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Abstract. Trajectory prediction is an essential task for successful human-
robot interaction, such as in autonomous driving. In this work, we ad-
dress the problem of predicting future pedestrian trajectories in a first-
person view setting with a moving camera. To that end, we propose
a novel action-based contrastive learning loss, that utilizes pedestrian
action information to improve the learned trajectory embeddings. The
fundamental idea behind this new loss is that trajectories of pedestrians
performing the same action should be closer to each other in the feature
space than the trajectories of pedestrians with significantly different ac-
tions. In other words, we argue that behavioral information about pedes-
trian action influences their future trajectory. Furthermore, we introduce
a novel sampling strategy for trajectories that is able to effectively in-
crease negative and positive contrastive samples. Additional synthetic
trajectory samples are generated using a trained Conditional Variational
Autoencoder (CVAE), which is at the core of several models developed
for trajectory prediction. Results show that our proposed contrastive
framework employs contextual information about pedestrian behavior,
i.e. action, effectively, and it learns a better trajectory representation.
Thus, integrating the proposed contrastive framework within a trajectory
prediction model improves its results and outperforms state-of-the-art
methods on three trajectory prediction benchmarks.

1 Introduction

Predicting the future trajectories of pedestrians is an important task in many
applications, such as in social robot interaction and autonomous driving. Typi-
cally, the future trajectory of an agent/pedestrian is predicted based on its own
past movement history [33]. Nonetheless, integrating additional information is
possible, such as the trajectories of surrounding agents [1, 9], or visual scene data
[34]. When the surrounding agents in the scene are cars or robots, modeling the
motion information based on past trajectories only is a reasonable way to solve
the task. However, in this work, we argue that when other agents in the scene are
pedestrians, then limiting the information used for prediction to past trajectories
is not sufficient. In those cases additional information about pedestrian behavior
(e.g. action) plays an important role for predicting their future trajectory. For
example, the future trajectories of a pedestrian who is walking while texting on
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a phone could be different from a pedestrian carrying an object or pushing a
baby stroller even if they have the same previous observed trajectories, and the
same end goal.

In this work, we study the influence of observed pedestrians’ actions on their
predicted trajectories. We propose a novel contrastive learning loss called Action-
based Contrastive Loss. This novel loss is employed as a regularizer to the main
trajectory prediction loss. The action-based contrastive loss encourages the tra-
jectory embeddings of agents performing the same action (called positive sam-
ples) to come closer to each other in the feature space, and the embeddings
of trajectories observed while performing different actions (called negative sam-
ples) far away from each other. For instance, the representations of trajectories
of walking pedestrians are encouraged to become closer in the feature space,
but farther from the representations of trajectories of pedestrians riding bikes
or standing, as illustrated in Fig. 1.

Contrastive learning losses, including ours (action-based contrastive loss),
utilize a mechanism called negative sampling/mining, which aims to choose the
samples that are deemed different and therefore their corresponding features are
driven farther in the embedding space. In our case, the negatives are trajectories
of pedestrians that have different actions. Commonly used negative sampling
techniques include choosing all other samples from the same mini-batch [5] or
from a fixed-size memory bank [14]. Nevertheless, while these mechanisms prove
effective on natural imaging datasets, we find they do not provide similarly
high gains on trajectory datasets. We conjecture that this is due to the higher
variation in visual data compared to trajectory data, and most importantly,
to the larger sizes of imaging datasets, e.g. Imagenet [8] contains 1.6M images
compared to PIE [31] that contains 738,970 trajectory samples. This results
in limited numbers of negative samples, an issue that becomes more evident
when conditioning samples by class information, e.g. action or behavior. Few
works attempt to address this issue via designing special heuristics for negative
mining [23, 38, 13]. Alternatively, in this work, we propose to utilize the data
distribution learned by a Conditional Variational Auto-Encoder (CVAE) [35].
This avoids designing special heuristics for negative mining. While this form
of sampling may be utilized to create negative samples only, we employ it to
create both positive and negative samples. This is possible due to the different
definition of our contrastive loss compared to the traditional Noise Contrastive
Estimation loss (NCE loss); the notion of positive/negative in our case is tied to
the different classes of action in the data. As explained above, the samples that
belong to the same action class are positives from the point of view of this class,
and other samples are negative.

