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In this supplementary material, we first discuss the design choice and scal-
ability issue of our method (Sec. 1). Then, we provide more model details and
analysis (Sec. 2) in regards to the proposed architecture, including the mathe-
matical details of the spatial-temporal correction module (Sec. 2.1), details of the
proposed MSwin (Sec. 2.2), and the overall architectural specifications (Sec. 2.3).
Afterwords, additional information and visualizations of the proposed V2XSet
dataset are shown in Sec. 3. In the end, we present more quantitative exper-
iments, qualitative detection results, attention map visualizations, and details
about the effects of the transmission size experiment in Sec. 4.

1 Discussion of design choice

Scalability of ego vehicles. Our approach can be scalable in two ways: 1) De-
centralized: the ablation studies conducted in this paper (Fig. 5a) and OPV2V [15]
indicate that, when the number of collaborators is larger than 4, the performance
gain becomes marginal while the computation still increases linearly. In practice,
each agent only needs to share features with a limited number of agents. For ex-
ample, Who2Com [10] studies which agent to request/transmit data, largely
reducing computation. Moreover, the computation of selected PointPillar back-
bone is efficient, e.g., around 4 ms for 4 agents with full parallelization and 16 ms
in sequence computing on RTX3090. 2) Centralized: Within a certain commu-
nication range, only one ego agent is selected to aggregate all the features from
neighbors to predict bounding boxes and share the results with other agents.
This solution requires only one computation node for a group of agents, thus
being scalable.
Design choices for communication. Compared to the broadcasting ap-
proach (i.e., compute the features in each cav’s own space and transform the
feature maps directly on the ego side), our approach has more advantages in
terms of detection accuracy. Most LiDAR detection methods often largely crop
the LiDAR range based on the evaluation range to reduce computation. As the
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Table T0: Comparison between our design choice and broadcasting approach.
DiscoNet (broad. / ours) V2X-ViT (broad. / ours)

AP@0.7 (perfect) 0.610 / 0.695 0.623 / 0.712

figure below shows, the CAVs crop the LiDAR data based on their own eval-
uation range in the broadcasting method, which leads to redundant data. Our
approach, on the contrary, always does cropping based on the ego’s evaluation
range, thus guaranteeing more effective feature transmission. We further validate
this by comparing our framework with the broadcasting approach. The Tab. T0
below shows that our design outperforms broadcasting by 8.5% and 8.9% for
DiscoNet and V2X-ViT.

2 Model Details and Analysis

2.1 Spatial-Temporal Correction Module

During the early stage of collaboration, when each connected agent i receives ego
vehicle’s pose at time ti, the observed point clouds of agent i will be projected
to ego vehicle’s pose xti

e at time ti before feature extraction. However, due to
the time delay, the ego vehicle observes the data at a different time te. Thus, the
received features from connected agents are centered around a delayed ego vehi-
cle’s pose (i.e., xti

e ) while the ego vehicle’s features are centered around current
pose (i.e., xte

e ), leading to a delay-induced spatial misalignment. To correct this
misalignment between the received features and ego-vehicle’s features, a global
transformation ξ

x
ti
e ,xte

e
∈ se(3) from ego vehicle’s past pose xti

e to its current

pose xte
e is required. To this end, we employ a differential 2D transformation

Γξ (·) to warp the intermediate features spatially [7]. To be more specific, we will
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transform features’ positions by using affine transformation:[
xs

ys

]
= Γξ(

xt

yt
1

) = [
R11 R12 δx
R21 R22 δy

]xt

yt
1

 (1)

where (xs, ys) and (xs, ys) are the source and target coordinates. As the calcu-
lated coordinates may not be integers, we use bilinear interpolation to sample
input feature vectors. An ROI mask is also calculated to prevent the network
from paying attention to the padded zeros caused by the spatial warp. This mask
will be used in heterogeneous multi-agent self-attention to mask padded values’
attention weights as zeros.

2.2 Multi-Scale Window Attention (MSwin)

Detailed formulation. LetH ∈ RH×W×C be an input feature of a single agent.
Let hj be the number of attention heads used in branch j (i.e. head dimension
dhj = C/hj), applying self-attention within each non-overlapping window Pj×Pj

for branch j out of k branches on feature H can be formulated as:

H = [H1,H2, ...,HHW/(Pj)
2

], for branch j (2)

Ĥi
m = Attention(HiWQ

m,HiWK
m,HiWV

m), i = 1, ...,HW/(Pj)
2 (3)

Ym = [Ĥ1
m, Ĥ2

m, ..., ĤHW/(Pj)
2

m ], m = 1, ..., hj (4)

