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Abstract. Based on the key idea of DETR this paper introduces an
object-centric 3D object detection framework that operates on a limited
number of 3D object queries instead of dense bounding box proposals
followed by non-maximum suppression. After image feature extraction a
decoder-only transformer architecture is trained on a set-based loss. Spa-
tialDETR infers the classification and bounding box estimates based on
attention both spatially within each image and across the different views.
To fuse the multi-view information in the attention block we introduce a
novel geometric positional encoding that incorporates the view ray geom-
etry to explicitly consider the extrinsic and intrinsic camera setup. This
way, the spatially-aware cross-view attention exploits arbitrary receptive
fields to integrate cross-sensor data and therefore global context. Exten-
sive experiments on the nuScenes benchmark demonstrate the potential
of global attention and result in state-of-the-art performance. Code avail-
able at https://github.com/cgtuebingen/SpatialDETR.

Keywords: 3D object detection, cross-sensor attention, autonomous
driving

1 Introduction

To achieve the goal of autonomous driving it is necessary to perform 3D scene
understanding and to detect objects such as other cars or pedestrians. The re-
quired 3D object detection task is typically either performed using a LiDAR
sensor [10], [30], multi-view cameras [27], [29] or by using multiple sensor modal-
ities [31], [25]. While LiDAR-based methods have the advantage of precise in-
formation about the 3D structure of objects, camera-only approaches come with
higher sensor-refresh rates and scale also to low-cost autonomous vehicles.

The problem of multi-view 3D object detection solely from camera images is
challenging due to the fact that the images only contain a 2D projection of the
3D scene. Furthermore, the position of the camera sensors needs to be taken into
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Fig. 1. Visualization of our spatially-aware global cross-sensor attention. Fusing the
3D information from the individual images is supported by a positional encoding (left)
that incorporates the global 3D view direction of each pixel

account, since some cameras might have overlapping field of views. FCOS3D [27]
tackles this issue by extending concepts from the 2D object detection to the 3D
domain. This typically results in the need for post-processing steps to filter
out duplicate detections in overlapping regions since the 3D structure and the
positioning of the sensors is not taken into account. Pseudo-LiDAR-based meth-
ods [28] solve this by converting the images to a 3D point cloud [16] and achieve
state-of-the-art performance on the nuScenes benchmark [1]. Using multi-head
dot-product attention as introduced in [24], DETR [2] proposed a new object-
centric approach to 2D object detection. Recently, DETR3D [29] pioneered in
extending this concept to the multi-view 3D object detection domain. But in con-
trast to DETR where global attention between a query and each feature patch is
used to select pixels corresponding to an object, DETR3D only uses pixels that
correspond to the query center and therefore supposably misses feature patches
corresponding to a large object in the scene.

To allow for global, cross-sensor attention and to therefore enable an object
query to select all feature patches that correspond to an object in the scene the
DETR3D formulation is not sufficient. Global, cross-sensor attention requires a
way to compare an object query with keys that correspond to feature patches in
the different camera images.

Motivated by the findings in [16] that the success of pseudo-LiDAR methods
results from the explicit modelling of the sensor positions, we propose a new
geometric positional encoding to exploit the spatial and geometric structure
of object detection in 3D. We furthermore introduce a spatially-aware cross-
attention block to account for different coordinate spaces and to model query-
key similarity in a sensor-specific fashion. The resulting combination enables
global cross-sensor attention and an implicit conversion from 2D image patches
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to a unified, latent 3D representation. Our approach called SpatialDETR is
naturally scalable to other sensor modalities such as LiDAR or Radar since
the direction vector formulation of our positional encoding models the way how
sensors of all modalities capture data. We hope to encourage future research
to focus on multi-modal 3D object detection by introducing a unified spatially-
aware representation for global cross-sensor attention. See Fig. 1 for an overview.

Summarizing, our main contributions are:

– Geometric positional encoding

– Cross-sensor global attention for arbitrary sensor setups

– Explicit modelling of sensor calibrations

2 Related Work

2.1 Transformer-Based Object Detection

Modern 2D object detectors often predict a high amount of oriented bounding
boxes (OBB)s [20], [12], [23] by using anchor-boxes or a dense prediction scheme.
As a result, such methods rely on post-processing steps such as non-maximum
suppression to filter out highly overlapping OBB proposals. DETR [2] mitigates
this issue by viewing object detection as a set-prediction problem. Using a trans-
former encoder-decoder architecture and learnable object queries as input to the
decoder results in a small number of object proposals which allow for a set-based
loss via bipartite matching with the ground truth. To improve the slow conver-
gence of DETR various methods have been proposed such as introducing sparsity
to keys [33] or queries [21] or by using an encoder-only version of DETR [22].