Contributions. Our main contributions in this paper are as follows:

– A novel contrastive loss, called action-based contrastive loss, which provides
the model with additional information about the action of an agent by guid-
ing the development of the embedding space for trajectories during learning.
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– A novel sampling/mining technique that utilizes the latent trajectory distri-
butions learned by CVAEs, circumventing the need to design special mech-
anisms based on heuristics.

Our proposed contrastive learning framework improves the performance results
on three first-person view trajectory prediction benchmarks. It also provides
evidence that utilizing agent behavior information, in the form of action type in
this case, is beneficial for trajectory prediction, aligning with [26]. However, our
proposed learning framework requires action information only during training.

Fig. 1. Overview of our action-based contrastive learning framework during training
phase. The contrastive loss LAct-Con gets as input both positive (green) and negative
(red) embeddings h for an anchor (blue). The positive and negative samples are the
samples other than the anchor in the batch, as well as the synthetic samples from the
CVAE. The parts shown in yellow refer to our novel action-based contrastive learning
framework. It is worth mentioning that the action-based contrastive loss illustrated in
this figure updates only the weights of encoder f , and it is jointly optimized with Ltraj

that updates both encoder f and decoder g. Ltraj is not shown in the figure.

2 Related Work

Multi-modal trajectory prediction: A human can reach a desired location
following many possible trajectories. Therefore, multiple works utilize multi-
modal trajectory models, instead of predicting a single-path solution. Lee et
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al. [21] proposed multi-modal trajectory model by incorporating samples from
the Gaussian distribution of a trained conditional variational autoencoder (CVAE)
into a long short-term memory encoder-decoder (LSTMED) model. Mangalam
et al. [27] predict the multi-modal trajectory of an agent by modeling three fac-
tors: the desired endpoint goal, the social interaction with other agents in the
scene, and the planned trajectories with respect to the environmental constraints
in the scene. Similarly, their model is based on CVAE, which takes as input both
the encodings of the past trajectory and of the endpoint goal. Sadeghian et al.
[34] additionally include the past/observed trajectories of all agents for future
trajectory prediction. To provide additional context information, top view im-
ages are incorporated. The distribution over feasible future paths is modeled
for each agent using LSTM-based GAN module. Similarly, Yao et al. [39] pre-
dict trajectories conditioned on an estimated goal using a bi-directional RNN
decoder. While our method has the potential of being added to any trajectory
prediction method, we base our contrastive framework on BiTraP [39], in the
first-person view setting.

Using human actions to improve trajectory prediction: In literature,
many works employed video data to predict human activities [30]. Montes et
al. [28] used a 3D-CNN as a feature extraction network then pass the learned
representation to an RNN to exploit the time component in video data effec-
tively. Ma et al. [24] improved the performance of LSTMs in human activity
prediction by implementing ranking losses that penalize the prediction model
on inconsistency in prediction scores from the sequence frames. Liang et al. [22]
predicted a pedestrian’s future trajectory simultaneously with future activities
in a multi-task learning scheme. Rasouli et al. [31], studied the influence of an
estimated pedestrian intention on the predicted trajectory by combining the in-
tention representation with the observed trajectory coordinates, then used this
representation as input to the decoder. Malla et al. [26] incorporates pedestrian
action information with a trajectory prediction model. They require this infor-
mation as prior information and learn a joint representation for both observed
trajectory and pedestrian action. In this work, we also highlight the importance
of analyzing the pedestrian’s behavior and action in the prediction of their future
trajectory. However, we propose to incorporate action information only during
training using a novel action-based contrastive loss.

