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Abstract. Computer vision systems for autonomous navigation must
generalize well in adverse weather and illumination conditions expected
in the real world. However, semantic segmentation of images captured
in such conditions remains a challenging task for current state-of-the-
art (SOTA) methods trained on broad daylight images, due to the asso-
ciated distribution shift. On the other hand, domain adaptation tech-
niques developed for the purpose rely on the availability of the source
data, (un)labeled target data and/or its auxiliary information (e.g., GPS).
Even then, they typically adapt to a single(specific) target domain(s). To
remedy this, we propose a novel, fully test time, adaptation technique,
named Master of ALL (MALL), for simultaneous generalization to multi-
ple target domains. MALL learns to generalize on unseen adverse weather
images from multiple target domains directly at the inference time. More
specifically, given a pre-trained model and its parameters, MALL enforces
edge consistency prior at the inference stage and updates the model
based on (a) a single test sample at a time (MALL-sample), or (b) con-
tinuously for the whole test domain (MALL-domain). Not only the target
data, MALL also does not need access to the source data and thus, can
be used with any pre-trained model. Using a simple model pre-trained
on daylight images, MALL outperforms specially designed adverse weather
semantic segmentation methods, both in domain generalization and test-
time adaptation settings. Our experiments on foggy, snow, night, cloudy,
overcast, and rainy conditions demonstrate the target domain-agnostic
effectiveness of our approach. We further show that MALL can improve
the performance of a model on an adverse weather condition, even when
the model is already pre-trained for the specific condition.

Keywords: Multi-target Domain Generalization, All Weather Urban-
Scene Segmentation, Test-time Adaptation, Normalized Cuts.

1 Introduction

Out-of-domain generalization plays a pivotal role in the success of deep neural
networks (DNNs) for safety-critical applications such as autonomous navigation.

https://mall-iitd.github.io/
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Problem Setting Source Data Target Label
(
yt
)

Train Loss Test Loss Open Targets

Fine-tuning − L
(
xt, yt

)
✗ ✗

Unsupervised domain adaptation[57] xs, ys ✗ L (xs, ys) + L
(
xt, xs

)
✗ ✗

Source-free domain adaptation[19] ✗ ✗ L
(
xt
)

✗ ✗

Domain Generalization[6] xs, ys ✗ L (xs, ys) ✗

Test-time training[45] xs, ys ✗ L (xs, ys) + L (xs) L
(
xt
)

Fully test-time adaptation[52] − ✗ ✗ L
(
xt
)

Table 1: Comparing different problem settings, the proposed technique fits in as
a fully test-time adaptation paradigm, which aims to adapt a pre-trained model
to an unseen target domain.

Although DNN based architectures have achieved tremendous success in many
computer vision tasks [25,14,13], they don’t perform well when the test data
comes from a domain with different sample distribution, referred to as the do-
main shift [30]. Domain shift can be caused by different factors such as input
corruption, adverse weather (rain, snow etc.), illumination changes (e.g. night
time), adversarial attacks, sensor malfunction etc. Ensuring robust performance
on unseen target domains is critical for the real-world applicability of DNNs.

Despite the success of DNNs for the task of semantic segmentation in sunny,
daytime conditions [4,3], these models suffer from severe performance degrada-
tion when applied on night, or adverse weather images due to low illumination,
shadows, motion blur, glare/or and overexposure. There is scarcity of labeled
ground truth data in night-time and adverse weather conditions for training a
DNNmodel. Further, semantic segmentation models are required to exhibit robust
performance and reliable operation in a wide range of changing environments,
and expecting availability of the data corresponding to all such conditions, and
their combinations (e.g. rainy night-time) is unrealistic, and impractical.

To mitigate the aforementioned issues, Domain Generalization (DG) approaches,
such as RobustNet [6], aim to improve robustness on the unseen target domains.
However the performance of DGmethods is still quite low on adverse weather con-
ditions (see Tab. 4). On the other hand, unsupervised domain adaptation (UDA)
techniques for semantic segmentation [62,64,59,58,63,50,49,47,41,26,21,18,15,5]
typically focus on synthetic-to-real domain adaptation, and are not relevant to
our focus. UDA techniques specially designed for adapting from normal to ad-
verse weather, require access to target dataset, and are limited to single target
domain only, such as nighttime[33,38,53] or fog[35,8]. This limits their real life
applicability which requires simultaneous adaptation to all weather conditions.