Yj = [Y1,Y2, ...,Yhj ], (5)

where Ĥi
m ∈ RP 2

j ×dhj and WQ
m,WK

m,WV
m represent the query, key, and value

projection matrices. Ym is the output of the m-th head for branch j. Afterwards,
the outputs for all heads 1, 2, ..., hj are concatenated to obtain the final output
Yj . Here the Attention operation denotes the relative self-attention, similar to
the usage in Swin [11]:

Attention(Q,K,V) = softmax((
QKT

√
d

+B)V) (6)

where Q,K,V ∈ RP 2
j ×d denote the query, key, and value matrices. d is the

dimension of query/key, while P 2
j denotes the window size for branch j. Follow-

ing [11,6], we also consider an additional relative positional encoding B that acts
as a bias term added to the attention map. As the relative position along each
axis lies in the range [−Pj + 1, Pj − 1], we take B from a parameterized matrix

B̂ ∈ R(2Pj−1)×(2Pj−1). To adaptively fuse features from all the k branches, we
adopt the split-attention module [16] for the parallel feature aggregation:

Y = SplitAttention(Y1,Y2, ...Yk), (7)

Time complexity. As mentioned in the paper, we have k parallel branches.
Each branch has Pj×Pj window size and hj heads where Pj = jP and hj = h/j.
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(c) MSwin(a) Swin (b) CSwin(b) Axial

Fig. 1: Visualizations of approximated receptive fields (blue shaded pixels) for
the green pixel for (a) Swin [11] (b) Axial [13], (c) CSwin [3] and (d) MSwin at-
tention. MSwin obtains multi-scale long-range interactions at linear complexity.

After partitioning, the input tensor H ∈ RH×W×C is split into hj features with
shape ( H

Pj
× W

Pj
, Pj ×Pj , C/hj). Following [11], we focus on the computation for

vector-matrix multiplication and attention weight calculation. Thus, the com-
plexity of MSwin can be written as:

O(

k∑
j=1

HW

P 2
j

× C

hj
× (Pj × Pj)

2 × hj + 4
HW

P 2
j

× P 2
j × (

C

hj
)2 × hj)

= O(

k∑
j=1

P 2
j HWC +

4HWC2

hj
) = O(

k∑
j=1

j2P 2HWC +
4HWC2j

h
)

= O(
1

3
k3P 2HWC +

2HWC2k2

h
) (8)

where the first term corresponds to attention weight calculation, the second term
is associated with vector-matrix multiplication, and the last equality is due to the

fact that
∑k

j=1 j
2 = O(k

3

3 ) and
∑k

j=1 j = O(k
2

2 ). Thus the overall complexity is

FLOPs(MSwin) = O((
k3P 2C

3
+

2k2C2

h
)HW ) ∼ O(HW ), (9)

which is linear with respect to the image size. The comparison of time complexity
of different types of transformers is shown in Tab. T1 where N denotes the
number of input pixels, or (here N = HW ). Our MSwin obtains multi-scale
spatial interactions with a linear complexity with respect to N , while other
long-range attention mechanisms like ViT [4], Axial [13], and CSwin [3] requires
more than linear complexity, which are not scalable to high-resolution dense
prediction tasks such as object detection and segmentation.
Effective receptive field. The comparisons of receptive fields between different
transformers are shown in Fig. 1. Swin [11] enlarge the receptive fields by using
shifted window but it requires sequential blocks to accumulate. Axial Trans-
former [13] conducts attention on both row-wise and column-wise directions.
Similarly, CSwin [3] proposes to perform attention on horizontal and vertical
stripes with asymmetrical receptive range in different directions, but requires
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Table T1: Computational complexity comparisons of our proposed MSwin atten-
tion with (a) full attention in ViT [4], (b) Axial [13], (c) Swin [11], (d) CSwin [3].

Attention Models Complexity

ViT [4] O(4HWC2 + 2(HW )2C) ∼ O(N2)

Axial [13] O(HWC(4C +H +W )) ∼ O(N
√
N)

Swin [11] O(4HWC2 + 2P 2HWC) ∼ O(N)

CSwin [3] O(HWC(4C + sH + sW )) ∼ O(N
√
N)

MSwin (ours) O( 1
3
k3P 2HWC + 2HWC2k2

h
) ∼ O(N)

polynomial time complexity–O(N1.5). In contrast, our proposed MSwin can ag-
gregate features from multi-scale branches to increase fields in parallel, which
has more symmetrical receptive fields and linear complexity with respect to N .