To perform object detection in 3D from monocular camera images, two-stage
methods convert the images to a pseudo-LiDAR point cloud [28], [8] using dense
depth-estimation. Single stage methods either leverage an object detection net-
work that was pretrained on a large-scale monocular depth estimation task [18]
or multi-task learning [27].

DETR3D [29] proposes a DETR-based decoder-only approach that is capa-
ble of 3D object detection via 3D to 2D queries without dense depth prediction.
For each object query the object center is extracted via a feed-forward network
(FFN) and projected to the different image planes to extract multi-view features
from the backbone. Similar to DeformableDETR, the attention weights are not
image-feature dependent via query-key similarity as in the original attention
formulation [24] but are instead directly inferred from the object queries with
a FFN. As a result, the attended feature patches correspond to the object cen-
ters only, which requires deformable convolutions in the backbone to allow for
larger receptive fields since no global attention is performed. In contrast to this,
we propose a geometric positional encoding that explicitly models the sensor
calibration and allows to incorporate global context across multiple sensors via
global cross-attention.
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2.2 Prior-Guided Attention

As stated in [33] attention-based methods like DETR require long training sched-
ules since they do not introduce inductive biases like convolutional architectures
and learn a fully flexible receptive field over a sequence of inputs [24]. Deformable
DETR and DETR3D mitigate this issue by attending to a small number of
patches only or by even using only the object center. Spatial-Gaussian priors
are introduced in [6] to increase the attention weights of feature patches close
to the objects and to therefore account for the local nature of objects. In Trans-
Fusion [15] the epipolar-line and epipolar field are used in a dual camera setup
as geometric loss function to guide the attention weights during training. In our
work we avoid hard constraints, guide attention through explicit modeling of
the scene geometry and model geometric dependencies between an object query
and a feature patch directly in the cross-attention blocks using sensor-relative
query projections. Due to the geometric interpretation of our encoding it is still
possible to introduce task or sensor-set specific biases, e.g. by only using queries
that lie in front of the image plane to speed up the convergence.

2.3 Positional Encodings

Since transformers are invariant to input permutations, positional encodings as
introduced in [24] and [5] are used to incorporate positional information to the
feature patches. Typically, either learned or fixed encodings are used, whilst
the latter lead to a slightly higher performance in DETR [2]. Fixed encodings
consisting of alternating sine and cosine functions [2] might have the benefit of
better extrapolation behavior. Although those encodings are well-suited for grid-
based data like images the encoding of multi-view data from cameras mounted at
arbitrary positions results in a complex graph of pixel directions. Additionally,
small calibration changes, e.g. due to different vehicles in a fleet of cars might
result in changed pixel directions. Our proposed encoding models pixel directions
as a function of the sensor extrinsics and is scalable to varying sensor-modalities
and arbitrary sensor calibrations.

3 Method

3.1 Overall Architecture

An overview of the proposed architecture is presented in Fig. 2. The input con-
sists of multi-view, RGB camera images which are utilized to predict a set of 3D
bounding boxes in the scene.

A shared backbone for all cameras is applied to compress the images to a la-
tent representation. Following the design of DETR and DETR3D a transformer
decoder is used to generate OBB proposals. Our proposed geometric positional
encoding is used to incorporate the extrinsics and intrinsics of the camera setup
and scene geometry into the sequence of input features supporting global atten-
tion across all cameras. The so-called object queries are learnable vectors that are
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Fig. 2. SpatialDETR architecture. The camera images are encoded using a shared back-
bone. Afterwards object proposals are iteratively refined with self- and cross-attention
in n decoder layers. The newly proposed geometric positional encoding is used in each
spatially-aware cross-attention block for query-key similarity

refined iteratively using a stack of decoder layers. Each decoder layer consists of
a self-attention block between the object queries and a cross-attention block be-
tween object queries and image feature maps. In contrast to DETR our decoder-
only approach scales linearly with the image resolution since no self-attention
between feature patches is performed as motivated in [9]. As in DETR3D [29],
the final bounding box predictions are generated by a FFN converting each
latent object query to an OBB described as

