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Fig. 1: From the input image (anomaly highlighted with a yellow box), the
initial prediction shows the original segmentation results with anomalies clas-
sified as a one of the pre-defined inlier classes. Anomaly predictions from our
method show an anomaly map with high scores (in yellow and red) for anoma-
lous pixels. In our final prediction, anomalous pixels are coloured in cyan.

⋆ First two authors contributed equally to this work. GP is the corresponding author.
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1 Qualitative results

In Figure 1, we show some additional qualitative results. Our approach can
effectively detect small and distant objects (rows 6 and 7) and objects with
different scales (rows 1 to 5).

2 More AUC results

In Tables 1 and 2, we show the AUC results in addition to the AP and FPR
results in Tables 6 and 7 of the main paper. We achieve consistently SOTA AUC
performance regardless of the selection of outlier classes or the number of outlier
training samples.

Class Per. FS LF - AUC FS Static - AUC

1% 97.59 ±0.39 98.37 ±0.56
5% 98.17 ±0.45 98.25 ±0.71
10% 98.47 ±0.39 99.59 ±0.25
25% 98.39 ±0.28 99.52 ±0.17
50% 98.63 ±0.07 99.54 ±0.08
75% 98.71 ±0.05 99.59 ±0.03

Table 1: AUC testing results (mean results over six random seeds) of our ap-
proach on Fishyscapes benchmark w.r.t. different diversity of OE classes.

Train Size FS LF - AUC FS Static - AUC

5% 98.13 ±0.12 99.16 ±0.09
10% 98.35 ±0.15 99.57 ±0.07
25% 98.36 ±0.06 99.51 ±0.06
50% 98.69 ±0.05 99.37 ±0.07

Table 2: AUC testing results (mean results over six random seeds) of our ap-
proach on Fishyscapes benchmark w.r.t. different amount of OE training
samples.

3 Hyper-parameters Selection

For testing, we note a small performance gap with λ ∈ {0.1, 0.01} on LF test set,
with AP=78.29 for λ = 0.01 and AP=77.15 for λ = 0.1. For the EBM margin,
PEBAL reaches AP∈ [76.9, 78.3] and FPR∈ [0.8, 1.3] for min ∈ [−12,−22] and
mout ∈ [−2,−8] for different values of min and mout on LF test set.
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Fig. 2: Confidence calibration performances between WideResnet38 baseline,
Meta-OoD [2], and our approach.

4 Training Details on Cityscapes

Following [1,2], we use the same DeepLabv3+ [3] with WideResnet38 (90.3 mIoU
on Cityscapes Val) trained by Nvidia [10] as one of the backbones of our segmen-
tation model. As mentioned in [10], the model is firstly pre-trained on Mapillary
Vista dataset [9], and then fine-tuned on Cityscapes train set with their pro-
posed label relaxation loss and sdc-aug label propagation. Their model uses a
different {cv2: monchengladbach, strasbourg, stuttgart} validation split than
the standard split {cv0: munster, lindau, frankfurt}. Please refer to their paper
for more details. For DeepLabv3+ [3] with Resnet101 backbone (80.3 mIoU on
Cityscapes Val) from [7], the authors trained their model with the standard cv0
train/validation split using default formulations in [3]. All those checkpoints are
downloaded from their official Github pages.

5 Results Based on Different DeepLabv3+ Checkpoint

In this section, we show the results of another DeepLabv3+ [3] with WideRes-
net38 trained by Nvidia [10] using the Cityscapes {cv0: munster, lindau,
frankfurt} standard train/val split. The checkpoint is downloaded from the
their official Github page [10], with a 81.8% mIoU on Cityscapes validation set.
This model was firstly pre-trained on Mapillary Vista dataset [9] and then fine-
tuned on Cityscapes but without their label relaxation loss and sdc-aug label
propagation. As shown in Tab. 3, our model outperforms the previous meth-
ods by a large margin on all three benchmarks, regardless of the backbones,
the segmentation accuracy and the Cityscapes train/val splits. Notably, our
method surpasses the previous SOTA SML by 40%, 50% and 20% of AP on
three datasets, respectively. We also achieve best AUC and FPR results on all
datasets.

Confidence Calibration. In Fig. 2, we show that our model can also improve
the calibration of the segmentation confidence. This figure shows that we improve
the ECE and MCE [4] scores by a small margin, showing another benefit of using
our PEBAL approach.
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Table 3: Anomaly segmentation results on Fishyscapes validation sets (Lo-
stAndFound and Static), and theRoad Anomaly testing set, withWideRes-
net38 backbone under cv0 standard train/val split.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
MSP [5] 89.26 11.84 32.55 89.26 11.84 32.55 72.37 20.23 67.98

Max Logit [5] 93.14 12.78 38.15 93.27 18.89 25.49 76.39 23.46 64.55
Entropy [6] 89.01 8.79 47.81 90.28 15.19 31.71 73.70 22.13 67.42
Energy [8] 93.45 14.29 37.71 93.52 19.22 25.02 76.76 23.48 64.04
SML [7] 96.03 21.71 20.09 95.79 32.04 15.81 74.45 22.16 68.59

Ours 98.52 64.43 6.56 99.33 86.01 2.63 88.85 44.41 37.98
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