2.3 Architectural Configurations

Given all these definitions, the entire V2X-ViT model can be formulated as:

zi = PointPillar(xi), xi ∈ RP×4, zi ∈ RH×W×C for agent i (10)

z0 = STCM([z0, ..., zM ]) + DPE([∆t0, ...,∆tM ]), for ego AV (11)

z′ℓ = zℓ−1 +MSwin(HSMA(LN(z0))), z0 ∈ RM×H×W×C ℓ = 1, ..., L (12)

zℓ = z′ℓ +MLP(LN(z′ℓ)), ℓ = 1, ..., L (13)

y = Head(zL), (14)

where the input xi denotes the raw LiDAR point clouds captured on each agent,
which are fed into the PointPillar Encoder [8], yielding visually informative 2D
features zi for each agent i. These tensors are then compressed, shared, decom-
pressed, and further fed into the spatial-temporal correction module (STCM)
to spatially warp the features. Then, we add the delay-aware positional en-
coded (DPE) features conditioned on each agent’s time delay ∆ti to the out-
put of STCM. Afterwords, the gathered features from M agents are processed
using our proposed V2X-ViT, which consists of L layers of V2X-ViT blocks.
Each V2X-ViT block contains a HSMA, a MSwin, and a standard MLP net-
work [4]. Following [4,11], we use the Layer Normalization [1] before feeding into
the Transformer/MLP module. We show the detailed specifications of V2X-ViT
architecture in Table T2.

3 V2XSet Dataset

Statistics We gather 55 representative scenes covering 5 different roadway types
and 8 towns in CARLA. Each scene is limited to 25 seconds, and in each scene,
there are at least 2 and at most 7 intelligent agents that can communicate with
each other. Each agent is equipped with 32-channel LiDAR and has 120 meters
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Table T2: Detailed architectural specifications for V2X-ViT.
Output size V2X-ViT framework

PointPillar
Encoder

M × 352× 96× 256

[
Voxel samp. reso. 0.4m, Scatter, 64

][
Conv3x3, 64, stride 2, BN, ReLU

]
× 3[

Conv3x3, 128, stride 2, BN, ReLU
]
× 5[

Conv3x3, 256, stride 2, BN, ReLU
]
× 8[

ConvT3x3, 128, stride 1, BN, ReLU
]
× 1[

ConvT3x3, 128, stride 2, BN, ReLU
]
× 1[

ConvT3x3, 128, stride 4, BN, ReLU
]
× 1

M × 176× 48× 256

[
Concat3, 384

][
Conv3x3, 256, stride 2, ReLU
Conv3x3, 256, stride 1, ReLU

]
× 1

Delay-aware
Pos. Encoding

M × 176× 48× 256

[
sin-cos pos. encoding

][
Linear, 256

]
× 1

Transformer
Backbone

M × 176× 48× 256


HSMA, dim 256, head 8

MSwin, dim 256,
head {16, 8, 4},

ws. {4× 4, 8× 8, 16× 16}
MLP, dim 256

× 3

Detection
Head

176× 48× 16
Cls. head:

[
Conv1x1, 2, stride 1

]
Regr. head:

[
Conv1x1, 14, stride 1

]

data range. We mount sensors on top of each AV while we only deploy infras-
tructure sensors in the intersection, mid-block, and entrance ramp at the height
of 14 feet since these scenarios are typically more congested and challenging [5].
We record LiDAR point clouds at 10 Hz and save the corresponding positional
data and timestamp.

Infrastructure deployment. The infrastructure sensors are installed on the
traffic light poles or steet light poles at the intersection, mid-block, and entrance
ramp at the height of 14 feet. For road type like rural curvy road, there is no
infrastructure installed and only V2V collaboration exists.

Dataset visualization. As Fig. 2 displays, there are 5 different roadway types
in V2XSet dataset (i.e., straight segment, curvy segment, midblock, entrance
ramp, and intersection), covering the most common driving scenarios in real life.
We collect more intersection scenes than other types as it is usually more chal-
lenging due to the high traffic volume and severe occlusions. Data samples from
different roadway types can be found in Fig. 3. From the figure, we can observe
that the infrastructure sensors at the entrance ramp and intersection have dif-
ferent measurement patterns especially near its installation position compared
with vehicle sensors. This is caused by the different installation heights between
vehicle and infrastructure sensors. Such observation again shows the necessity
of capturing the heterogeneity nature of V2X system.
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Intersection

48%

Straight Segment
21%

Curvy Segment

23%

Midblock
5%

Entrance Ramp 3%

Fig. 2: Data distribution of 5 roadway types in the proposed dataset.

4 More Experimental Results

4.1 Performance for identifying dynamic objects

We group the test set based on object speeds v (km/h) and compare AP@IoU=0.7
under the noisy setting for all intermediate fusion models. As shown in Tab. T3,
V2X-ViT outperforms all other intermediate fusion methods under various speed
range. It is noticeable that the objects with higher speed range generally have
lower AP scores as the same time delay can produce more positional mis-
alignments for the high-speed vehicles.

Table T3: Perception performance for objects with different speed (km/h), mea-
sured in AP@0.7 under noisy setting.