(
x, y, z, w, h, l, θcos, θsin, vx, vy

)
where

(
x, y, z

)
correspond to the object center,

(
w, h, l

)
to the extend (width,

length and height) of the bounding box, vx and vy to the object velocity and

θ = arctan
(

θsin
θcos

)
to the object heading. Following [29], the bounding box cen-

ter coordinates are predicted in normalized coordinates using a sigmoid function
and are afterwards scaled to the desired object detection range to increase the
numeric stability. During training each decoder layer computes bounding box
predictions to improve the gradient flow, during inference only the output of the
last decoder layer is used.

After each decoder layer the output object centers on+1
c are interpreted as

relative offsets to the object centers of the last decoder layer before the sigmoid
which results in the following update of a query center qn+1

c in decoder layer
n+ 1 as introduced in [29]

qn+1
c = sigmoid

(
sigmoid−1(qn

c ) + on+1
c

)
(1)

3.2 Revisiting Attention in DETR

Vaswani et al. introduced the concept of dot-product attention in [24] as

Attn(Q,K,V) = softmax(
Q ·KT

√
dk

) ·V (2)
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For each value v ∈ V, an attention weight is computed as the scaled dot product
between a query q ∈ Q and the corresponding key vector k (see [24]). This
query-key similarity is responsible for selecting the relevant values in the input.
Afterwards, the resulting weighted sum of values is the output of an attention
head. In the case of cross-attention for object detection the values and keys
correspond to linearly projected feature patches while the queries correspond to
objects in the scene. To adapt this concept to multi-sensor cross-attention, we
need to solve two main challenges in our framework:

– Position information: The spatial location of each feature patch from all
cameras needs to be incorporated, e.g. by using a positional encoding.

– Query-key similarity: The query-key similarity via the dot-product in
Eq. (2) needs to take the different coordinate spaces into account, since
object queries are defined with respect to a reference system while feature
patches encode camera-relative information.

As a solution we propose a novel geometric positional encoding in Section 3.3
to model spatial dependencies between feature pixels. Furthermore, we intro-
duce a spatially-aware cross-attention block that resolves the issues related with
different coordinate spaces in Section 3.4.

3.3 Geometric Positional Encoding

As shown in DETR [2] global spatial attention between a query that represents
an object and feature patches from the images is a simple yet effective way to
allow for flexible receptive fields and therefore global context. The selected im-
age patches are used to update the query to allow for a precise localization and
classification of the object. Furthermore, object detection based on attention re-
moves the need for post-processing steps like non-maximum suppression or prior
knowledge such as anchor boxes while still achieving state of the art performance
since the learnable object queries specialize to learned priors during training [2].

To utilize dot-product attention as defined in Eq. (2) the keys need a posi-
tional encoding to incorporate position information of an image patch, since the
general attention mechanism is permutation invariant with respect to the input
sequence [24], [2]. Modelling this with a 1D or 2D fixed sine-cosine encoding [5] or
a learnable positional encoding [2] loses the advantage of explicitly modelling the
sensor extrinsics as discussed beforehand. Additionally, in contrast to encodings
for a single image in which the pixels follow a grid-like structure, the introduction
of multi-view images results in a complex graph of pixel directions (see Fig. 1). A
simple 1D or 2D enumeration of pixel positions as done in [5] or [2] is therefore
not applicable. Taking the positioning of the different sensors with respect to
a reference frame into account is required to preserve robustness and scalabil-
ity to a fleet of cars with varying extrinsic calibrations or even different sensor
sets. Our approach is in contrast to DETR3D where the 3D query centers are
projected into the individual images via the extrinsic and intrinsic calibration,
followed by a simple lookup of the image feature at that position without any
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spatial attention. The subsequent cross-attention across the different views does
therefore not need image patch information. As a result, a query in DETR3D
only aggregates features corresponding to object centers across multiple-feature
levels and different views without a flexible receptive field and global context or
key to query similarity.

