each agent, we crop an agent-centric map patch
around its current position from the HD-map, and then we have Ntraj = |S|
pairs of correlated trajectories and HD-map patches (si,mi). We also rotate the
map with respect to the orientation of the agent following the common prac-
tice [29, 35]. The model is required to match each trajectory si with the paired
map patch mi among all the map patches in the mini-batch and vice versa. As
shown in bottom of Figure 2, we input the trajectories and maps into the cor-
responding encoders to obtain the features {htraj

i }, {hmap
i }. Then we compute

a similarity matrix across all pairs of trajectories and maps in the mini-batch.
Note that we apply a linear projection layer [28] after the map encoder and the
trajectory encoder for the hidden representations h but omit it above for the sake
of simplicity. It is the same case in section 3.2 for MCL. Finally, we optimize a
symmetric cross-entropy loss over these similarity scores as follows [28]:

lTMCL
i = − log

esim(htraj
i ,hmap

i)/τtraj∑Ntraj

j=1 esim(htraj
i ,hmap

j)/τtraj
(2)

Through this objective, the similarities of the correct pairs of the trajectories
and maps are maximized and those of the other pairs are minimized. It results
in a shared embedding space of trajectories and maps. We find that a prediction
model that fuses map and trajectories to make prediction benefits from such
a shared embedding space. It agrees with the finding in [20] that models for
vision-language tasks benefit from an aligned embedding space for the visual
and language inputs. The TMCL objective teaches the model to encode the re-
lationship between maps and trajectories into the representation. By capturing
the relationship, the trajectory embedding contains the information of the un-
derlying map conditioned on the input trajectory, which implies the geometric
and routing information of the future trajectories for the predictor.

3.2 Map Contrastive Learning (MCL)

To further facilitate learning the trajectory-map relationship, we learn a general
map representation by map contrastive learning. At each training iteration, we
randomly crop Nmap map patches from a random subset of HD-Maps in the
dataset. Note that Nmap is much greater than the agent number A.

In addition to using a large number of map patches, the key ingredient to
get MCL to work effectively is using the exact identical instance as its positive
sample, i.e., m+

i = mi, and apply dropout in the map encoder [14]. Denote the
hidden representation hz

i = gθ(mi, z) where gθ is the map encoder and z is a
random mask for dropout. As shown in the top part of Figure 2, we feed the the

PreTraM 7

same map patch to the encoder in two independent forward passes with different
dropout masks z, z′, which gives two representation hz

i , h
z′

i for each mi. Thanks

to dropout, hz
i and hz′

i are different, but still encode the same topology and
semantic. In contrast, regular augmentation operations in CV such as random
rotation, flip, gaussian noise or color jitter do not work here. Gaussian noise and
color jitter transform the semantics of HD-maps, while flip and rotation change
their topologies. Instead, dropout serves as a minimal augmentation for the
positive sample and turns out to be effective through experiments. We provide
comparison experiments on dropout against other augmentations in Section 2 of
the supplementary material. Formally, the training objective of MCL is:

lMCL
i = − log

esim(h
zi
i ,h

z′i
i)/τmap∑Nmap

j=1 esim(h
zi
i ,h

z′
j

j)/τmap

(3)

It is worth noting that MCL is a novel use of HD-maps not only because we
make use of every piece of the HD-map, but also because we design a customized
training objective to make better use of HD-maps.

3.3 Training Objective

The PreTraM scheme is complete with the joint of TMCL and MCL. The overall
objective function combines their objectives, given by:

L =

Ntraj∑
i=1

lTMCL
i + λ

Nmap∑
i=1

lMCL
i (4)

4 Experiments

4.1 Dataset and implementation details

Dataset. nuScenes is a recent large-scale autonomous driving dataset collected
from Boston and Singapore. It consists of 1000 driving scenes with each scene
annotated at 2Hz, and the driving routes are carefully chosen to capture chal-
lenging scenarios. The nuScenes dataset provides HD semantic maps from Boston
Seaport together with Singapore’s One North, Queenstown and Holland Village
districts, with 11 semantic classes. It is split into 700 scenes for training, 150
scenes for validation, and 150 scenes for testing.

