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Abstract. In point cloud learning, sparsity and geometry are two core
properties. Recently, many approaches have been proposed through sin-
gle or multiple representations to improve the performance of point cloud
semantic segmentation. However, these works fail to maintain the bal-
ance among performance, efficiency, and memory consumption, show-
ing incapability to integrate sparsity and geometry appropriately. To
address these issues, we propose the Geometry-aware Sparse Networks
(GASN) by utilizing the sparsity and geometry of a point cloud in
a single voxel representation. GASN mainly consists of two modules,
namely Sparse Feature Encoder and Sparse Geometry Feature Enhance-
ment. The Sparse Feature Encoder extracts the local context informa-
tion, and the Sparse Geometry Feature Enhancement enhances the ge-
ometric properties of a sparse point cloud to improve both efficiency
and performance. In addition, we propose deep sparse supervision in the
training phase to help convergence and alleviate the memory consump-
tion problem. Our GASN achieves state-of-the-art performance on both
SemanticKITTI and Nuscenes datasets while running significantly faster
and consuming less memory.

1 Introduction

Large-scale outdoor point cloud segmentation has been a crucial task for au-
tonomous driving systems and has demanding requirements for efficiency, per-
formance, and memory consumption. PointNet [29] and PointNet++ [30] are
the pioneering works that directly operate on the raw point cloud to maintain
and utilize the pointwise geometry (accurate measurement information), which
is one of the core properties of a point cloud. However, it is hard to apply
these approaches in outdoor scenarios due to memory consumption and runtime
efficiency. RandLA [14] applies a random sampling strategy to reduce the num-
ber of points to improve efficiency, which leads to some information loss. With
the popularity of sparse convolutions [10, 50], there has been some progress in
utilizing the sparse voxel-based representation (e.g., AF2S3Net [6] and Cylin-
der3D [59]), which is a kind of representation that preserves the metric space.
Compared with point representation, the merits of the sparse voxel-based repre-
sentation lie in the effectiveness and efficiency of quickly expanding the receptive
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fields based on sparsity, another important property of a point cloud. Further-
more, sparse voxel-based representation, which aggregates point features within
the local neighborhood, can significantly reduce memory usage. Moreover, tradi-
tional or current popular convolutional neural networks (CNNs) can be directly
applied to extract better context information.

Recently, several works recognize the limitation of a single representation and
explore richer information by combining multiple representations. PVCNN [21]
fuses point-based and voxel-based representations with MLP layers and dense
3D convolution layers but does not take point cloud sparsity into considera-
tion. SPVCNN [35] and DRINet [52] design the sparse convolution layers and
pointwise operational layers to fuse features considering sparsity and geometry.
Furthermore, RPVNet [47] combines the range-view, point, and voxel represen-
tations for point cloud segmentation. The general framework of current multi-
representation learning is to utilize sparse convolutions for locality and sparsity
and pointwise operations for geometry learning, aiming to combine sparsity and
geometry for better performance and efficiency. While these approaches lead
to some performance improvements, they are not efficient enough to meet the
need of a real-time system due to the extra computation cost brought by the
additional views or representations. Meanwhile, according to the results of the
experiments in these approaches, the voxel-based representation is still the dom-
inant one, with which these methods have already achieved decent performance.
Inspired by these observations, we propose the Geometry-aware Sparse Net-
works to explore extra geometric properties based on a single sparse voxel-based
representation. Our Geometry-aware Sparse Networks incorporate sparsity and
geometry in a single representation without introducing extra computation costs
from multi-representation fusion. Our Geometry-aware Sparse Networks mainly
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Fig. 1. Comparison between two common ways to deal with sparse features and our
proposed method.

have two modules: Sparse Feature Encoder (SFE) and Sparse Geometric Fea-
ture Enhancement (SGFE). Each module takes the output of the other module
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as input to fully explore the sparsity and geometry of a point cloud at a low
computation cost and memory usage. In SGFE (shown in Fig. 1), we propose a
novel multi-scale sparse projection layer to explore more geometry and Attentive
Scale Selection for multi-scale feature selection. Apart from that, we apply deep
sparse supervision compared with the most common dense manner to alleviate
the pressure of memory consumption.