Having the possibility to use global attention is required to improve the
detection of large objects such as trucks or busses and is the key step towards a
unified representation for multi-task learning since tasks like behavior prediction
or planning rely on global context as shown at the TESLA-AI-Day4 and in [19].

To allow for robust global attention we propose a sensor-relative, spatially-
aware encoding. From the camera intrinsic parameters for a camera c which are
given from the dataset we can directly compute normalized direction vectors dp

c

per pixel p. This view-ray vectors are then element-wise added to the latent key
vectors via a fully learnable network dir2latent that maps the three dimensional
inputs to the latent feature dimension which is shared for all key and query
vectors (see Fig 3).

This results in the following update for the latent key vectors:

k̂p
c = kp

c + dir2latent(dp
c) (3)

Therefore, no hyper parameter for scaling the encoding, to control the amount
of shift that is applied to the values, is required and the model learns how to
merge semantic and geometric information during training.

It is noteworthy that this formulation results in sensor-relative encodings,
since the direction vectors are defined with respect to the corresponding cam-
era frames. A transformation of the key encodings to reference coordinates is
not applicable without an explicit depth estimate per feature pixel due to the
translation component. Similar to fixed sine-cosine encodings our geometric po-
sitional encoding can model relative offsets with a linear operator [24] by using
a three-dimensional rotation matrix as operator.

3.4 Spatially-Aware Attention

To use the sensor-relative encodings and to perform similarity matching within
the same coordinate space while allowing to explicitly model the sensor extrin-
sics, the queries in a cross-attention block need to be camera specific as they are
used in the dot-product with sensor specific keys (see Eq. (2)).

To tackle this each object query q is projected to all camera frames using

q3d
ref = center(query2box(q)) (4)

q3d
c = cTref · q3d

ref (5)

qc = q+ dir2latent
(
q3d
c / ||q3d

c ||2
)

(6)

4 TESLA-AI-Day: https://www.youtube.com/watch?v=j0z4FweCy4M

https://www.youtube.com/watch?v=j0z4FweCy4M
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Fig. 3. Visualization of the proposed spatial attention module. Each query q gets a
sensor-relative update and each key k a geometric update. The resulting spatially-aware
latent vectors can then be compared using a dot-product to perform spatial attention

The FFN query2box projects the latent query vector to an OBB as defined in
Section 3.1. The query center is then projected to all camera frames. Transfor-
mations bTa from one frame a to another frame b are modelled via homogenous
matrices

bTa =

[
R t
0 1

]
. (7)

A visualization of the camera-relative queries and their geometric similarity with
keys from a camera image is given in Fig. 3.

As a result, the queries get a camera-relative geometric update that enforces
a latent encoding which is similar to the geometric-aware keys by sharing the
network for direction to latent projection. The resulting queries qc and keys k̂p

c

are then used for the attention weight computation.
In contrast to this sensor-relative space, the resulting sum of weighted values

is used to perform a query update in reference coordinates. This is due to the fact,
that patches from different cameras may contribute to the same object query.
This results in the need for values that are encoded with respect to the reference
frame to decouple sensor extrinsics from the feature encodings. Analogously to
the query projection this can be done by computing a latent update to transform
a value to the reference system. This is achieved by computing an explicit depth
estimate vdepth for each latent value vector vp

c utilizing a FFN:

vdepth = FFN(vp
c ) (8)

v3d
c = vdepth · dp

c (9)

v3d
ref =

refTc · v3d
c (10)

vp
ref = vp

c + loc2latent(v3d
ref). (11)

The direction vector dp
c is scaled according to the computed factor which results

in a sensor-relative depth estimate. Finally, the latent value update is applied
using the FFN loc2latent to convert the 3D global position v3d

ref to a latent vector,
resulting in the spatially-aware latent value vector vp

ref.
This formulation also directly integrates multi-task learning into the frame-

work by introducing a depth loss for all values with an attention weight greater
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than zero if ground truth depth data is available. In comparison to a dense
depth prediction scheme, the proposed approach produces depth gradients only
for patches that contributed to an object. As a result, depth estimates for regions
without well-defined depth like the sky are not contributing to the loss and the
depth estimates are focused on the objects in the scene.

As a consequence, the proposed cross-attention block does perform the at-
tention weight computation in a sensor specific manner while the resulting query
updates from weighted values are performed in reference coordinates. We expect
this formulation to help the model to decouple the sensor positioning from the
feature encoding and to scale to small calibration changes or online calibration.