While effective, it might not be practical in a real-world scenario to collect
(even unlabeled) target data corresponding to all adverse visual conditions or
their exponential number of combinations. Moreover, there might be a shift in
the target data itself due to the dynamic nature of real-world processes. This
necessitates designing a model which can adapt on-the-fly when the data is being
received during inference. In the light of the above discussion, in this work, we
propose MALL for semantic segmentation of adverse weather images. MALL adapts
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Fig. 1: Our technique improves the prediction of a pre-trained segmentation
model by penalizing the loss if the edges in the predicted label image, S, do
not align with the visual edges in the input image.

a pre-trained model to unseen weather deteriorated images by enforcing an edge
consistency prior. The prior is enforced by aligning the edges in the input RGB
image with the edges in the output predicted label image using a loss inspired
from the normalized cuts [43]. Moreover, motivated by the recent fully-test time
adaptation paradigm [52], we enforce the prior only during the inference (and
not at the train time). This has a significant advantage in terms of removing
our reliance on the availability of unlabeled target data during training, and
capability to use any pre-trained model for adaptation during inference. The
key contributions of our work include:

– We propose to enforce edge consistency prior during inference for unsuper-
vised test time adaptation of semantic segmentation techniques for adverse
weather images. Taking inspiration from [43], we propose a Weighted Log
Multi-class Normalized Cut loss for the unsupervised test time training.

– We propose a new framework named MALL in two different settings: MALL-sample
adapts a pre-trained model to a single image at a time, whereas MALL-domain
adapts a model to the target domain at the test time.

– We perform rigorous experiments to demonstrate that MALL outperforms all
SOTA techniques in multiple settings: domain generalization, and unsuper-
vised domain adaptation.

– In a one of its kind experiment, we demonstrate the simultaneous, and
domain-agnostic effectiveness of the MALL on six different adverse weather
conditions: night, overcast, cloudy, snow, fog, and rain.

2 Related Work

Test-Time Adaptation: In a test-time training framework [45], in the first
step, one trains a DNN with the main task like classification and an auxiliary



4 N. Reddy et al.

task like rotation prediction of an image. During inference, the auxiliary task is
used to adapt network parameters to handle distribution shifts. TENT [52] has
proposed a fully test-time adaptation framework assuming no access to source
data and without altering training. It adapts the affine parameters of a batch
normalization layer to minimize entropy-based loss for a particular test sample.
We also propose a fully test-time adaptation framework specifically for unseen
adverse weather conditions such as nighttime, rain, etc. However, unlike TENT,
which uses entropy-based loss, we enforce edge prior to achieve our objective.

Domain Generalization (DG): These approaches aim to improve generaliza-
tion on the unseen target domains. While popular for image classification [60,61,31],
very few DG approaches have been proposed for semantic segmentation. IBNNet [27]
combines the advantage of instance normalization (to prevent over-fitting on
the training data) and batch normalization (learning discriminative intermedi-
ate feature representations) to improve generalization in semantic segmentation.
Switchable whitening [28] de-correlates intermediate feature maps to remove
domain-specific style information. RobustNet [6] extends whitening approach
to selectively remove higher values in channel-wise covariance matrix. MALL im-
proves generalization and complement above DG methods by directly adapting
to unseen adverse weather images during inference.

UDA Methods for Night-time Image Segmentation: GCMA [33] proposes
the use of intermediate twilight domain to adapt to nighttime images gradu-
ally from day to twilight, and twilight to the night-time domain. MGCDA [38]
extends it using self-training with curriculum learning to adapt gradually to
night images. Similarly [44,9,32], rely on image transfer models like cycleGAN
as a pre-processing step. However, their performance depend significantly on the
quality of images generated in the pre-processing step. To mitigate this, DANNet
[53] proposes a one-stage adaptation network without relying on an intermedi-
ate domain or image transfer model. DANNet uses reweighing strategy to handle
misalignment between day-night image pairs, and adversarial training accompa-
nied by pseudo-label supervision to enhance segmentation predictions. DANNet
also uses additional supervision from GPS to enhance semantic label predictions.
DANNet generates noisy predictions for moving objects like cars, and small ob-
jects like traffic lights. Our proposed method, MALL, does not need any extra
information from the target domain dataset.

Adaptation without Target Data: In a real-world scenario, it is often im-
practical to collect large labeled or unlabeled target data covering all possible
illumination scenarios. Recent work Zeroshot-DayNight [20] assumes no access
to unlabeled target night images and uses the color invariance idea[12], to pro-
pose a new layer in a DNN, referred to as color invariant convolution (CIConv).
The method claims to reduce the day-night distribution shift for intermediate
feature maps, but requires retraining the entire network from scratch using CI-
Conv, thus restricting its applicability. On the other hand, the proposed MALL

technique does not do any retraining of a model, but adapts the model on-the-fly
to unseen weather images during inference. MALL improves current SOTA meth-
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ods in both the scenarios, when having access to unlabeled night images during
training, as well as without access to them.