Our contributions are summarized as follows:

• We propose a novel network architecture to fully exploit the sparsity and
geometry properties. Multi-scale sparse projection layer and Attentive Scale
Selection in the Sparse Geometric Feature Enhancement are proposed to
enhance the geometry for feature learning.

• Deep Sparse Supervision is proposed to design the supervision in a sparse
manner to reduce the memory cost.

• We evaluate our proposed approach on large-scale outdoor scenario datasets
including SemanticKITTI [1] and nuScenes-lidarseg [3] to demonstrate the
effectiveness of our method. We achieve state-of-the-art performance on both
datasets with a runtime speed of 59ms on average on an Nvidia RTX 2080
Ti GPU.

2 Related Work

Indoor Point Cloud Segmentation. The point cloud from an indoor scene
often has closely positioned points with a small range. The existing indoor point
cloud segmentation approaches can be classified according to their model rep-
resentations. For point-based approaches, PointNet [29], PointNet++ [29], and
their related works [19, 45, 53, 20, 28, 31] based on a similar architecture are pop-
ular models in this task. Most of these works explore the local neighborhood
context while preserving the inherent geometry of a point cloud. They use dif-
ferent grouping and permutation invariant operations to promote performance.
The other mainstream methods [33, 25, 21, 16, 17] follow the volumetric repre-
sentation by partitioning the space as discrete pixels/voxels and then apply-
ing 2D/3D CNN architectures to the regular representation. Graph-based ap-
proaches for point cloud learning [40, 55, 37, 41, 43, 48] are also popular due to
the nature of graphs to deal with unorderedness and the capability to model
the relationship among points. Currently, with the popularity of transformers,
some works [56, 11] achieve state-of-the-art performance in indoor point cloud
learning by introducing transformer-based architectures. Although a number of
novel architectures have been proposed to improve point cloud learning, some
of them fail to generalize to outdoor scenarios with thousands of hundreds of
points.
Outdoor Point Cloud Segmentation. Compared with indoor point cloud
segmentation, the sparsity and larger number of points pose great challenges for
existing approaches. Point-based methods such as KPConv [38] and RandLA [14]
extend the architecture of PointNet [29] or PointNet++ [30] and adopt sampling
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strategies to alleviate these problems but lead to extra information loss. KP-
Conv [38] introduces the kernel point selection process to generate high-quality
sampling points. Range-view-based approaches [44, 46, 8] project the point cloud
into range views or spherical representations and apply efficient CNN architec-
tures. However, the range view cannot maintain the metric space and introduces
distortions, which potentially leads to performance degradation. Some other ap-
proaches [59, 54, 7, 6, 49] quantize a point cloud into some pre-defined space or
representations (e.g., polar grids, 2D grids, and sparse 3D grids) and then apply
regular convolution neural networks or sparse convolutions [10, 50, 42] to achieve
the balance between efficiency and performance. A line of works integrates the
multiple representations, including range views, voxel representations, and point
representation, to exploit the potential of different representations deeply [35,
47, 52, 21]. These works utilize different architectures for different representa-
tions and propose various fusion strategies and show strong performance gain
compared to single-representation-based methods, at the cost of extra running
time.
Image Segmentation to Point Cloud Segmentation. The fully convolu-
tional network (FCN) [22] is one of the pioneering works for image segmentation
with deep learning. Based on FCN and existing prevalent CNN architecture,
DeepLab [4], PSPNet [57] and their following works [51, 5] are proposed with
multi-scale or multiple dilation rate strategies to explore more hierarchical local
context information. Furtherly, HRNet [34] fuses different resolution heatmaps
in a single framework and keeps the high resolution to improve the performance.
Considering the great process achieved in image segmentation, lots of works [52,
26, 39, 54, 59] have applied these tricks, including hierarchy learning, attention
mechanism, or backbones into point cloud segmentation. Some works [59, 7] are
built on U-net [32] with sparse convolution acceleration.