Our main experiments follow the split used in AgentFormer [35], in which
the original training set is split into two parts: 500 scenes for training, and 200
scenes for validation. The original validation set is used for testing our model.

Baseline. We performed experiments with PreTraM on two models, Agent-
Former [35] and Trajectron++ [29]. Both of them are CVAE models including a
past trajectory encoder, a map encoder, a future trajectory encoder, and a future

8 C. Xu et al.

trajectory decoder. We reproduced AgentFormer to support parallel training.
Compared with the original code, our reproduced code trains 17.1x faster than
the official code (4.5 hours vs. 77 hours on one V100 GPU), and its performance
is competitive—0.029 better than the official implementation on ADE-5. Note
that AgentFormer separately trains DLow [34] for better sampling. We did not
reproduce this part since we focus on representation learning and want a pre-
cise quantitative evaluation on the benefit of PreTraM to the model itself. Plus,
Trajectron++ does not use DLow while applicable. We want to keep the setting
consistent, so that it is meaningful to compare the performance gains between
different models. As for Trajectron++ [29], we use their official implementation
but re-train it using the data split in AgentFormer to ensure fair comparison. In
the following sections, we denote AgentFormer/Trajectron++ pre-trained with
PreTraM as PreTraM-AgentFormer/PreTraM-Trajectron++, or PreTraM when
the model is clear in the context.

Pre-training and finetuning. Our pre-training is applied to the past trajec-
tory encoder and map encoder. To train TMCL, we pair the historical trajectories
of last 2s and map patches of context size 100×100. We randomly rotate the tra-
jectories and maps simultaneously for data augmentation. For MCL, we collect
the trajectory-decoupled map patches dynamically at training. For each instance
in the mini-batch, we crop 120 map patches centered at random positions along
the road in the HD-map. We pre-train the encoders with the PreTraM objective
function for 20 epochs using batch size 32 (which means 3440 map patches for
MCL in one iteration). Throughout the pre-training phase, we use 28.8M map
patches to train our map encoder, which is 782x more than agent-centric map
patches. The pre-training phase is fast—only 30 minutes on one V100 GPU for
AgentFormer. More details are in Section 3 of the Supplementary material.

Recall that we use dropout for positive samples in MCL. In shallow map
encoders, such as Map-CNN used in AgentFormer and Trajectron++, we place
the dropout at post-activation of each convolution. For relatively deeper map
encoder such as ResNet family, we place two dropout masks on each residual
block. The mask ratio of dropout is default as p = 0.1.

At finetuning phase, we use the same training recipes as AgentFormer and
Trajectron++. The prediction horizon is 6 seconds and we use the ground-truth
future trajectories to supervise the training.

Metric. The main metrics are Average Displacement Error (ADE) and Final
Displacement Error (FDE). We follow previous works [29,35] to sample k trajec-
tories during inference and pick the minimum of the error, denoting as ADE-k
and FDE-k. Apart from the sampling based metrics above, we also use a deter-
ministic metric meanFDE, which is the FDE of the trajectory that the model
deems as the most likely.

We also leverage the metrics including Kernel Density Estimate-based Neg-
ative Log Likelihood (KDE NLL) [29] and boundary violation rate. The former
measures the NLL of the ground truth trajectory under a distribution created

PreTraM 9

Table 1. Comparison experiments based on AgentFormer [35] and Trajectron++ [29].
Note that the reported AgentFormer is removed of DLow. The AgentFormer* denotes
our reproduced implementation. Lower number is better.

Method ADE-5 FDE-5 ADE-10 FDE-10

MTP [9] 2.93 - - -
AgentFormer [35] 2.517 5.459 1.852 3.869

MultiPath [5] 2.32 - 1.96 -
DLow-AF [34] 2.11 4.70 1.78 3.58
DSF-AF [23] 2.06 4.67 1.66 3.71
CoverNet [26] 1.96 - 1.48 -

AgentFormer* 2.488 5.420 1.893 3.902
PreTraM-AgentFormer* 2.391(-0.097) 5.177(-0.243) 1.796(-0.097) 3.687(-0.215)

Trajectron++ [29] 1.772 4.150 1.405 3.221
PreTraM-Trajectron++ 1.698(-0.074) 3.963(-0.197) 1.348(-0.057) 3.040(-0.181)

Table 2. Experimental evaluation on meanFDE, KDE NLL, and Boundary violation
rate (B. Viol.) provided by Trajectron++ [29]. Lower number is better.