Contrastive trajectory prediction: Contrastive learning is a representation
learning approach, first proposed by [29]. This approach encourages similar
high-dimensional input vectors to be mapped closely to each other in a lower-
dimensional embedding manifold, and the dissimilar ones are mapped far away
from each other. Contrastive learning has been applied in several unsupervised
[29, 15, 5, 11, 41, 4, 14, 6, 10, 17] and supervised [18] representation learning meth-
ods. Recently, only few works applied contrastive learning to trajectory predic-
tion in a multi-agent setting. The flexibility of defining a contrastive loss by
using positive and negative samples addresses the shortage problem in critical
and challenging scenarios in training datasets. Such rare scenarios are necessary
for the model, as the agent could face these in the real-world. Makansi et al. [25]
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utilize this idea by separating the hard and critical samples in the feature space
that do not satisfy some certain favorable criterion far away from the positive
easy samples. Liu et al. [23] proposed a social sampling strategy that relies on
augmenting negative samples with prior knowledge about undesired scenarios
in the multi-agent setting. Both methods use the contrastive loss as a weighted
combination to the future trajectory forecasting loss, which may be the mean
squared error (MSE) or negative log-likelihood (NLL). Our method follows this
family of algorithms, and uses a novel action-based contrastive loss to add con-
text information about pedestrian actions to the trajectory prediction model.
Supervised contrastive loss: Khosla et al. [18] proposed a supervised con-
trastive loss that is a generalization of the Triplet loss [16]. In this supervised
contrastive loss for each anchor there are more than one positive sample, in
addition to many negative samples. There are two major differences between
our proposed action-based contrastive loss and the supervised contrastive loss
used in [18]. First, they employ the supervised contrastive loss to replace the
cross-entropy loss for training the image classifier using image labels. However,
we utilize the contrastive loss to regularize the trajectory prediction loss, which
may be MSE or NLL. Second, due to the differences between the nature of
datasets we use in this paper and the image data used in [18], it is simpler to ex-
tract many positive and negative samples from a large dataset, such as ImageNet
[8]. However, in first-person view trajectory prediction datasets, the number of
pedestrians with same actions is limited, therefore we address this with a novel
sampling process from a CVAE trained to predict trajectories based on observ-
ing a short past trajectory. This CVAE predictive model ensures consistency
between observed and predicted trajectories. Thus, it allows sampling additional
positive and negative samples that belong to specific actions. Using this novel
sampling technique avoids designing hard negative mining techniques, which use
heuristics, as in [36, 19] for domain adaptation.

3 Methodology

In this section, we present our method for the task of pedestrian trajectory
prediction, that focuses on integrating contextual information such as actions
for more reliable future predictions. We address this by employing an action-
based contrastive loss that enhances the trajectory prediction model with action
information.

3.1 Problem Formulation

For each pedestrian we have an observed past trajectory St = [s1, ..., st−1, st]
at time t, and we predict a future trajectory Yt = [yt+1, yt+2, ..., yT ], where s
and y are bounding box coordinates for the observed and predicted trajectories,
respectively. T is the maximum predicted trajectory time length in the future. In
addition, we also have for each trajectory the action class information a, where
the set of available actions a ∈ {a1, a2, ..} may vary across different datasets.
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Then in the training data, we assume there are N different training samples,
where for each sample i ∈ [1, .., N ], we know Si, Y i, and ai. Finally, we process
the dataset samples in mini-batches, where each batch contains B samples.