3 Approach

The overall network architecture of our approach consists of two modules: 1)
Sparse Feature Encoder and 2) Sparse Geometry Feature Enhancement. Sparse
Feature Encoder serves as a basic block for fast local context aggregation. While
Sparse Geometry Feature Enhancement, which takes the output of Sparse Fea-
ture Encoder as input, enhances the geometric information by multi-scale sparse
projection and attentive scale selection layer. Both modules interact in sparse
space, saving the computation cost and increasing the runtime efficiency. More-
over, we apply Deep Sparse Supervision at the voxel level to alleviate the memory
issues resulting from dense supervision. Fig. 2 demonstrates the overall frame-
work of our proposed approach.

3.1 Prerequisite

Voxelization. Given a grid size s, voxelization is the process that discretizes a
point pi = (xi, yi, zi) to its voxel index Vi by the following equation:

Vi = (⌊xi/s⌋, ⌊yi/s⌋, ⌊zi/s⌋) , (1)
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Fig. 2. The overall structure of our GASN. In the top half of the figure, LiDAR input
is firstly voxelized as sparse features. Then the sparse feature encoder utilizes sparse
convolutions to process the sparse features. Furthermore, sparse geometry feature en-
hancement will enhance the features by multi-scale sparse projection and attentive
scale selection layer to generate the input of sparse feature encoder at the next stage.
Sparse supervision will be attached to the output of the sparse feature encoder as an
auxiliary loss. The bottom line describes the details of multi-scale sparse projection
and attentive scale selection. N is the number of points, Mi is the number of voxels,
CE is the channel dimension.

where ⌊·⌋ is a floor function. Vi is represented as a scalar of the voxel index for the
i-th point pi, and. Since each voxel could contains multiples points or multiple
fine-grained sub-voxels, we define a scatter function Ψ and gather function Φ
which is widely used in [52, 58], where the former performs the clustering process
to cluster point features or sub-voxel features S ∈ RNS×C to voxel features
V ∈ RNV×C under larger voxel scale while the latter reverses from voxel features
V to point features or sub-voxel features S:

V = Ψ (S, VS) =

∑
j

Sj

∣∣VSj
∈ VVi

, i = 1, . . . , NV

 , (2)

S = Φ (V, VV) =
{
Vj |VSi ∈ VVj , i = 1, . . . , NS

}
, (3)

where C is the channel number, VV and VS is the voxel index for point clouds,
VVj means the voxel index for the voxel feature Vj , which is the same as VSi .
The Equ. 2 and Equ. 3 mainly reveal the mutual transformation between point
features and voxel features: Scatter and Gather. To convert a raw point cloud
into voxelwise features, we use the similar approach used in DRINet [52] and
Cylinder3D [59] namely GAFE.
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Algorithm 1 Multi-scale Sparse Projection

Input: Input sparse voxel features Fv with corresponding voxel index V and pre-defined
scale set S
Output: Multi-scale features O

1: L = []
2: for each s ∈ S do
3: Vs = (⌊Vx/s⌋, ⌊Vy/s⌋, ⌊Vz/s⌋)
4: F s

v = Ψ (Fv,Vs)
5: Gs = MLP(Φ(F s

v ,V))
6: Os = Gs ∗ Fv

7: L.append(Os)
8: end for
9: O ← Stack(L)
10: return O

3.2 Sparse Feature Encoder

The sparse voxel representation makes it easy to apply standard convolution
operations to extract local context information. Thus, in order to keep high run-
time efficiency and explore more locality, we utilize sparse convolution layers [10,
42, 50] instead of dense convolution [21]. One of the good merits of sparse convo-
lution lies in the sparsity, with which the convolution operation only considers
the non-empty voxels. Based on this observation, we build our sparse feature en-
coder (SFE) with sparse convolution to quickly expand the receptive field with
less computation cost. We adopt the ResNet BottleNeck [12] while replacing
the ReLU activation with Leaky ReLU activation [24]. In order to keep a high
efficiency, all the channel number for sparse convolution is set to 64.