Normalized Cuts: Normalized cuts[43] is a popular graph partitioning algo-
rithm proposed for binary image segmentation. Tang et al. [46] has proposed to
use the normalized cut loss as a regularizer to improve performance in weakly-
supervised segmentation tasks. It uses cross-entropy loss for labeled pixels and
continuous normalized cut-based loss for weakly-labeled (scribbles) pixels to im-
prove segmentation predictions. We extend the normalized cut loss as edge con-
sistency prior for unsupervised domain generalization setting to penalize the
segmentation predictions if the label edges do not align with the visual edges in
the input.

3 Methodology

In this section, we go through the formulation of the proposed MALL technique.
Specifically, we propose to optimize the model parameters directly during infer-
ence using Weighted Log Multi-class Normalized Cut (WL-MNC) loss. The loss is
designed to penalize incorrect semantic label predictions when the consistency
of visual edges present at the boundaries of classes in an image is not preserved.
Note that, our assumption in the proposed MALL framework is that we do not
need access to the source data. The MALL technique can work in two different
settings, namely, MALL-sample and MALL-domain. The former updates the pre-
trained model based on a single nighttime image at a time, whereas the later
adapts the model continuously to all samples of the target domain as they are
presented in a streaming mode.

3.1 Softmax Multi-Class Normalized Cut Loss

In this section, we extend normalized cut [43] as a loss function for an unsuper-
vised, multi-class setting that can handle class imbalance in the target dataset.
Normalized Cut [43] is a popular graph partitioning algorithm for binary image
segmentation task. For the binary image segmentation task, we define a graph
node corresponding to every pixel in the image. Let I be an image, and A be the
affinity matrix, with A = [Aij ] being the similarity between pixel i and pixel j
in the image. Let d be the degree vector defined as d = A1, where 1 denotes a
vector of all ones. For a binary image segmentation task, where pixels are labeled
either as a foreground or background pixel, Normalized Cut loss for partitioning
pixels of an image into foreground (F) and background pixels (B) is defined as:

cut(F ,B) =
∑

x∈F,y∈B
A(x, y) (1)

Ncut(F ,B) = cut(F ,B)
assoc(F ,V)

+
cut(F ,B)
assoc(B,V)

(2)
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where V = F ∪ B, assoc(F ,V) =
∑

p∈F,q∈V Apq. If we denote binary image
segmentation prediction by a matrix S, then Eq. (2) can be rewritten as:

Ncut =
S⊤A(1− S)

d⊤S
(3)

Further, Normalized Cut loss can be extended to a multi-class setting as follows.
Let c be the total number of classes, and p denote a particular class. Let Sp

be the segmentation label prediction matrix corresponding to class p, such that
Sp[i][j] = 1, if the predicted label of pixel (i, j) is p, and Sp[i][j] = 0, otherwise.
Then, Multi-class Normalized Cut loss is a non-differentiable loss as shown below:

MultiClassNormalizedCut =

c−1∑
p=0

(Sp)
⊤
A (1− Sp)

d⊤Sp
(4)

To make a network end-to-end trainable, one can relax Multi-class Normalized
Cut loss to Softmax Multi-class Normalized Cut loss [46], by relaxing the value
of Sp[i][j] to predicted probability of pixel (i, j) taking label p.

3.2 Class Imbalance Re-weighting

We observe that most benchmark datasets (e.g., Cityscapes[7]) have highly
skewed ratio corresponding to the pixels of minority to majority classes. This
leads to reduced accuracy for the pixels belonging to the minority class. To han-
dle the class imbalance, we introduce weighted log class probability weighting
into the Multi-class Normalized Cut loss function. Let rp denote the normalized
frequency of class p in the source domain, i.e., number of pixels of class p divided
by total number of pixels4. We define the weight, wp, as:

wp =
log(rp)∑c−1
i=0 log(ri)

. (5)

We use wp to define a new loss function, Weighted Log Multi-class Normalized
Cut (WL-MNC) loss, to handle the class imbalance as follows:

LWL-MNC =

c−1∑
p=0

wp
(Sp)

⊤
A (1− Sp)

d⊤Sp
. (6)

3.3 Sample Importance Weighting

Given an image at the test time, we first create a mini-batch by multiple distor-
tions (called samples) of the input image. Then, we assign an importance weight