3.2 Multi-modal Trajectory Prediction

We follow the commonly used approach of an encoder-decoder prediction model,
where an encoder f learns the representation h given an observed trajectory St

as an input, then a decoder g uses the representation h together with a sam-
pled latent variable z to predict the future trajectory Yt. We employ a standard
long-short term encoder-decoder model (LSTMED) [21]. In fact, we extend on
the bi-directional version of LSTMED, proposed in Yao et al.’s BiTraP [39]. The
possibility to draw multiple future trajectories for each observed trajectory is
achieved with a CVAE, which is a non-parametric model, that learns the distri-
bution of target trajectory through a stochastic latent variable. The distribution
learned by the CVAE is essential for our proposed contrastive framework, which
we explain below. As a trajectory prediction loss function Ltraj , the Best-of-
Many (BoM) L2-loss [3] between predicted and target trajectory is used. It is
noteworthy that we do not restrict our proposed framework, explained below,
to these choices of model architectures or loss functions; we adopt standard and
effective techniques to study its influence on predicted trajectories. The essential
factor for our learning framework is that the predicting future trajectory model
is based on CVAE, similar to trajectory prediction models in [39, 27].

3.3 Action-based Contrastive Learning Framework

In order to enhance the model with contextual information about the pedestrian
actions, we propose a novel loss that is called action-based contrastive loss, which
acts as a regularizer for the trajectory prediction loss, and they jointly train the
trajectory prediction model. The proposed action-based contrastive loss is based
on a novel action-based sampling strategy shown in Fig. 1. We first describe
the proposed contrastive loss in the simple case, without including additional
samples from the CVAE distribution, and we generalize it later.

Action-based Contrastive Loss Let B be the number of samples within
a batch. For each observed past trajectory Si where i ∈ {1, .., B}, called the
anchor, there exists multiple positive and negative samples. The positive samples
Si+ are the trajectories that have the same action class as the anchor, which are
denoted by Si′′. Moreover, we also add an augmented version Si′ of the anchor
trajectory as a positive sample, following [23], which is created by adding small
white noise ϵ to the bounding box coordinates of the anchor trajectory.

Formally:

Si′ =
{
Si + ϵ

}
Si′′ =

{
Sj

}
; where 0 < j < B, aj = ai, i ̸= j

Si+ = Si′ ∪ Si′′
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Negative samples Si− are trajectories belonging to a different action class than
the anchor.

Si− =
{
Sk

}
; where 0 < k < B, ak ̸= ai, i ̸= k

Afterwards, all batch samples
{
Si

}B

i=1
are processed by the model encoder f

to produce their hidden representations
{
hi
}B

i=1
. Assuming M positive samples

and K negative samples in the batch, with B = M + K. The proposed loss is
calculated as follows:

ℓAct-Con = − 1

B

B∑
i=1

log

∑M
j=1,j ̸=i,aj=ai exp(sim(hi,hj)/τ)∑K

k=1,k ̸=i exp(sim(hi,hk)/τ)

LAct-Con =
1

N/B

N/B∑
ℓAct-Con

(1)

where sim is the similarity between the vector representations of the samples, for
which we use the dot-product. τ is the temperature hyperparameter. The above
loss function encourages the embeddings hi of positive sample trajectories to be
closer to each other in the embedding space, and far away from the embeddings of
negative samples. The complete loss function sums both the trajectory prediction
loss Ltraj and the action-based contrastive loss LAct-Con:

Lfinal = Ltraj + βLAct-Con (2)

where β is a hyper-parameter that controls the contribution of action-based
contrastive loss. It is worth mentioning that additional behavioral information
such as pedestrian’s action class is only needed during training. However, during
inference, the model only takes the observed trajectory as input to predict the
future trajectory.

Action-based Synthetic Trajectory Sampling The above loss formulation
assumes no additional synthetic samples, i.e. it considers observed trajectories in
the batch only. However, due to the relatively limited sizes of trajectory datasets,
and the shortage of diversity in action classes in captured scenes, commonly
used negative sampling techniques may not be sufficient. Those include sam-
pling from the same mini-batch [5] or from a fixed-size memory bank [14]. More
comprehensive negative and positive samples, from various behavior scenarios
are rather needed. Therefore, we extend training samples by drawing trajectories
from the distribution learned by the generative Conditional Variational Autoen-
coder (CVAE) model. CVAE is a generative model that introduces a stochastic
latent variable Z in order to learn the distribution of target future trajectory
P
(
Y i|Si, Z