Model v < 20 20 ≤ v ≤ 40 v > 40

F-Cooper 0.539 0.487 0.354
OPV2V 0.552 0.498 0.346
V2VNet 0.598 0.518 0.406
DiscoNet 0.639 0.580 0.420
V2X-ViT 0.693 0.634 0.488

4.2 Performance for different road types

We also group the test scenes based on their road types and calculate the
AP@IoU=0.7 scores under the noisy setting. As shown in Tab. T4, V2X-ViT
ranks the first for all 5 road categories, demonstrating its detection robustness
on different scenes.
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Table T4: Perception performance for different road types, measured in AP@0.7
under noisy setting.

Model Straight Curvy Intersection Midblock Entrance

F-Cooper 0.483 0.558 0.458 0.431 0.375
OPV2V 0.478 0.604 0.492 0.460 0.380
V2VNet 0.496 0.556 0.517 0.489 0.360
DiscoNet 0.519 0.594 0.572 0.472 0.440
V2X-ViT 0.645 0.686 0.615 0.530 0.487

4.3 Qualitative results

Figs. 4 to 6 demonstrate more detection visualizations of V2VNet[14],
OPV2V [15], F-Cooper [2], DiscoNet [9], and our V2X-ViT in different scenarios
under Noisy Setting. V2X-ViT yields more robust performance in general with
fewer regression displacements and fewer undetected objects. When the scenario
is challenging with high-density traffic flow and more occlusions (e.g ., Scene 7
in Fig. 6 ), our model can still identify most of the objects accurately.

4.4 Attention visualization

Fig. 7 shows more attention map visualizations of V2X-ViT under noisy setting.
The LiDAR points of ego vehicle, the other connected autonomous vehicle (cav),
and infrastructure are plotted in blue, green, and red respectively. The brighter
color in the attention map means more attention ego vehicle pays. Generally,
the color of infrastructure attention maps is brighter than others, especially for
the occluded regions of other agents, indicating the more importance ego vehicle
assigns to the infrastructure. This observation agrees with our intuition that the
sensor observation of infrastructure has fewer occlusions, which leads to better
feature representations.

4.5 Explanation on effects of transmission size

Here we provide more explanations of the data transmission size experiment in
our paper. Different fusion strategies usually have distinct bandwidth require-
ments e.g ., early fusion requires large bandwidth to transmit raw data, whereas
late fusion only delivers minimal size of data. This communication volume will
significantly influence the time delay, thus we need to simulate a more realistic
time delay setting to study the effects of transmission size.

Following [12], we decompose the total time delay into two parts: i) the data
transmission time tc during broadcasting, ii) the idle time ti caused by the lack
of synchronization between the perception system and communication system.
The total time delay is calculated as

ttotal = tc + ti (15)
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As mentioned in the paper, the data transmission time has

tc = fs/v (16)

where fs is the data size and v is the transmission rate. Idle time ti can be further
decoupled into the idle time on the sender side and the time on the receiver side
i.e., ti = ti,1 + ti,2. For ti,1, the worst case in terms of delay happens when
the communication system just misses a perception cycle and needs to wait
for the next round. Similarly, for ti,2, the worst case occurs when new data is
received just after a new cycle of the perception system has started. Assume both
perception system and communication system have the same rate of 10Hz, then
0 ms < ti < 200 ms. We employ a uniform distribution U (0, 200) to model this
uncertainty. In summary, we use the following equation to mimic the real-world
time delay.

tc = fs/v + U (0, 200) (17)

which captures the influence of transmission size and asynchrony-caused uncer-
tainty. In practice, we sample the time delay according to Eq. 16 and discretize
it to the observed timestamps, which are discrete in a 10Hz update system.
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(a) Entrance ramp

(b) Intersaction

(c) Mid-block

(d) Rural curvy road

(e) Urban curvy street

Fig. 3: Data samples of 5 different roadway types. Left is the snapshot of
simulation and right is the corresponding aggregated LiDAR point clouds from
multiple agents.
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Fig. 4: Qualitative comparison on scenarios 1-3. Green and red 3D bound-
ing boxes represent the groun truth and prediction respectively. Our method
yields more accurate detection results.
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Scene 4 Scene 5 Scene 6
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Fig. 5: Qualitative comparison on scenarios 4-6. Green and red 3D bound-
ing boxes represent the groun truth and prediction respectively.
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Fig. 6: Qualitative comparison on scenarios 7-8. Green and red 3D bound-
ing boxes represent the groun truth and prediction respectively.



14 R. Xu et al.

(a) LiDAR point clouds

(b) Attention ego→ego (c) Attention ego→cav (d) Attention ego→infra

Fig. 7: Additional attention map visualizations on 3 different scenes.
V2X-ViT learned to pay more attention to infra features on occluded areas from
AV’s perspectives, thus yielding more robust detection under occlusions.
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