4 note that we do not assume the availability of source data as our method does not
need any training for the chosen backbone. However, we do assume the availability
of the statistics for the source dataset on which a given model is pre-trained on.
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to a sample k in the mini-batch based on the entropy, ek, of the sample. We
compute the entropy of a sample as:

ek = − 1

w · h

h−1∑
i=0

w−1∑
j=0

c−1∑
p=0

Sk[i][j][p] log
(
Sk[i][j][p]

)
, (7)

where Sk denotes the segmentation output for sample k, and w, and h denotes
width and height of the image respectively. If the entropy of a sample is high, we
give more weight to the WL-MNC loss of the corresponding sample thus increas-
ing the importance of edge consistency for the sample. Importance weighting is
based on the softmax normalization of unsupervised Shannon entropy [42] loss.
Importance weight wk

imp of kth sample in the mini-batch of size b is defined as:

wk
imp =

exp(ek)∑b−1
i=0 exp(e

i)
. (8)

Overall loss for a mini-batch is computed as:

Ltotal =

b−1∑
i=0

wk
impLWL-MNC(S

k) (9)

For a pixel (i, j) in an image, we define affinity matrix A using a Gaussian
kernel in 5D (RGBXY) space. where RGB corresponds to R, G, and B color values
of the pixel, and XY corresponds to the pixel location (i, j) in the image. For
two pixels with similar color and location, similarity or affinity is high. In order
to facilitate efficient calculation of loss and its gradient, we use a fast bilateral
filtering based technique [1].

3.4 MALL-Sample

In the MALL-sample method, a pre-trained DNN model fθ, with parameters, θ is
adapted to a single image. Given an image xt, we create a mini-batch of size b,
and batch size b, we generate a batch of images by applying (b − 1) data aug-
mentation transformations to xt. During forward pass, the generated batch of
images is passed into the network, and loss is back-propagated. We conduct mul-
tiple forward and back-propagation iterations over the same batch (and update
the weights) until a pre-defined termination criterion (explained below) is met.
Once termination criteria are met, we save segmentation label predictions of the
image, and weights of the network revert back to the initial model parameters
θ. The advantage of reverting back weights of the network for each image is that
we do not suffer performance degradation on the source domain (e.g. daylight
images). S denotes segmentation predictions from the network.

min
θ

L (xt, θ,S) . (10)

For the MALL-sample setting, as a termination criterion, we consider the number
of iterations per image as 5, with an early stopping criteria when the difference
of loss between two consecutive iterations is less than a particular threshold.
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3.5 MALL-domain

In MALL-domain method, a pre-trained model fθ is adapted to a different target
domain directly during inference. Similar to MALL-sample, for an unseen target
domain image xt, we pass a batch of images to the network in the forward pass,
and WL-MNC loss is similarly back-propagated. We also conduct multiple iterations
in the same fashion. However, in this case, we do not revert back the weights
of network parameters at the end of iterations. Further, no augmentations of
the input image are performed to generate a mini-batch in the MALL-domain

method. The compilation of a batch of images Xt in MALL-domain is based on
maintaining a buffer of size b; once the buffer is full, we forward pass the batch
of images into the network and empty the buffer. We use Xt to denote the batch
of images at time t, The benefit of the MALL-domain method over unsupervised
domain adaptation methods is the ability to adapt on-the-fly to unseen adverse
weather images (e.g. rainy night images) directly during inference.

min
θ

L (Xt, θ,S) . (11)

For the MALL-domain setting, we consider the early stopping criteria such that
the difference of loss of the network between two consecutive iterations is less
than the threshold. The threshold is set to 10−10 based on empirical experiments.

4 Experiments

4.1 Datasets and Evaluation criteria

Nighttime Driving (ND)[10]: The Nighttime Driving-test dataset consists
of 50 nighttime images and their corresponding pixel-level coarse ground truth
annotations. Each image is of resolution 1920 × 1080 labeled with 19 classes.

Dark Zurich (DZ)[34]: It is a collection of 8779 images with a resolution of
1920 × 1080 captured during the daytime, twilight, and nighttime. For each
image, corresponding GPS coordinates of the camera are also provided. Dark
Zurich-val corresponds to 50 nighttime images used for validation. Dark Zurich-
test corresponds to 151 nighttime images used for testing. Dark Zurich-test does
not provide ground truth pixel label information to users, and an online evalu-
ation server has been provided to evaluate the performance.