)
. This distribution is conditioned on the input observed trajecto-

ries Si, and the stochastic latent variable Z. Thus, the model is able to predict
multiple feasible trajectories Y i given the input Si. We assume the latent vari-
able following a Gaussian distribution Z ∼ N

(
µZ , σ

2
Z

)
, and we train the CVAE
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to capture this distribution. Afterwards, the training dataset is extended by
sampling from the Gaussian latent space multiple times, and passing samples
through the decoder g to effectively predict different feasible future trajecto-
ries conditioned on an observed trajectory. The conditioning on the observed
trajectory ensures a consistent behavior in the predicted future trajectory. This
behavior is captured in both the continuity of the trajectory as well as the iden-
tical action class in both observed and future trajectories. We employ the same
encoder-decoder trajectory prediction model explained above in Sec. 3.2, which
is a CVAE that predicts multiple feasible future trajectories, as the example in
Fig. 2 shows. This sampling strategy is illustrated in Fig. 1, and it has the advan-
tage that it avoids designing heuristics for negative sample mining techniques,
as mentioned before. The intuition behind this sampling strategy is that the
encoder-decoder CVAE model is capable of generating future trajectories with
the same behavior of the observed trajectory. Since it is trained to predict the
future trajectory of an observed trajectory, then it captures the characteristics
of the observed trajectory.

Let
{
Y i,l

}L

l=1
be the multiple predicted trajectories for an observed trajectory

Si. Here, Y i,l is sampled from P
(
Y i,l|Si, Z

)
, and L is the number of times

we sample a different Z from the normal distribution N
(
µZ , σ

2
Z

)
. Given these

synthetic trajectory samples, the set of positive samples for trajectory Si are
then reformulated as follows:

Si+
1:t =

{
Si′

1:t

}
∪
{
Si′′

1:t

}
∪
{
Y j,l
t+1:T

}L

l=0

where i, j ∈ 1, .., B and al = ai and aj = ai. And the negative samples are
reformulated as follows:

Si−
1:t =

{
Sk
1:t

}
∪
{
Y k,l
t+1:T

}L

l=0

where i, k ∈ 1, .., B and i ̸= k and ai ̸= ak and ai ̸= al and ak = al. In words, the
synthetic samples created for sample Sk, which we denote Y k,l, are considered
negative from the point of view of sample Si. These synthetic samples have the
same action class of sample Sk, hence denoted ak = al.

The described action-based synthetic trajectory sampling strategy changes
the sets of positive and negative samples used in creating training batches. How-
ever, the proposed contrastive loss equation Eq. 1 remains the same, only M
and K are affected.

4 Experiments

In this section, we present the evaluation results of our method on three first-
person-view trajectory prediction datasets [31, 32, 26]. First, we describe the used
datasets. Then, we provide an overview of the experimental setup and used
evaluation metrics. Finally, we discuss our results and findings.
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Fig. 2. Examples from TITAN dataset showing the multi-modality in the trajec-
tory prediction space. CVAE is able to predict multiple feasible future trajectories
(Green bounding boxes), conditioned on previously observed trajectories (Blue bound-
ing boxes). The red bounding boxes refer to the ground truth future trajectories.

4.1 Datasets

We evaluate our method on first-person view datasets. In this domain, the Pedes-
trian Intention Estimation (PIE) [31] and the Joint Attention for Autonomous
Driving (JAAD) [32] datasets are the most commonly used benchmarks in lit-
erature. The PIE dataset provides 293,437 annotated frames, containing 1,842
pedestrians with behavior annotations such as walking, standing, crossing, look-
ing, etc. Since a pedestrian could be “walking” and “looking” at the same time,
for example, then a pedestrian could have multiple behavior labels in a single
frame. Therefore, we only use two classes “walking” and “standing”, which are
exclusive. We use the same train and test splits in [31]. On the other hand, the
JAAD dataset provides 82,032 annotated frames, containing 2,786 pedestrians,
686 of them have behavior annotations. Similar to the PIE dataset, we only use
for JAAD dataset two classes “walking” and “standing”, which are exclusive.
We use the same train and test splits in [32].