Method meanFDE KDE NLL B. Viol. (%)

Trajectron++ 8.242 2.487 23.7
PreTraM-Trajectron++ 8.212(-0.030) 2.380(-0.107) 21.9(-1.8)

by fitting a kernel density estimate on trajectory samples, which shows the like-
lihood of the ground truth trajectory given the sampled trajectory predictions.
The latter is the ratio of the predicted trajectories that hit road boundaries.

4.2 Comparison Experiments

The results compared with the baselines and the other prior-arts are shown in
Table 1. Observe that using PreTraM improves the performance by 0.097 (resp.
0.074) ADE-5, 0.243 (resp. 0.197) FDE-5, 0.097 (resp. 0.057) ADE-10, 0.215
(resp. 0.181) FDE-10, on top of AgentFormer (resp. Trajectron++). This is up
to 4.1% relative improvement on ADE-5 and 6.9% on FDE-10. Remarkably, we
achieve it with a simple pre-training scheme. PreTraM does not rely on long pre-
training epochs or huge quantities of external data as said in section 4.1. The HD-
map we use during pre-training is inherently provided by the dataset. Besides,
PreTraM is plug-and-play, and can be easily applied to most prediction model
that fuses HD-map and trajectory. In conclusion, these results demonstrate that
PreTraM indeed facilitates the models in representation learning. Note that our
reproduced AgentFormer does not include DLow as stated in Section 4.1.

We also evaluate the results on the metrics provided by Trajectron++ to show
the advantage of PreTraM. PreTraM-Trajectron++ improves baseline by 0.107
KDE NLL and 1.8% boundary violation rate (Table 2). The improvements on
these two metrics show that our pre-training scheme not only improves prediction
accuracy, but also improves stability and safety.

10 C. Xu et al.

ADE-5 w.r.t. Percentage of Trajectory Data FDE-5 w.r.t. Percentage of Trajectory Data

Percentage of Trajectory Data Percentage of Trajectory Data

AD
E-

5

FD
E-

5

Fig. 3. Experiments with part of the trajectory data. Left: ADE-5 results. Right: FDE-
5 results. We repeat the experiments with 3 different random seeds and report the mean
performance. The error bars are 3 times the standard deviation. As the percentage of
trajectory data becomes lower, the improvements of PreTraM are larger. Moreover, the
std of PreTraM is much smaller than the baseline over all the settings.

4.3 Data Efficiency

In this section, we explore whether the learned representations of trajectory
and map can improve data efficiency. To investigate this we evaluate PreTraM-
AgentFormer on a fraction of the dataset, comparing its result with baseline
AgentFormer. In this set of experiments to best demonstrate our strength, we
use ResNet18 as a substitute for the 4-layer map encoder, Map-CNN, in the
original AgentFormer. This is due to the intuition that larger models are better
at representation learning [6, 18, 28]. We randomly sample 80%, 40%, 20% and
10% trajectories from the dataset, but keep all the HD-maps available. For each
setting, we repeat the experiments with 3 different random seeds and report
the mean and the standard deviation in Figure 3. We observe that PreTraM-
AgentFormer outperforms the baseline in all settings. More importantly, the
performance gain of PreTraM gets larger as the percentage of data goes smaller.
With 10% of data, i.e., around 1200 samples, PreTraM surpasses the baseline
by 0.32 on ADE-5 and 0.77 on FDE-5. Moreover, the std of PreTraM is much
smaller than the baseline. The std of ADE-5 of the baseline are 0.035 (80%),
0.079 (40%), 0.143 (20%), and 0.154 (10%) respectively, while those of PreTraM
are 0.017, 0.018, 0.108, 0.091. It is the same case in terms of FDE-5.

In addition, we observe that training on 70% of data, PreTraM-AgentFormer
still outperforms the baseline with 100 % of data (2.470 ADE-5 vs. 2.472 ADE-5).
More results are shown in Section 1 of the supplementary material.