3.3 Sparse Geometry Feature Enhancement

After obtaining the sparse voxelwise features from the sparse feature encoder,
we aim to enhance the voxelwise features with more geometric guidance by our
Sparse Geometry Feature Enhancement (SGFE).

Multi-scale Sparse Projection Layer. Inspired by previous works [57, 30,
52] which focus on multi-scale features aggregation, we notice that hierarchical
context information helps enhance the capability of feature extraction, especially
for point cloud, which has inherent scale invariance and geometry. Multi-scale
features bring point cloud learning more geometric enhancement since each voxel
scale reflects one specific physical dimension property. However, it is not appli-
cable to directly apply Pyramid Pooling Module from PSPNet [57] due to the
sparsity of point clouds. Also, DRINet [52] proposes points pooling at point
level by scattering operation while introducing extra huge memory cost when
considering large-scale scenarios. As a result, we propose Multi-scale Sparse
Projection Layer to exploit the multi-scale features at a sparse voxel level with
a much lower memory cost.
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Given the input voxelwise features Fv ∈ RNV×C with corresponding voxel
index V and pre-defined pooling scale set S, where NV is the voxel number and
C is the channel number. Multi-scale Sparse Projection is described in Algo. 1.
Different scales contain different geometry prior since the scale semantics in the
point cloud are proportional to the real dimension, reflecting the physical metric
space. For each pooling scale s, we first re-calculate the voxel index under the
scale s to ensure the features within the same pooling window will have the
same voxel index. Then, we apply Scatter operation Ψ to perform the sparse
pooling in order to obtain feature mean with local geometric priors F s

v ∈ RNVs×C

within each pooled region, where NVs is the voxel number under scale s. The
embedding features Gs ∈ RNV×C are based on the normalized features with
learnable MLP layers. We then use tensor elementwise multiplication to obtain
projection features Os at scale s. Finally, features that reveal the geometry at
different scales are stacked together.

Sum MLP

X

Sum

Fig. 3. An example that demonstrates the attentive scale selection. ⊗ indicates tensor
element-wise multiplication.

Attentive Scale Selection. After obtaining the multi-scale features from
the multi-scale sparse projection layer, the naive way of multi-scale features
fusion is to apply tensor concatenation or tensor summation. As such, all the
features from different scales share the same weights and are treated equally.
A common consensus in the point cloud is that features from different scales
have different geometry prior and focus on scene understanding. From this point
of view and motivated by the SENet [13] and SKNet [18], a better approach
to fusing multi-scale features is to apply a re-weighting strategy along scale
dimension for each feature channel to re-distribute the importance of each scale.

We first sum over all the input tensors {Os|s ∈ S} for the first stage fusion
to collect all the information from different scales as follows:

O =
∑
s

Os, (4)

where O ∈ RNV×C in the summed features. Inspired by recent popular attention
works [18], we apply a scale-wise MLP layer with sigmoid activation for the re-
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sults to get the attentive embedding for each scale. Finally, tensor multiplication
between attention weight tensor and multi-scale features is applied, followed by
the scale dimension’s tensor sum:

A O =
∑
s

Sigmoid(MLPs(O)) ∗Os, (5)

where A O ∈ RNV×C is the output attentive features for the SGFE module.
Fig. 3 demonstrates the overall process.

3.4 Deep Sparse Supervision

Dense supervision on each pixel/voxel is a popular way in both 2D and 3D
semantic segmentation tasks. Previous methods [54, 59] generate dense feature
maps with dense supervision. Although these works have considered the sparsity
with their network architectures, they ignore this property when designing the
loss, one of the key differences between 2D and 3D data. In fact, dense supervision
with fine-grained feature maps brings a significant overload on memory usage.
For example, when using a grid size of 0.2m, the memory consumption (about
500 Mb) for a single dense feature map with 20 classes could be problematic.
Based on these observations and inspired by [23], we propose a novel Deep
Sparse Supervision (DSS) to deal with supervision in a deep sparse style.