ACDC[39]: The dataset is a collection of 4006 adverse visual condition images
with a resolution of 1920×1080 pixels. It contains images from adverse visual
conditions of fog, night, snow, and rain. Each visual domain (fog, night, snow,
and rain) contains 400 train images along with ground truth semantic labels, 100
validation images (106 validation images for night domain) along with ground
truth semantic labels, and 500 unlabeled test images. ACDC Night-val corre-
sponds to results reported on ACDC night validation images.

Foggy Driving (FDD, FD)[37]: It is a collection of 101 real-world fog im-
ages with a resolution of 960×1280 pixels. It contains images captured with fog
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ranging from moderate to dense fog. Foggy Driving dense is a subset of Foggy
Driving dataset consisting of 21 images with dense fog.

Foggy Zurich (FZ)[36]: It contains 3808 real-world fog images collected in
Zurich city with a resolution of 1920×1080 pixels. Foggy Zurich-test consists
of 40 real fog images with corresponding ground truth semantic labels used for
evaluation.

C-Driving[24]: The dataset is collection of four adverse weather conditions
compiled from BDD100K dataset[56] consisting of four weather conditions such
as cloudy, rain, snow and overcast conditions.

Cityscapes (Day)[7]: It is a collection of 5000 broad daylight images of reso-
lution 2048 × 1024 pixels. For evaluation,

Evaluation Criteria: Mean Intersection over Union (mIoU) is considered as an
evaluation criterion. Higher mIoU indicates better segmentation label predictions.

Implementation details: We implement the proposed MALL technique using
Pytorch [29], and train it on an NVIDIA 32GB V100 GPU. During training,
the network parameters are updated using Stochastic Gradient Descent(SGD)
optimizer with a learning rate of 1× 10−3, momentum of 0.9, and weight decay
of 5×10−4. σrgb and σxy is set to 15, 80 respectively when reporting our results.
Augmentation used for MALL is horizontal flip, gaussian blur and color jitter. For
MALL-sample and MALL-domain methods, the mini-batch size is set to 12, images
are resized to the resolution of 1024× 512 pixels during test-time adaptation.

Comparison with TENT[52]: TENT is designed for single image adaptation
during inference. We perform semantic segmentation task on the adverse weather
datasets discussed in Sec. 4.1. For a fair comparison, we report the results of
MALL-sample using three pre-trained models namely, DeepLabv3+ mobilenet [4],
DeepLabv3+ resnet101 [4] and RefineNet [23]. The mIOU of pre-trained models
on the cityscapes-val dataset is 61.6%, 78.5% and 71.4% respectively. Results
are presented in Tab. 2. The MALL framework significantly improves the pre-
trained DeepLabv3+ mobilenet, DeepLabv3+ resnet101 and RefineNet models
to adapt to unseen adverse weather images directly during inference. We have
observed that MALL-sample and MALL-domain methods achieve 29%, 35%, 66%
and 82% better mIOU over pretrained DeepLabv3+ mobilenet model on the
Night-time Driving test and Dark Zurich validation dataset respectively. Simi-
larly MALL-sample and MALL-domain methods achieve 10.2%, 11.8%, 10.4% and
12.8% better mIOU over pretrained DeepLabv3+ resnet101 model on the Night-
time Driving test and Dark Zurich validation dataset respectively. Results signify
that MALL-sample outperforms TENT. MALL is able to adapt to unseen nighttime
images using 50 images in night test datasets without any additional target
domain data like GPS information.

Impact on Daytime Performance: For MALL-sample there is no drop in day-
time performance as we revert to initial weights after adapting the model to a sin-
gle image. For MALL-domain on nighttime driving dataset, we observed that a de-
crease in daytime mIOU performance for DeepLabv3+ mobilenet, DeepLabv3+
resnet101 and RefineNet by 3.2%, 3.6% and 3.1% respectively. Adapting to a
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Model ACDC C-Driving
Daytime (Cityscapes) → ND DZ FDD FD FZ Fog Rain Snow Night Cloud Rain Snow Overcast Day

DeepLabv3+ mobilenet[4] 28.5 11.9 25.2 36.1 26.4 47.4 37.8 30.3 15.8 34.1 27.2 27.0 37.1 61.6
with TENT[52] 33.3 17.4 23.7 39.3 31.4 52.3 42.0 41.3 21.9 36.6 29.5 30.2 38.6 61.6
with MALL-sample 36.8 19.8 26.6 40.5 32.6 54.9 43.4 42.7 23.9 37.9 30.8 31.4 39.7 61.6
with MALL-domain 38.4 21.7 27.6 40.3 32.3 55.3 42.8 41.9 24.4 37.7 30.4 30.9 39.8 59.6