4.4 Scalability Analysis

A good representation learning method is able to scale with the model size [6,
18]. Therefore, we evaluate PreTraM on map encoders and trajectory encoders

PreTraM 11

Ma
p-C
NN
+T
F2
-25
6

Re
sN
et1
8+
TF
2-2
56

Re
sN
et3
4+
TF
2-2
56

Ma
p-C
NN
+T
F2
-51
2

Re
sN
et1
8+
TF
2-5
12

Re
sN
et3
4+
TF
2-5
12

AD
E-

5

ADE-5 w.r.t. Model Scale

2.488

2.391

2.472

2.372

2.441

2.342

2.401

2.340

2.384

2.322

2.414

2.364

Ma
p-C
NN
+T
F2
-25
6

Re
sN
et1
8+
TF
2-2
56

Re
sN
et3
4+
TF
2-2
56

Ma
p-C
NN
+T
F2
-51
2

Re
sN
et1
8+
TF
2-5
12

Re
sN
et3
4+
TF
2-5
12

FDE-5 w.r.t. Model Scale

FD
E-

5

5.420

5.177

5.401

5.183

5.359

5.103

5.272

5.097

5.200

5.066

5.277

5.150

Fig. 4. Experiment with models at different scales. As the model gets deeper and wider,
PreTraM consistently improves AgentFormer by a large margin.

of different depth and width. Map-CNN is the map encoder used in original
AgentFormer. It is merely a 4-layer convolutional network. Alternatively, we
use ResNet18 or ResNet34 as the map encoder. Besides, we tried trajectory
encoders of various channel size including 256 and 512. As shown in Figure 4,
PreTraM consistently improves ADE and FDE upon models of different scales.
Note that we observe overfitting of the ResNet34+TF-512 model, which is why
its performance degrades compared with smaller models.

4.5 Analysis

It is natural that PreTraM enhances the map representation since we utilize
28.8M map samples for pre-training the map encoder, but as we proposed in
previous sections, another important goal is to further enhance the trajectory
representation. Therefore, we conduct experiments and delve deep into the func-
tion of PreTraM to discuss how it enhances the trajectory representation. All
the experiments are completed upon AgentFormer with Map-CNN.

Does PreTraM indeed improve trajectory representation? In fact, we
can quantitatively demonstrate this by loading one of the pre-trained encoders,
trajectory encoder (TE) and map encoder (ME), at finetuning phase. As shown
in Table 3, we can first observe that loading only the pre-trained map encoder
improves prediction performance. More importantly, we observe that just loading
TE pre-trained weights is able to give almost the same result as loading both of
ME and TE. This means the learnt trajectory representation is strong, and that
the major benefit of PreTraM owes to the trajectory representation.

So our answer is “Yes, PreTraM indeed improves trajectory representation.”
Is TMCL crucial for improving trajectory representation? To ex-

amine the contribution of TMCL, we experiment with an alternative to TMCL

12 C. Xu et al.

Table 3. Comparison with loading one of the pretrained models when finetuning. ME:
map encoder, TE: past trajectory encoder.

Method ADE-5 FDE-5

Baseline AgentFormer 2.488 5.420

Finetune with both pretrained weights (PreTraM) 2.391(-0.097) 5.177(-0.243)
Finetune with only TE pretrained weights 2.399(-0.089) 5.277(-0.143)
Finetune with only ME pretrained weighst 2.454(-0.034) 5.372(-0.048)

Table 4. Comparison with different pre-training strategies. MTM means masked tra-
jectory modeling, recovering the masked trajectories during pre-training, which is a
mimic of masked language modeling in NLP [12].

Method ADE-5 FDE-5

Baseline AgentFormer 2.488 5.420

Pre-training with both TMCL and MCL (PreTraM) 2.391(-0.097) 5.177(-0.243)
Pre-training with MTM and MCL 2.431(-0.057) 5.322(-0.098)

Pre-training with only MCL 2.442(-0.046) 5.373(-0.057)
Pre-training with only TMCL 2.451(-0.037) 5.369(-0.051)

as the objective function for pre-training trajectory representation. Inspired by
Masked Language Modeling (MLM) [12] for sequence modeling in NLP, we ran-
domly mask out part of the input history states and ask the trajectory encoder
to recover the masked part. Denoting this task as Masked Trajectory Modeling
(MTM), we jointly pre-train the model on the objective of MTM and MCL.
For variable controlling, we also pre-train the model solely on MCL. As shown
in Table 4 we find that MTM plus MCL does improve from the baseline but
is almost comparable to pre-training with only MCL. It shows the important
role of TMCL in trajectory representation learning as it learns trajectory-map
relationship and bridges the trajectory and map embedding space.