Specifically, we generate voxel semantic labels at different scales in the train-
ing stage, and the supervision only acts on valid voxels rather than whole dense
feature maps. Each voxel label is assigned with the major vote point labels
within the voxel. Since we stack multiple blocks of SFE which generate sparse
voxelwise features at different scales, we apply sparse supervision to the output
voxelwise features stage by stage as auxiliary loss, one of the useful optimiza-
tion techniques. We also apply sparse supervision for the main final prediction
branch. The auxiliary loss helps optimize the training, while the main branch
loss accounts for the most gradients.

In the testing stages, all the auxiliary branches are disabled to keep the
runtime efficiency. This kind of training strategy has proven its effectiveness in
image-based segmentation [22]. We consider the sparsity of point clouds and
apply it in a sparse manner to save memory consumption.

3.5 Final Prediction

For the final semantic prediction, we fuse the multi-stage features from the out-
put of each Sparse Geometry Feature Enhancement Layer by gathering oper-
ations to the most fine-grained scale of the voxel. To obtain pointwise results,
we also apply the gathering strategy, in which each point is attached with the
semantic features from the voxel that it lies in. The whole algorithm for our
framework is illustrated in Algo. 2.
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Algorithm 2 Geometry-aware Sparse Networks

Input: Input sparse voxel features F , the number of blocks B, and voxel index V s at
the target scale s
Output: Semantic prediction P

1: L = []
2: Loss = 0
3: for i = 1 to B do
4: V ← SFE(F )
5: F ← SGFE(V)
6: Os ← Φ(F,Vs)
7: Loss += LossFunc(V)
8: L.append(Os)
9: end for
10: L← Stack(L)
11: P = Softmax(MLP(L))
12: return P

4 Experiments

We conduct experiments on large-scale outdoor scenarios dataset SemanticKITTI [1]
and Nuscenes [3] to show the effectiveness of our proposed approaches. Besides
that, we also conduct ablation studies to validate proposed components.

4.1 Datasets

SemanticKITTI SemanticKITTI [1] generated from KITTI odometry dataset [9]
contains 22 sequences which involve the most common scenes for autonomous
driving. Each scan in the dataset has more than 100K points on average, with
pointwise annotation labels for 20 classes. According to the official settings,
sequences from 00 to 10 except 08 are the training split, sequence 08 is the
validation split, and the rest sequences from 11 to 21 are treated as test split.
Nuscenes Nuscenes [3] has a total of 40,000 scans collected by 32 beams Lidar
sensor. Compared with SemanticKITTI [1], it contains fewer points and anno-
tations classes(16 classes).

For both datasets, they use mIoU as one evaluation metric, which is one
of the most popular criteria in point cloud semantic segmentation. Apart from
that, SemanticKITTI provides Acc, the average accuracy metric, and Nuscenes
uses fwIoU as additional criteria, which is the weighted sum of IoU for each
class based on the point-level frequency.
Network Details. We use the same settings for both datasets. We quantize the
point cloud with a voxel scale 0.2m along xyz dimensions to generate the initial
sparse voxel features. We design our Geometry-aware Sparse Networks with four
blocks of Sparse Feature Encoder and Sparse Geometry Feature Enhancement. In
the ablation study, we also evaluate the effect of block number choice between
performance and efficiency. As for the multi-scale sparse projection layer, we
adopt kernel sizes and strides with [2, 4, 6, 8], which could cover the coarse and
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Table 1. The per-class mIoU results on the SemanticKITTI test set.
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PointNet [29] 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7 14.6 500

PointNet++ [30] 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 20.1 5900

KPConv [38] 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4 58.8 -

RandLA [14] 90.7 73.7 60.2 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 66.8 49.2 49.2 48.2 7.2 56.3 47.7 38.1 53.9 880

SqueezeSegV3 [46] 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 55.9 238

RangeNet++ [27] 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 52.2 83.3

TangentConv [36] 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 35.9 3000

SPVCNN [35] 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3 67.0 259

PolarNet [54] 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5 54.3 62

DASS [39] 92.8 71.0 31.7 0.0 82.1 91.4 66.7 25.8 31.0 43.8 83.5 56.6 69.6 47.7 70.8 0.0 39.1 45.5 35.1 51.8 90

DRINet [52] 90.7 75.2 65.0 26.2 91.5 96.9 43.3 57.0 56.0 54.5 85.2 72.6 68.8 69.4 75.1 58.9 67.3 63.5 66.0 67.5 62