4 Experiments

We evaluate the performance of SpatialDETR on the well-established nuScenes
benchmark in the setting of camera-only single-shot 3D object detection. In
addition, we provide qualitative results and several ablation studies to evaluate
the effects of the proposed encoding, the spatial attention block and decoder
layer configuration.

4.1 Experimental Setup

Dataset All experiments are performed on the nuScenes dataset [1] for au-
tonomous driving. Data was collected using cars that feature a setup of six
cameras mounted on the roof of the car to capture images in different directions
as well as other sensors. No radar or LiDAR data is used during training or eval-
uation. The dataset consists of 1000 scenes with a length of 20s each, containing
annotations of 23 classes from which 10 are used to compute benchmark met-
rics [17]. Training is performed utilizing the officially defined train split. Since
ground-truth annotations are only provided for the training and validation set,
all ablation experiments are performed on the validation set.

Metrics For evaluation we report metrics according to the official nuScenes
standard [1] which include the mean Average Precision (mAP), true-positive
metrics such as Average Translation Error (ATE ), Average Scale Error (ASE )
and Average Orientation Error (AOE ), Average Velocity Error (AVE ), Average
Attribute Error (AAE ) and the summarizing nuScenes Detection Score (NDS ).
For a detailed metric definition, the mAP computation and class-specific detec-
tion ranges we refer the reader to [1].

Model Configuration All model configurations use a shared ResNet-101 [7]
backbone which is initialized from a FCOS3D [27] checkpoint as in [4]. The
attached SpatialDETR head uses the output of the last backbone stage as input.
As done in DETR3D [29] a stack of d = 6 decoder layers is then applied to
produce the object bounding box proposals for q = 900 object queries. We
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closely follow the decoder configuration proposed in DETR3D [4] to increase
the comparability. Each decoder layer uses a latent dimension de = 256 for the
attention computation which is then split to h = 8 heads of parallel multi-head-
attention modules with a latent dimension dh = de

h = 32 in sequential query-to-
query self-attention and query-to-patch cross-attention blocks. All FFNs used
in the spatial attention blocks utilize two hidden layers consisting of a linear
projection of dimensionality de, Layer-norm and a ReLU activation function.
The two sub-networks that predict the OBB and a corresponding class label
are chosen as proposed in [29]. The benchmark configurations are trained with
shared decoder weights and attend only to camera images in which the object
center is visible, see Section 4.3 for details.

Training Parameters As proposed in [4] we train all models for 24 epochs, a
total batch size of 8 on 8 NVIDIA A100 GPUs with 40GB RAM and a backbone
in which the first block is frozen. The ablation models are trained with a batch
size of 4 on 4 NVIDIA V100 GPUs with 16GB RAM and a fully frozen back-
bone to reduce the memory footprint. All models are trained using the settings
proposed in DETR3D [4], consisting of an AdamW [14] optimizer and a cosine-
annealing lr-schedule with an initial learning rate of 2e−4. We did not perform
hyperparameter tuning for the used learning rate schedule, optimizer, batch size
or used backbone and use no test-time augmentation or stochastic weight aver-
aging. Our implementation is based on DETR3D [4] and MMDetection3D [3].

4.2 Comparison to Existing Works

We compare SpatialDETR to previous state-of-the-art methods for multi-view
3D object-detection. While FCOS3D [27], PGD [26] and BEVDet [8] follow a
pseudo-LiDAR approach, DETR3D [29] and SpatialDETR use a transformer-
based object-centric paradigm. As shown in Table 1 our method achieves the
highest performance in terms of mean Average Precision and performs equally
with DETR3D in the nuScenes detection score using the same training configu-
ration as DETR3D.

It is noteworthy that the transformer-based methods gain a large performance
increase when using a feature extractor that was initialized from a pseudo-LiDAR
method. We suspect this to result from the dense-depth estimation and the
depth-based loss in pseudo-LiDARmethods which might result in a faster conver-
gence and spatially-aware backbone features while transformer-based methods,
have a slower convergence behavior due to the uniformly distributed attention
in early training stages [33]. Our model does not use multi-scale feature maps
with a FPN [11] via multi-scale attention as proposed in [6] which might be the
reason for the slightly less precise bounding boxes as compared to DETR3D.