So our answer is “Yes, TMCL is crucial to improve trajectory representation.”

Is MCL crucial for improving trajectory representation? Indeed, as
shown in Table 4, when pre-training only with MCL, the improvement is 0.046.
This makes sense in that HD-map is an important prior to prediction and thus
better map representation in general can improve prediction. But is MCL also
helpful to trajectory representation? To examine this, we only pre-train with
TMCL. We find that without MCL, TMCL brings limited improvements com-
pared with PreTraM, e.g., 0.037 ADE-5 vs. 0.097 ADE-5 with PreTraM (Table.
4). This demonstrates that although map and trajectory are totally different
modalities, PreTraM makes use of much more maps to enhance trajectory rep-
resentation under the situation that the trajectory data is limited.

So our answer is “Yes, MCL is crucial to improve trajectory representation.”

PreTraM 13

5 Related works

Given a trajectory forecasting model, the applicable pre-training schemes largely
depend on the adopted scene representation. In this section, we first give a concise
summary of the literature from the perspective of scene representation. Then, we
review several works related to self-supervised learning for trajectory forecasting.

5.1 Scene Representation in Trajectory Forecasting

In complex urban traffic scenarios, it is crucial to utilize the semantic informa-
tion of the scene to make accurate predictions. A widely-adopted approach is
to employ rasterized top-down semantic images around the target agents as in-
put and use CNNs to encode the context [5, 9, 27, 29, 35]. The past trajectories
of the predicted agents are encoded separately and then aggregated with the
context embedding. Our proposed PreTraM can be directly applied to pretrain
models with this scene representation. The image-based representation has con-
stant input size regardless of the complexity of the scene, which makes encoding
simple and unified. However, some argued recently that rich semantic and struc-
tured information (e.g., relations between road segments) of the maps is lost
through rasterization [13,21]. To this end, they proposed to represent scenes as
graphs that naturally inherit the structured information. Graph neural networks
(GNN) [1, 21] and Transformers [13, 33] were then adopted to encode the con-
text information from the scene graphs. Many graph-based models have then
achieved state-of-the-art performance on multiple benchmarks [11,15–17,32,36].

5.2 Self-Supervised Learning in Trajectory Forecasting

Pre-training and, in a broader sense, self-supervised learning are under-explored
for trajectory forecasting. There are only a few recent works investigating their
applications in trajectory forecasting. Inspired by similar methods in NLP, an
auxiliary graph completion task was proposed in [13] to enhance the node rep-
resentation, including both road elements and agents. However, the graph com-
pletion objective was jointly optimized with the prediction task. Moreover, the
auxiliary task was applied to their Transformer-based encoder for the scene
graphs, which limits the amount of data for self-supervised training to the size
of prediction datasets. In contrast, our PreTraM framework lets trajectory en-
coder benefit from the large number of map patches that are not associated with
agents. In [22], SimCLR was adopted to pre-train the representation of rasterized
maps and agent relations. They deliberately introduced assumptions on semantic
invariant operations based on domain knowledge. In our MCL, we follow [14] to
avoid any assumptions on semantic invariant operations. Moreover, [22] focuses
on contrastive learning within the same modality of data, and in the broader
community of autonomous driving, [4] adopts single-modal contrastive learning
on maps to improve sample efficiency, whereas our PreTraM framework lever-
ages single-modal and cross-modal contrastive learning to jointly train trajectory
and map representations. As shown in Sec. 4.5, PreTraM has clear performance
advantage over single-modal contrastive learning within each data modality.