Cylinder3D [59] 92.0 70.0 65.0 32.3 90.7 97.1 50.8 67.6 63.8 58.5 85.6 72.5 69.8 73.7 69.2 48.0 66.5 62.4 66.2 68.9 131

AF2S3Net [6] 92.0 76.2 66.8 45.8 92.5 94.3 40.2 63.0 81.4 40.0 78.6 68.0 63.1 76.4 81.7 77.7 69.6 64.0 73.3 70.8 -

RPVNet [47] 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4 70.3 168

Ours 89.8 74.6 66.2 30.1 92.3 96.9 59.3 65.8 58.0 61.0 87.3 73.0 72.5 80.4 82.7 46.3 69.6 66.1 71.6 70.7 59

Fig. 4. The results on the SemanticKITTI validation set. The top row is the ground
truth, and the bottom row is the predictions by our Geometry-aware Sparse Networks.

Table 2. Quantitative results of model complexity with performance. The performance
is obtained from the leaderboard of SemanticKITTI. Statistics of the number of param-
eters and Macs are from the corresponding papers. The running times are all evaluated
on a single Nvidia RTX 2080Ti GPU. ∗ donates the statistics from our reproduction.

Method Param (M) Macs (G) Speed Memory mIoU

SPVCNN 12.5 73.8 120 ms 2.4 Gb 67.0

DRINet 3.5 14.58 62∗ ms 2.1∗ Gb 67.5

Cylind3D 53.3 64.3 131 ms 3.0 Gb 68.9

RPVNet 24.8 119.5 168∗ ms 2.7∗ Gb 70.3

Ours 2.2 12.1 59 ms 1.6 Gb 70.7

the fine pooling regions. Similar to previous works, we apply random flipping,
random points dropout, random scale, and global rotation in the training stage.
For the loss design, we combine the Lovasz loss [2] and cross-entropy loss as
supervision. Adam optimizer [15] is employed with an initial learning rate of
0.0002 at batch size 4 for 50 epochs. The learning rate decays in a ratio of 0.1
for every 15 epochs.
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4.2 Results on SemanticKITTI

SemanticKITTI Single Scan: We provide the detailed per-class quantitative
results of our Geometry-aware Sparse Networks as well as the other state-of-the-
art methods in Tab. 1. Compared with previous methods, our GASN achieves
state-of-the-art performance while maintaining a real-time inference efficiency.
Although our Geometry-aware Sparse Networks fails to achieve the best result for
every class, it achieves balanced results among all the classes. Even compared to
multiple representation fusion approaches [52, 35, 47], our method still surpasses
by a considerable margin.

Furthermore, we also provide quantitative analysis for the model complex-
ity and latency for some state-of-the-art methods and our GASN in Tab. 2 to
illustrate the high performance-time ratio of our approach. Compared with pre-
vious methods, we achieve the best mIoU result with the least computation cost,
demonstrating the efficiency and effectiveness of our approach. Some quantita-
tive results on the SemanticKITTI validation set are shown in Fig. 4.

Table 3. Comparison to the state-of-the-art methods on the test set of SemanticKITTI
multiple scans challenge. ∗ donates the moving category.
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Cylinder3D 90.7 74.5 65.0 32.3 92.6 94.6 74.9 41.3 0.0 67.6 63.8 38.8 0.1 85.8 72.0 68.9 12.5 65.7 1.7 68.3 0.2 11.9 66.0 63.1 61.4 52.5

TemporalLidarSeg 91.8 75.8 59.6 23.2 89.8 92.1 68.2 39.2 2.1 47.7 40.9 35.0 12.4 82.3 62.5 64.7 14.4 40.4 0.0 42.8 0.0 12.9 63.8 52.6 60.4 47.0