We also use a third dataset named TITAN [26], which contains more action
classes compared to PIE and JAAD. TITAN provides 75,262 frames with 395,770
pedestrians with multiple action labels organized in five hierarchical contextual
activities, such as individual atomic actions, simple scene contextual actions,
complex contextual actions, transportive actions, and communicative actions.
For the same reason of not having multiple labels for each pedestrian, we use
individual atomic actions labels for the TITAN dataset. The atomic action labels
describe the primitive action, and are categorized into 9 labels (sitting, standing,
walking, running, bending, kneeling, squatting, jumping, laying down).

4.2 Experimental Setup

We use the same setup for all datasets, where we observe 0.5 seconds and predict
0.5, 1.0, and 1.5 seconds, following [31, 39]. The predicted trajectories have two
forms: bounding boxes coordinates and centers, that are evaluated separately.
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Table 1. The quantitative results on PIE and JAAD datasets. The evaluation metrics
are reported for different prediction lengths in squared pixels. ABC+ is our proposed
action-based contrastive framework with sampling from a learned CVAE. BiTraP is a
baseline trajectory prediction model without adding any contrastive loss. The other
baseline results are obtained from [39]. Lower is better.

Method
PIE JAAD

ADE C-ADE C-FDE ADE C-ADE C-FDE
0.5 1.0 1.5 1.5 0.5 1.0 1.5 1.5

Linear [31] 123 477 1365 950 3983 233 857 2303 1565 6111
LSTM [31] 172 330 911 837 3352 289 569 1558 1473 5766
B-LSTM [2] 101 296 855 811 3259 159 539 1535 1447 5615
FOL-X [40] 47 183 584 546 2303 147 484 1374 1290 4924
PIEtraj [31] 58 200 636 596 2477 110 399 1280 1183 4780

BiTraP [39] 23 48 102 81 261 38 94 222 177 565

ABC+ 16 38 87 65 191 40 89 189 145 409

PIE and JAAD datasets are both annotated at 30Hz frequency, therefore we
observe 15 frames and predict 45 frames. However, TITAN dataset is annotated
at 10HZ sampling frequency. Thus, we observe 5 frames and predict 15 frames.

Implementation details. We use 256 as the size for all hidden layers in the
encoder-decoder model that is detailed in Sec. 3.2. It is noteworthy that we
implement the loss in Eq. 1 using the efficient matrix-form (especially on GPU
machines), instead of performing expensive pairwise computations. We train the
model on all datasets with Adam optimizer [20] using a batch size of 128 and a
learning rate of 0.001. On training datasets, we perform hyper-parameter tuning
for β (Eq. 2). We achieve our best results using β = 0.75 for all datasets.

Evaluation metrics. Following the commonly used evaluation protocols in
literature [31, 39, 37], we use the following evaluation metrics: i) Bounding box
Average Displacement Error (ADE), ii) Bounding box Center ADE (C-ADE), iii)
Bounding box Final Displacement Error (FDE), and iv) Bounding box Center
FDE (C-FDE). All are computed in squared pixels. The bounding box ADE
is the mean square error (MSE) for all predicted trajectories and ground-truth
future trajectories. This error is calculated using the bounding box upper-left
and lower-right coordinates. However, in C-ADE, otherwise called C-MSE, the
error is calculated using the centers of the bounding boxes. Bounding box FDE,
otherwise called FMSE, is the distance between the destination point of the
predicted trajectory and of the ground truth at the last time step. FDE is also
calculated using the bounding boxes coordinates. Finally, C-FDE or C-FMSE is
the mean squared error between the centers of final destination bounding boxes.
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Table 2. The quantitative results on TITAN dataset. The evaluation metrics are
reported for observing 15 time steps and predicting 45 time steps of trajectories in
squared pixels. ABC+ is our proposed action-based contrastive framework with sam-
pling from a learned CVAE. BiTraP is a baseline trajectory prediction model without
adding any contrastive loss. Lower is better.