14 C. Xu et al.

6 Discussion and Limitations

Our experiments demonstrated that PreTraM is effective for prediction models
based on rasterized map representation. In principle, PreTraM is not limited
to image-based map encoders. We can also apply PreTraM to those popular
graph-based methods reviewed in Sec. 5.1, as long as we can obtain separate
map and trajectory embeddings from the pipeline. For instance, some works
adopted a two-stage graph encoding scheme, where the map graph was encoded
before being fused with trajectory embeddings [15, 16, 21]. We want to point
out that GNNs may behave differently from CNNs during pre-training, and we
are interested in extending PreTraM to graph-based methods as future study.
Meanwhile, other works integrate the road elements and agents into a single
graph before aggregation [11,13,17,32,36]. PreTraM cannot be applied to these
models, as there are no matching pairs of map and trajectory embeddings in
their pipelines. We are interested in exploring alternative pre-training methods
for these models. Besides, PreTraM may also benefit end-to-end methods that
predict trajectories directly from raw sensor inputs [19, 30]. Cross-modal con-
trastive learning can still be applied to enhance trajectory representation with
sensor inputs such as 3D point-clouds or images. Another interesting extension is
to contrast multi-agent trajectory embeddings with maps to enhance interaction
modeling [31].

7 Conclusion

In this paper, we propose PreTraM, a novel self-supervised pre-training scheme
for trajectory forecasting. We design Trajectory-Map Contrastive Learning (TMCL)
to help models capture the relationship between agents and the surrounding HD-
map, and Map Contrastive Learning (MCL) to enhance map representation via a
large number of augmented map patches that are not associated with the agents.
With PreTraM, we reduce the error of Trajectron++ and AgentFormer by 5.5%
and 6.9% relatively. Furthermore, PreTraM promotes data efficiency of the mod-
els. We also demonstrate that our method can consistently improve performance
when the model size scales up. Through ablation studies and analysis, we show
PreTraM indeed enhances map and trajectory representations. In particular, a
better trajectory representation is learned via bridging the map and trajectory
representations with TMCL, so that the trajectory encoder can benefit from the
map representation enhanced by MCL. Therefore the performance improvement
is attributed to the coherent integration of MCL and TMCL in our framework.

Acknowledgements

We sincerely appreciate Boris Ivanovic and Rowan McAllister for providing
help on the experiments related to Trajectron++. This work was sponsored
by Google-BAIR Commons program. Google also provided a generous donation
of cloud compute credits through the Google-BAIR Commons program.

PreTraM 15

References

1. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.:
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018) 13

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)
2

3. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11621–11631 (2020) 2, 3, 4

4. Cai, P., Wang, S., Wang, H., Liu, M.: Carl-lead: Lidar-based end-to-end au-
tonomous driving with contrastive deep reinforcement learning. arXiv preprint
arXiv:2109.08473 (2021) 13

5. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: Multiple probabilistic
anchor trajectory hypotheses for behavior prediction. In: CoRL (2019) 9, 13

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International conference on machine
learning. pp. 1597–1607. PMLR (2020) 2, 4, 10

7. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised
models are strong semi-supervised learners. Advances in neural information pro-
cessing systems 33, 22243–22255 (2020) 4

8. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020) 4

9. Cui, H., Radosavljevic, V., Chou, F.C., Lin, T.H., Nguyen, T., Huang, T.K., Schnei-
der, J., Djuric, N.: Multimodal trajectory predictions for autonomous driving using
deep convolutional networks. In: 2019 International Conference on Robotics and
Automation (ICRA). pp. 2090–2096. IEEE (2019) 9, 13

10. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012) 2

11. Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned
on lane-graph traversals. In: Conference on Robot Learning. pp. 203–212. PMLR
(2022) 13, 14

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/
N19-1423 2, 12

13. Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., Schmid, C.: Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020) 2, 13, 14

14. Gao, T., Yao, X., Chen, D.: SimCSE: Simple contrastive learning of sen-
tence embeddings. In: Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing. pp. 6894–6910. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic (Nov 2021).