KPConv 86.5 70.5 58.4 26.7 90.8 93.7 69.4 42.5 5.8 44.9 47.2 38.6 4.7 84.6 70.3 66.0 21.6 67.5 0.0 67.4 0.0 47.2 64.5 57.0 53.9 51.2

AF2S3Net 91.3 72.5 68.8 53.5 87.9 91.8 65.3 15.7 5.6 65.4 86.8 27.5 3.9 75.1 64.6 57.4 16.4 67.6 15.1 66.4 67.1 59.6 63.2 62.6 71.0 56.9

Ours 92.3 79.1 69.6 30.9 93.7 97.2 85.4 46.8 15.9 63.6 53.3 64.6 26.3 86.8 75.8 71.2 30.5 84.8 0.0 73.1 0.0 76.9 72.8 68.0 73.5 61.3

SemanticKITTI Multiple Scans: Meanwhile, we also conduct experiments
on SemanticKITTI multiple scans challenge to verify the effectiveness of our
GASN. In this task, we directly stack multiple aligned scans as input without
any temporal fusion algorithm, then generate the pointwise output prediction
according to Algo. 2. We do not apply any post-processing for refinement. As
shown in Tab. 3, our Geometry-aware Sparse Network shows a significant im-
provement compared with previous methods in terms of both metrics. Compared
with AF2S3Net [6], which is also a voxel-based approach, the proposed method
brings a very competitive gain (about 4.4%). Our method surpasses the existing
approaches in nearly all categories, demonstrating the effectiveness and gener-
alization capability of our method. To this end, GASN can serve as an efficient
and strong backbone for the large-scale point cloud semantic segmentation task.

4.3 Results on Nuscenes

In order to verify the generalization ability of our approach, we also report
the results on Nuscenes-lidarSeg [3] task on the test set. As shown in Tab. 4,
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Table 4. The per-class mIoU results on the Nuscenes test set.
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AF2S3Net [6] 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8 88.5 78.3

Cylinder3D [59] 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6 89.9 77.2

SPVCNN [35] 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1 89.7 77.4

PolarNet [54] 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5 87.4 69.4

Ours 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2 91.0 80.4

GASN achieves highly strong results, with 10 out of 16 categories surpassing
the other approaches. There is a noticeable improvement for classes with small
sizes, such as pedestrians and motorcycles, demonstrating the effectiveness of
our sparse geometry feature enhancement, which is designed to capture and
integrate multi-scale context information through hierarchical feature learning
and attentive scale selection.

4.4 Ablation Study

Components Study. Our baseline model, shown in Tab. 5, which only uses
a sparse feature encoder, has achieved decent performance. It reveals that the
voxel representation with sparse convolution has a strong capability for feature
extraction and context information learning in the outdoor point cloud semantic
segmentation task. The multi-scale sparse projection layer brings 1.8% improve-
ment with its ability to capture hierarchical geometry information. Furtherly,
we apply the attentive scale selection to re-distribute the importance of each
scale for each channel. This strategy enables the network the focus on a more
significant scale and has a performance gain of about 1.9%. Next, adding the
deep sparse supervision in the training stage improves the mIoU to 69.4%, an in-
crease of 1.7%. More importantly, deep sparse supervision will be disabled when
inference, bringing no extra computation cost for deployment.

Table 5. Ablation study on the SemanticKITTI validation set. MSP refers to Multi-
scale Sparse Projection. ASS refers to Attentive Scale Selection. DSS refers to Deep
Sparse Supervision.

SFE
SGFE

DSS mIoU (%)
MSP ASS

✓ 64.0

✓ ✓ 65.8

✓ ✓ ✓ 67.7

✓ ✓ ✓ ✓ 69.4
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Number of Blocks. The block number choice plays a crucial role in our net-
work. Fewer blocks may lead to underfitting problems, while more blocks mean
more computation cost and memory consumption, indicating inefficiency. In or-
der to find a better block number, we conduct the experiment varying this pa-
rameter. With block number ranging from 1 to 5, the performance is 50.8%,
61.3%, 67.4%, 69.4% and 69.9%, while the speed will be 26ms, 33ms, 41ms,
59ms and 70ms respectively. The performance increases from 50.8% to 70.2%
when the block number rises to 5, while the runtime speed nearly doubles. Fur-
thermore, adding one more block when the block number is 4 introduces extra
11ms latency while only improving the mIoU by about 0.5%. Therefore, we
choose block number as 4 in our experiment.