Method
ADE C-ADE C-FDE

0.5 1.0 1.5 1.5

BiTraP [39] 194 352 658 498 989

ABC+ 165 302 575 434 843

Table 3. The quantitative results on TITAN dataset. The evaluation metrics are
reported for observing 10 time steps and predicting 20 time steps of trajectories in
pixels. ABC+ is our proposed action-based contrastive framework with sampling from
a learned CVAE. The other baseline results are obtained from [26]. Lower is better.

Method ADE FDE

Social-LSTM [1] 37.01 66.78
Social-GAN [12] 35.41 69.41
Titan-vanilla [26] 38.56 72.42
Titan-AP [26] 33.54 55.80

ABC+ 30.52 46.84

Baselines. The trajectory prediction model trained with our proposed Action-
Based Contrastive framework (loss and sampling strategy) is indicated by (ABC+).
First, we evaluate the performance of our action-based contrastive framework by
comparing its results to the original BiTraP trajectory prediction model [39] on
all datasets, i.e. without adding our contrastive loss. This baseline aims to high-
light the gains obtained by our proposed contrastive framework. BiTraP had
previously achieved state-of-the-art on PIE and JAAD datasets. Additionally,
for PIE and JAAD datasets, we compare our results with PIEtraj [31], FOL-X
[40], B-LSTM [2], LSTM [31], and Linear [31] trajectory prediction models. On
the TITAN dataset, we first report the evaluation results compared to BiTraP
using observed and predicted lengths equal to PIE and JAAD. However, to fairly
compare our results on the TITAN dataset with prior work of Malla et al. [26],
Social-LSTM [1], and Social-GAN [12], we follow the same experimental setup
used in [26]. To that end, we retrain both the BiTraP baseline model, and our
proposed model (ABC+) to predict 20 frames, after observing 10 frames, and
we report our results using ADE and FDE in pixels, not in squared pixels.

4.3 Trajectory Prediction Results

The evaluation results are shown in Tab. 1 for PIE and JAAD. For TITAN, in
Tab. 2 we show the evaluation results when observing 10 frames and predicting
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20 frames, similar to [26], and in Tab. 3 we compare to BiTraP when observing
5 frames and predicting 10 frames. As the tables show, our method (ABC+)
achieves superior performance compared to the baseline BiTraP, which does not
use our action-based contrastive loss. This result highlights the effectiveness of
adding the proposed contrastive objective and sampling strategy. Our proposed
method also outperforms other baseline methods, with significant margins.

These evaluation results confirm the gains obtained by using our proposed
action-based contrastive loss and sampling strategy. Utilizing action information
with our contrastive approach exhibits improved performance across all evalu-
ated benchmarks. In the TITAN dataset, particularly, the performance benefits
appear larger. We believe this is due to TITAN’s more comprehensive action
class structure, compared to PIE or JAAD. In other words, a more diverse set of
pedestrian action classes improves the learned embedding space by our action-
based contrastive loss. Nevertheless, our method improves the obtained results
even with a simpler binary action class structure in PIE and JAAD.

Another significant result is that our method (ABC+) outperforms the base-
line Titan-AP [26] on TITAN, which incorporates the same action class informa-
tion with observed trajectory information, and produces a combined embedding
to predict the future trajectory. This indicates that our approach of supporting
the trajectory prediction model with behavioral context information by using
action-based contrastive loss is more effective than encoding the action classes
in the embedding space representation.

Table 4. Ablation results on PIE, JAAD, and TITAN datasets. ABC+ is our pro-
posed action-based contrastive framework with sampling from a learned CVAE. ABC
uses our action-based contrastive loss but without sampling from a learned CVAE.
SimCLR uses a normal batch contrastive loss instead of our proposed action-based
contrastive loss. Lower is better.