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

16 C. Xu et al.

https://doi.org/10.18653/v1/2021.emnlp-main.552, https://aclanthology.org/

2021.emnlp-main.552 4, 6, 13
15. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Home:

Heatmap output for future motion estimation. In: 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). pp. 500–507 (2021).
https://doi.org/10.1109/ITSC48978.2021.9564944 13, 14

16. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: THOMAS:
Trajectory heatmap output with learned multi-agent sampling. In: International
Conference on Learning Representations (2022), https://openreview.net/forum?
id=QDdJhACYrlX 13, 14

17. Gu, J., Sun, C., Zhao, H.: Densetnt: End-to-end trajectory prediction from dense
goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 15303–15312 (2021) 13, 14

18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9729–9738 (2020) 2, 4, 10

19. Laddha, A.G., Gautam, S., Palombo, S., Pandey, S., Vallespi-Gonzalez, C.: Mv-
fusenet: Improving end-to-end object detection and motion forecasting through
multi-view fusion of lidar data. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW) pp. 2859–2868 (2021) 14

20. Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before
fuse: Vision and language representation learning with momentum distillation. In:
NeurIPS (2021) 6

21. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning
lane graph representations for motion forecasting. In: European Conference on
Computer Vision. pp. 541–556. Springer (2020) 13, 14

22. Ma, H., Sun, Y., Li, J., Tomizuka, M.: Multi-agent driving behavior prediction
across different scenarios with self-supervised domain knowledge. In: 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC) (2021) 13

23. Ma, Y.J., Inala, J.P., Jayaraman, D., Bastani, O.: Likelihood-based diverse sam-
pling for trajectory forecasting. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 13279–13288 (2021) 9

24. Ngiam, J., Vasudevan, V., Caine, B., Zhang, Z., Chiang, H.T.L., Ling, J., Roelofs,
R., Bewley, A., Liu, C., Venugopal, A., Weiss, D.J., Sapp, B., Chen, Z., Shlens,
J.: Scene transformer: A unified architecture for predicting future trajectories of
multiple agents. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=Wm3EA5OlHsG 2

25. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv e-prints pp. arXiv–1807 (2018) 4

26. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: Cover-
net: Multimodal behavior prediction using trajectory sets. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14074–
14083 (2020) 9

27. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: Cover-
net: Multimodal behavior prediction using trajectory sets. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2020) 13

28. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
pp. 8748–8763. PMLR (2021) 2, 3, 4, 6, 10

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://doi.org/10.1109/ITSC48978.2021.9564944
https://openreview.net/forum?id=QDdJhACYrlX
https://openreview.net/forum?id=QDdJhACYrlX
https://openreview.net/forum?id=Wm3EA5OlHsG

PreTraM 17

29. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In: European
Conference on Computer Vision. pp. 683–700. Springer (2020) 3, 6, 7, 8, 9, 13

30. Shah, M., ling Huang, Z., Laddha, A.G., Langford, M., Barber, B., Zhang, S.,
Vallespi-Gonzalez, C., Urtasun, R.: Liranet: End-to-end trajectory prediction using
spatio-temporal radar fusion. In: CoRL (2020) 14

31. Tang, C., Zhan, W., Tomizuka, M.: Exploring social posterior collapse in variational
autoencoder for interaction modeling. Advances in Neural Information Processing
Systems 34, 8481–8494 (2021) 14

32. Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K.S., Nayakanti, N., Cornman,
A., Chen, K., Douillard, B., Lam, C.P., Anguelov, D., Sapp, B.: Multipath++:
Efficient information fusion and trajectory aggregation for behavior prediction. In:
2022 International Conference on Robotics and Automation (ICRA). pp. 7814–
7821 (2022). https://doi.org/10.1109/ICRA46639.2022.9812107 13, 14

33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017) 13

34. Yuan, Y., Kitani, K.: Dlow: Diversifying latent flows for diverse human motion
prediction. In: European Conference on Computer Vision. pp. 346–364. Springer
(2020) 8, 9

35. Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021) 3, 6, 7, 8, 9, 13

36. Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y.,
Chai, Y., Schmid, C., Li, C., Anguelov, D.: Tnt: Target-driven trajectory predic-
tion. In: Kober, J., Ramos, F., Tomlin, C. (eds.) Proceedings of the 2020 Conference
on Robot Learning. Proceedings of Machine Learning Research, vol. 155, pp. 895–
904. PMLR (16–18 Nov 2021), https://proceedings.mlr.press/v155/zhao21b.
html 13, 14

https://doi.org/10.1109/ICRA46639.2022.9812107
https://proceedings.mlr.press/v155/zhao21b.html
https://proceedings.mlr.press/v155/zhao21b.html

	PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map