DeepLabv3+ Resnet101[4] 38.2 20.2 37.9 44.4 31.2 64.1 48.3 44.0 23.5 42.1 34.6 35.7 44.9 78.5
with TENT[52] 39.3 21.6 37.4 45.8 33.6 63.5 49.4 47.6 25.2 42.6 35.9 36.9 45.9 78.5
with MALL-sample 42.1 22.3 38.8 47.2 34.3 64.8 49.9 48.8 26.8 43.8 36.6 38.4 47.4 78.5
with MALL-domain 42.7 22.8 38.7 46.7 34.1 65.4 49.7 49.5 26.9 43.7 37.4 38.9 47.7 75.7

RefineNet[23] 33.5 17.1 25.1 35.6 24.9 55.9 42.6 44.2 21.5 41.1 34.6 35.9 44.7 71.4
with TENT[52] 34.0 18.3 26.8 37.3 29.0 57.5 43.1 45.8 22.8 41.0 34.2 37.3 44.8 71.4
with MALL-sample 35.5 19.7 30.5 39.0 30.8 59.3 44.5 47.3 23.9 42.5 35.7 38.3 46.2 71.4
with MALL-domain 36.3 21.9 31.8 39.9 30.4 59.6 44.2 47.4 23.6 42.8 36.4 38.9 47.3 69.2

Table 2: Results of MALL on pre-trained daytime models. Dataset descriptions
are provided in subsection 4.1.

(a) Input image (b) DLv3+ mobilenet (c) ours (d) Ground truth

(e) Input image (f) DLv3+ r101 (g) ours (h) Ground truth

Fig. 2: Qualitative visual comparison of our proposed MALL framework on pre-
trained daylight models: Deeplabv3+ mobilenet, Deeplabv3+ resnet101

single image using MALL directly during inference can enhance generalization
capability without any impact on daytime performance.

Inference Time: For a batch size of 12, with each image resolution of 1024×512,
MALL-sample takes 1312 ms, 1564 ms and 1578 ms per iteration on DeepLabv3+
mobilenet, DeepLabv3+ resnet101 and RefineNet respectively. MALL-domain takes
1180 ms, 1219 ms and 1282 ms per iteration on DeepLabv3+mobilenet, DeepLabv3+
resnet101 and RefineNet respectively.

4.2 Improvement on SOTA Daytime Models

We apply the proposed MALL framework on the SOTA daytime pre-trained models.
We consider pre-trained models namely, BiseNetV2 [55], STDC[11], ISANet[17],
LRASPP[16], SegFormer-B0[54], GCNet[2] and Mobilenet V2[40]. Results are
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Model ACDC C-Driving
Daytime (Cityscapes) → ND DZ FDD FD FZ Fog Rain Snow Night Cloud Rain Snow Overcast Avg

BiseNetV2 (IJCV 2021)[55] 21.8 11.2 23.8 33.5 25.3 48.3 38.3 35.7 13.7 36.6 29.4 26.6 38.6 23.7
with MALL-domain 27.7 16.8 33.6 35.6 26.4 52.3 40.2 36.1 19.8 38.8 31.6 31.0 41.2 30.4

ISANet (IJCV 2021)[17] 28.1 15.8 37.3 38.6 39.7 62.2 46.8 44.9 18.8 42.2 32.6 35.0 43.9 37.3
with MALL-domain 38.3 24.7 38.7 44.9 41.5 63.2 52.8 50.4 27.6 46.5 38.6 39.5 48.3 42.7

STDC (CVPR 2021)[11] 26.3 14.7 35.5 41.7 35.3 62.7 46.4 45.3 18.7 40.9 33.2 33.1 44.6 36.8
with MALL-domain 43.6 24.1 42.4 44.7 42.8 67.0 48.9 50.4 23.5 44.4 36.4 37.5 47.3 42.5

SegFormer (NeurIPS 2021)[54] 32.3 18.9 35.1 40.8 31.4 63.4 48.2 46.4 21.5 39.7 32.7 32.6 42.6 37.3
with MALL-domain 34.8 20.2 36.0 41.5 33.8 65.3 49.2 48.6 23.2 40.6 33.0 33.2 43.4 38.7

GCNet (TPAMI 2020)[2] 26.5 16.8 40.7 45.8 35.3 62.7 47.9 48.1 19.4 42.6 33.3 35.0 46.0 38.5
with MALL-domain 40.2 25.3 42.1 46.8 40.0 64.8 52.0 52.0 25.8 46.4 39.3 39.1 49.7 43.4