Without any bells and whistles like test-time augmentation, model ensem-
bling, finetuning or complex data augmentation as in BEVDet [8], SpatialDETR
ranks within the Top-3 on the official nuScenes benchmark [17] and clearly out-
performs DETR3D (see Table 2). As shown in Table 3 our global attention
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Table 1. Comparison of state-of-the-art methods with different configurations on the
nuScenes val set. PT flags models that use a pretrained backbone initialized from a
FCOS3D checkpoint, MS indicates methods that utilize multi-scale features. ‡ marks
methods using class-balanced grouping and sampling (CBGS) [32], + stands for meth-
ods using a Swin-Transformer-Tiny backbone [13], ¶ for results reported in [8] and †
for results reported in [29]

Name PT MS mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓ NDS↑

FCOS3D[27]† ✗ ✓ 0.299 0.785 0.268 0.557 1.396 0.154 0.373
FCOS3D[27]† ✓ ✓ 0.321 0.746 0.265 0.503 1.351 0.160 0.393
PGD [26]¶ ✗ ✓ 0.335 0.732 0.263 0.423 1.285 0.172 0.409
BEVDET [8]‡ ✗ ✓ 0.317 0.704 0.273 0.531 0.940 0.250 0.389
BEVDET [8]+‡ ✗ ✓ 0.349 0.637 0.269 0.490 0.914 0.268 0.417
DETR3D [29] ✗ ✓ 0.303 0.860 0.278 0.437 0.967 0.235 0.374
DETR3D [29] ✓ ✓ 0.346 0.773 0.268 0.383 0.842 0.216 0.425

SpatialDETR ✗ ✗ 0.303 0.849 0.282 0.522 0.941 0.229 0.369
SpatialDETR ✓ ✗ 0.351 0.772 0.274 0.395 0.847 0.217 0.425

approach increases the performance by up to 3% on large objects such as trucks
and busses in comparison to DETR3D. This supports the assumption that our
attention allows for global context and arbitrary receptive fields that can capture
large objects across the different cameras.

Since we do not use multi-scale feature maps, the performance on small
objects such as pedestrians is slightly reduced due to the low-resolution backbone
feature map which is in accordance to the findings in DETR [2]. As for the 2D
case this can be tackled by using multi-scale attention as proposed in [33] or [6].
Additionally, our global attention formulation does not significantly increase the
runtime since the entire global attention computation and feature projections
can be computed in parallel.

4.3 Ablations and Analysis

Qualitative results for the performance of SpatialDETR on the nuScenes val set
are shown in Fig. 4. The visualized attention maps in Fig. 5 show how the model

Table 2. Comparison of state-of-the-art methods with different configurations on the
nuScenes test set. Our model was trained with CBGS [32] on the training and valida-
tion set as proposed by DETR3D [4]

Name mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓ NDS↑

BEVDet [8] 0.424 0.524 0.242 0.373 0.950 0.148 0.488
DETR3D [29] 0.412 0.641 0.255 0.394 0.845 0.133 0.479
SpatialDETR 0.424 0.613 0.253 0.402 0.857 0.131 0.486
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Table 3. Comparison of transformer-based methods in terms of average precision for
different classes on the val set and runtime on a single NVIDIA V100 GPU. Both meth-
ods use a ResNet101 initialized from a FCOS3D checkpoint. Note how our spatially-
aware attention improves the localization error particularly for extended objects

Method truck↑ bus↑ trailer↑ pedestrian↑ traffic cone↑ FPS↑

DETR3D 0.286 0.347 0.167 0.424 0.529 2.5
SpatialDETR 0.302 0.378 0.175 0.418 0.514 2.4

uses the global attention mechanism to focus on feature patches that belong to
an object even across image borders as shown for query q93.