Method
ADE C-ADE C-FDE

0.5 1.0 1.5 1.5

P
IE

SimCLR 26 67 163 125 399
ABC 16 40 93 69 213

ABC+ 16 38 87 65 191

J
A
A
D SimCLR 50 124 273 211 608

ABC 41 93 201 150 425

ABC+ 40 89 189 145 409

T
IT

A
N SimCLR 255 506 999 773 1805

ABC 188 345 634 488 951

ABC+ 165 302 575 434 843
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Fig. 3. C-FDE results (top) and C-ADE(1.5) (bottom) of trajectory prediction model
by applying different β values 0.25,0.5,0.75 in Eq. 2. The results are reported for TI-
TAN, PIE, and JAAD datasets. Lower values are better.

4.4 Ablation study

In this section, we present the ablation studies to provide further insights into our
proposed action-based contrastive loss. Similar to the evaluation results shown
above, we refer to our proposed action-based contrastive framework by ABC+,
where we use the action-based contrastive loss as a regularizer to the trajec-
tory prediction loss, and we also increase negative and positive samples during
training by sampling synthetic trajectories from CVAE.

Does action information improve the contrastive loss? The first ab-
lation study examines how the action-based contrastive loss Eq. 1 compares to
the batch contrastive loss, namely SimCLR [5], shown in Tab. 4. For this base-
line, we replace the action-based contrastive loss with SimCLR contrastive loss,
and we measure the trajectory prediction performance. The results demonstrate
the impact of utilizing contextual information in form of action on the future
trajectory prediction model.

Is the proposed action-based sampling strategy using a CVAE ef-
fective? The second ablation study analyzes the impact of sampling synthetic
trajectories from CVAE on the trajectory prediction model performance. The
baseline ABC in Tab. 4 indicates the trajectory prediction model trained with
action-based contrastive loss without using the extra synthetic samples from the
learned CVAE. Comparing the quantitative results of ABC+ to the results of
ABC highlights the effectiveness of our novel sampling strategy on all datasets.

How does the weight of the contrastive loss affect the results? Fi-
nally, we also study the influence of the hyper-parameter β in Eq. 2, which
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controls the impact of the action-based contrastive loss into the final objective
function. As shown in Fig. 3, we obtain the best results on all benchmark datasets
by setting β to 0.75.

5 Discussion and Conclusions

We presented a contrastive framework for learning behavior-aware pedestrian
trajectory representations. Our proposed framework consists of an action-based
contrastive loss, and a novel trajectory sampling technique from a learned dis-
tribution of a C-VAE model. The proposed framework significantly improves
the performance of trajectory prediction models on three different first-person
view benchmarks. Our evaluation results provide evidence that including pedes-
trian behavior information, in the form of action or activity class in this case,
is beneficial for trajectory prediction. Moreover, our results also confirm that
our action-based contrastive loss, in conjunction with our sampling strategy, is
superior to alternative approaches that also utilize action class information.

This work comes with a number of strengths. First, we ensure our proposed
contrastive loss can be easily integrated with commonly used trajectory pre-
diction models. Second, our proposed sampling strategy utilizes readily learned
distributions by generative models, such as CVAEs, and it avoids designing data-
specific heuristics. This allows for wider range of applications, such as on ani-
mal trajectory data. Finally, contrastive learning in general, and our proposed
action-based framework, in particular, allow for enhancing the quantities of un-
derrepresented action classes in the data. This line of work may help address the
shortage of necessary edge-cases in training datasets, which may be encountered
in real-world scenarios.

This work also comes with a limitation. While effective, our proposed action-
based contrastive framework requires pedestrian action labels during the training
phase only. However, this requirement is mitigated by our new trajectory sam-
pling technique from CVAE, which does not require action labels for generated
samples. Making the training scheme semi-supervised in our model. In addition,
many modern trajectory datasets are increasingly providing action information.
Action prediction tasks from video data achieve high performances [7], and hence
can be performed efficiently and reliably as a pre-processing step for our trajec-
tory prediction framework. We deem evaluating such idea as future work.
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