LRASPP (ICCV 2019)[16] 24.1 12.7 28.6 30.5 21.4 51.3 37.4 38.2 15.4 33.3 26.4 24.9 35.4 29.2
with MALL-domain 33.4 16.9 31.3 36.0 28.5 54.1 41.6 39.7 18.9 36.5 29.5 29.3 39.6 33.5

Mobilenet V2 (CVPR 2019)[40] 9.7 3.9 23.4 30.1 20.4 41.2 38.3 26.1 3.7 34.6 25.3 22.0 36.6 24.2
with MALL-domain 33.8 20.3 30.0 43.9 32.8 61.2 49.0 43.6 26.5 42.9 35.9 36.2 45.1 38.6

Table 3: Results of MALL on SOTA pre-trained daytime models. Dataset descrip-
tions are provided in subsection 4.1.

presented in Tab. 3. Average mIoU is reported to demonstrate overall improve-
ment in segmentation performance. We observed significant improvements with
MALL across multiple weather conditions. We report that MALL-domain improves
STDC [11] performance on Nighttime driving by 66% in terms of mIoU. MALL also
performs well with transformer-based models such as Segformer [54]. MALL-domain
improves Mobilenet V2[40] performance on Dark Zurich by 419%. In terms of
average mIoU we report an improvement of 60% for Mobilenet V2. Performance
gains by the MALL technique on various baselines validates the generalization
ability of proposed approach for adverse weather and visual conditions.

4.3 Improvement on Domain Generalization Models

In Tab. 4, we demonstrate the effectiveness of the MALL framework over the state-
of-the-art domain generalization methods for semantic segmentation IBNNet[27],
Switchable whitening (SW)[28], and RobustNet[6]. We consider pre-trained mod-
els of the above-mentioned methods and apply our MALL-domain methods. We
report that MALL-domain on IBNNet, RobustNet-Resnet101 shows an increase
of 6.1%, 5.2% mIoU on the Nighttime Driving dataset. This shows that MALL

can complement domain generalization approaches to adapt to unseen adverse
weather images without altering training or requiring unlabeled target data dur-
ing training. Visual results are shown in Fig. 3.

4.4 Improvement on Unsupervised Domain Adaptation Models

In this section, we consider SOTA UDA methods for night image segmentation.
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Model ACDC C-Driving
Daytime (Cityscapes) → ND DZ FDD FD FZ Fog Rain Snow Night Cloud Rain Snow Overcast Avg

IBNNet[27] 33.4 21.7 31.7 41.9 34.5 63.6 50.4 50.2 25.9 43.8 35.8 35.0 48.0 39.6
with MALL-domain 39.5 24.8 32.5 42.7 35.2 64.7 51.5 51.2 28.9 44.9 36.4 36.2 48.9 41.3

SW[28] 34.0 15.6 22.2 38.2 28.6 54.8 40.2 45.6 20.7 39.2 30.9 31.6 41.7 34.1
with MALL-domain 37.2 21.1 30.6 39.8 30.5 59.8 44.5 49.1 26.2 40.5 33.6 34.8 44.4 37.9

RobustNet-Resnet50[6] 35.8 20.9 37.0 43.0 34.5 60.6 46.9 50.1 26.1 42.7 36.5 34.7 45.7 39.5
with MALL-domain 41.0 22.5 39.3 43.8 35.7 61.9 47.7 51.2 28.7 43.5 37.6 36.1 45.9 41.2

RobustNet-Resnet101[6] 37.7 21.8 38.8 43.5 33.5 59.3 46.5 45.2 26.8 41.6 34.4 33.8 42.7 38.8
with MALL-domain 42.9 24.8 39.7 44.7 37.4 64.2 49.9 51.1 30.7 42.0 35.8 36.4 47.3 42.0

Table 4: Results of MALL framework on SOTA Domain Generalization methods.
Dataset descriptions are provided in subsection 4.1.

Method ND-test DZ-test

Trained on source data only

Zeroshot-DN [20] 41.2 34.5
with MALL-domain 43.8 36.2

Trained on source and target data

ADVENT[51] 34.7 29.7
BDL[22] 34.7 30.8
AdaptSegNet[48] 34.5 30.4
DMAda[9] 41.6 32.1
Day2Night[44] 45.1 −
GCMA[33] 45.6 42.0

MGCDA[38] 49.4 42.5
with MALL-domain 49.9 43.2

DANNet[53] 47.7 45.2
with MALL-sample 48.3 45.3
with MALL-domain 48.8 45.5

Table 5: Results of MALL framework
on state-of-the-art methods in night
image segmentation, zeroshot-DN: Ze-
roshot DayNight[20].