Table 6. Ablation study for fusion strategy. TC refers to concatenation and TS refers
to Tensor sum.

Method mIoU (%) Memory Speed

ASS 69.4 1.6Gb 59ms

TS 67.7 1.45Gb 57ms

TC 68.7 1.48Gb 57ms

Scale Features Fusion Strategy. We analyze the effectiveness of the proposed
ASS by comparing it with different fusion strategies. We use tensor concatena-
tion and summation, which are commonly used in feature fusion. For this work,
we enable all other proposed modules for a fair comparison. As shown in Tab. 6,
the ASS layer serves as a better approach for fusing the multi-scale features,
which leads to a 2.0% increase compared with the tensor summation while only
bringing 2ms cost. Tab. 7 also shows that other models that utilize multiple rep-
resentations could benefit from the ASS strategy. Compared with DRINet [52],
the original SPVCNN [35] does not have hierarchical learning in the pointwise
branches, and then its performance will improve when ASS is enabled.

Table 7. Ablation study for DSS and ASS on the SemanticKITTI [1] validation set
with different models. The statistics are from our reproduction.

Method Original (%) DSS (%) ASS (%)

SPVCNN [35] 64.7 66.1 (+1.4) 66.7 (+2.0)

DRINet [52] 67.3 68.1 (+0.8) 67.9 (+0.6)

Cylinder3D [59] 66.5 67.8 (+1.3) -

Sparse or Dense Supervision. Deep Sparse supervision is another character-
istic of our GASN. In this experiment, we compare the sparse and dense super-
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vision in terms of memory cost and performance. We remove the deep auxiliary
loss branch for simplicity, with only the main supervision left. The memory con-
sumption for both sparse and dense supervision only includes prediction tensor
and label tensor without the consumption used by gradient tensors. The memory
footprint in sparse supervision (6Mb) only accounts for about one percent of that
in dense supervision (552Mb), and the results are close between the methods,
which are 69.4% and 69.5% respectively. By incorporating sparse supervision,
we can use a larger batch size for training, leading to efficient training.

Deep Sparse Supervision. Our Deep Sparse Supervision can be a general
component in the point cloud semantic segmentation task, and we incorporate
this strategy with other popular models to verify its effectiveness. As shown in
Tab. 7, Deep Sparse Supervision could help the performance of popular models
without any extra computation cost for inference.

Table 8. Ablation study on SemanticKITTI validation set for voxel size choice.

Voxel Size (m) mIoU (%) Memory Speed (ms)

0.2 69.4 1.6Gb 59

0.3 68.3 1.42Gb 47

0.4 67.1 1.31Gb 42

0.5 64.0 1.25Gb 39

Voxel Size. To choose the best voxel size for the experiments, we also conduct
experiments to verify the effect. As shown in Tab. 8, the runtime speed, memory
consumption, and performance drop significantly with a larger voxel size. As a
result, we choose voxel size as 0.2m in our experiments.

5 Conclusion

In this paper, we propose our Geometry-aware Sparse Networks that serve as
an efficient network architecture for point cloud segmentation. Our GASN deals
with point cloud segmentation by fully utilizing the sparsity and geometry in a
single sparse voxel representation to maintain performance and efficiency. GASN
consists of Sparse Feature Encoder (SFE) and Sparse Geometry Feature En-
hancement (SGFE). SFE helps extract local context information, while SGFE
enhances the geometry with multi-scale sparse projection and attentive scale
selection. Moreover, we apply deep sparse supervision to accelerate convergence
with a lower memory cost. The experiments on large-scale outdoor scenarios
datasets demonstrate that our approach achieves state-of-the-art performance
with impressive runtime efficiency.
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