The effect of different configurations of the proposed positional encoding
and the proposed spatial-attention is analyzed in Table 4. Here, a configura-

Table 4. Effect of the different components of SpatialDETR. P (Q) indicates the pro-
jection of queries in sensor-relative coordinates, P (V ) the projection of values to global
coordinates. Models with C(Q) only attend to feature patches of an image if the query
center is visible within that image

P (Q) P (V ) C(Q) mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓ NDS↑

✓ ✓ ✗ 0.313 0.850 0.274 0.494 0.814 0.213 0.392

✗ ✗ ✗ 0.248 0.993 0.284 0.506 0.771 0.202 0.348
✓ ✗ ✗ 0.317 0.824 0.276 0.470 0.797 0.200 0.402
✓ ✗ ✓ 0.318 0.835 0.277 0.460 0.837 0.210 0.397
✓ ✓ ✓ 0.319 0.824 0.272 0.502 0.813 0.192 0.399

tion without sensor-specific queries reduces the baseline performance where the
queries use a sensor specific, geometric update P (Q) as defined in Eq. (6). This
is likely due to the fact that the translation of the cameras with respect to the

(a) Input images with GT-OBBs (b) Predictions plotted in BEV

Fig. 4. Qualitative detection results. a) input images and ground truth OBBs, b) de-
tection results in BEV (blue) and ground truth (orange)
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reference system is not accounted for in the global formulation. Introducing the
geometric constraint that the predicted object center of an object query has to
be in front of the image plane increases the performance which proves the ef-
fectiveness of our proposed geometric encoding since it allows to model various
task-specific geometric constraints. A more complex computation that does not
only take the object center but instead the full shape estimate of the bounding
box into account might improve the performance even further.

Interpreting values directly as global features without the proposed explicit
value projection update, increases the performance compared to the baseline but
might result in a coupling between backbone features and sensor calibration.
Since we directly predict a depth value per feature patch with a FFN this might
cause numeric instabilities and could therefore require a customized scaling de-
pendent on the desired object detection range. Furthermore, depth-supervision
either by ground-truth depth maps or LiDAR hits might be needed to increase
the performance. Table 5 shows the effect of different decoder settings. Chang-
ing the number of decoder layers as well as the number of used object queries has
a similar effect to DETR [2] and DETR3D [4]. Decreasing the amount of object
queries or decoder layers (see Table 5) decreases the performance, the perfor-
mance saturates close to the default values of six decoder layers and 900 object
queries as proposed in [29]. Sharing the weights between the decoder layers and
therefore treating the full decoder like a RNN with the same input for each layer
and a cross-attention block as proposed in [9] results in a performance gain,
reduction of trainable parameters and more precise bounding box estimates.

5 Conclusion

This paper presents SpatialDETR, a novel spatially and geometrically moti-
vated transformer-based 3D object detection framework for multi-view data. It
explicitly models the sensor calibration and features linear complexity with re-
spect to the input images size due to a decoder-only attention architecture. The
introduced geometric positional encoding and spatially-aware attention block en-
able us to use the global, cross-sensor context for arbitrary sensor positions and

Table 5. Analysis of different decoder configurations. Models flagged as shared, share
weights of the decoder layer 2-6. The first row indicates our baseline configuration

Queries Layers Shared mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓ NDS↑

900 6 ✗ 0.313 0.850 0.274 0.494 0.814 0.213 0.392

600 6 ✗ 0.308 0.846 0.279 0.521 0.809 0.209 0.388
1200 6 ✗ 0.313 0.841 0.274 0.501 0.798 0.207 0.394
900 2 ✗ 0.308 0.846 0.278 0.493 0.899 0.230 0.379
900 10 ✗ 0.311 0.838 0.277 0.483 0.810 0.223 0.392
900 6 ✓ 0.314 0.823 0.273 0.472 0.822 0.224 0.395
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Fig. 5. Visualization of the spatially-aware global cross-sensor attention. Left: pre-
dictions (blue) and ground truth (orange). For three queries (q3,q7,q93) we jointly
visualize the query-key attention maps for the sensor-relative queries (bottom images).
Green arrows indicate queries relative to the front camera, red arrows queries relative
to the front-left camera

achieve state-of-the-art performance while significantly improving the perfor-
mance for large objects without task-specific, hand-crafted constraints or post-
processing steps. Similar to DETR, the detection of small objects is challenging
and might be tackled in future work as done in the 2D case already. To prove
the effectiveness of spatially-aware features that are decoupled from the sensor
calibration, new data sets that model a fleet of cars, contain varying sensor cali-
brations and ground truth depth maps might be required. We are looking forward
to apply the presented approach to multi-modal sensor data and to investigate
its unified latent cross-sensor representation with multi-task learning.
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