We evaluate the performance in two
scenarios: (1) where the pre-trained
model has not seen night images dur-
ing training, and (2) where the model
is trained on nighttime images. For
the first category of models trained on
source data (daytime) only, we experi-
ment with Zeroshot-DayNight[20]. For
the second category, when the models
are trained on source data (daytime)
and target data (nighttime), we con-
sider DANNet (PSPNet)[53]. Tab. 5,
Tab. 6 shows the results. We observe
that MALL-domain improves Zeroshot-
DayNight[20] by 2.6% and 1.7% in
terms of mIoU on Nighttime Driving-
test and Dark Zurich-test respectively.
MALL-domain method on DANNet[53]
and MGCDA[38] increases mIOU by
1.1% and 0.3%, 0.5% and 0.7% on the
Nighttime Driving test, Dark Zurich
test datasets, respectively. Further-
more, MALL can significantly improve
DANNet performance in other weather
conditions, as demonstrated in Tab. 7.
For instance MALL-domain on DANNet improves mIoU on Foggy Zurich dataset
by 3.6%. Significant improvement in the performance using MALL-domain demon-
strates the ability of our framework to enhance the generalization ability of SOTA
nighttime image segmentation methods in both the scenarios: with and without
access to unlabeled target data during training. Fig. 2 shows qualitative results
for improvement over models trained on daytime images. Whereas in Fig. 4
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(a) Input image (b) RobustNet-R50 (c) ours (d) Ground truth

(e) Input image (f) RobustNet-R101 (g) ours (h) Ground truth

Fig. 3: Qualitative visual comparison of our proposed MALL framework on
pre-trained Domain generalization models: Robustnet-Resnet50, Robustnet-
Resnet101 ours: MALL-domain method.

Model ACDC C-Driving
Nighttime (DZ) → ND DZ FDD FD FZ Fog Rain Snow Night Cloud Rain Snow Overcast Avg

DANNet[53] 47.7 36.7 33.9 35.4 31.6 52.5 44.3 47.0 39.8 42.0 34.1 35.5 42.7 40.2
with MALL-domain 48.8 37.3 36.4 37.8 35.2 53.8 45.8 48.9 41.5 43.5 36.7 37.8 43.9 42.1

Table 7: Results of MALL framework on DANNet[53]. Dataset descriptions are
provided in subsection 4.1.

we show qualitative results for models which are trained on both daytime and
nighttime images.

Method DZ-val

GCMA [33] 26.6

MGCDA [38] 26.1
with MALL-domain (ours) 26.8

DANNet [53] 36.7
with MALL-sample (ours) 37.1
with MALL-domain (ours) 37.3

Table 6: Results of MALL framework on
state-of-the-art methods in night image
segmentation

MALL qualitative visual results
for the night image datasets for
the DANNet pre-trained model with
MALL-domain are reported in Fig. 4. In
Fig. 4 we see that DANNet fails to la-
bel moving object (car), or detect traf-
fic light, whereas by using MALL during
inference it can detect traffic light, and
car correctly. Results on Dark Zurich-
val, MGCDA segmentation outputs, class
wise mIoU values on Dark Zurich-test
dataset are reported in the supplemen-
tary material.

Ablation Study: In order to demonstrate the effectiveness of class imbalance
re-weighting and sample importance weighting, we perform an ablation study
on loss formulation considering a pre-trained model, DeepLabv3+ mobilenet[4].
Results are shown in Tab. 8.
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(a) Input image (b) DANNet (c) ours (d) Ground truth

(e) Input image (f) DANNet (g) ours (h) Ground truth

Fig. 4: Qualitative visual comparison of our proposed MALL framework on DAN-
Net pre-trained model on two images from night image datasets. DANNet with
MALL-domain further improve the results.

Method ND-test DZ-val

DeepLabv3+ mobilenet[4] 28.5 11.9
with MALL-domain (ours) 38.4 21.7

w/o class imbalance re-weighting 37.4 20.6
w/o sample importance weighting 36.1 19.2

Table 8: Ablation study on several loss variants using DeepLabv3+ mobilenet[4]

.

Conclusion: This paper introduces a novel weighted log multi-class normalized
cut loss to enforce edge consistency prior for improving semantic segmentation
predictions in adverse weather and visual conditions. The proposed framework
improves segmentation performance of SOTA models trained on daytime images
as well as the ones which have seen adverse weather images during training. We
show that our framework can be used in conjunction with SOTA domain gener-
alization approaches to further improve their performance for adverse weather
images. Our experiments indicate that edge consistency prior could also be ef-
fective in multiple adverse weather conditions, such as rain, snow, night, cloudy,
overcast and fog.
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