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Abstract. State-of-the-art (SOTA) anomaly segmentation approaches
on complex urban driving scenes explore pixel-wise classification uncer-
tainty learned from outlier exposure, or external reconstruction models.
However, previous uncertainty approaches that directly associate high
uncertainty to anomaly may sometimes lead to incorrect anomaly pre-
dictions, and external reconstruction models tend to be too inefficient
for real-time self-driving embedded systems. In this paper, we propose
a new anomaly segmentation method, named pixel-wise energy-biased
abstention learning (PEBAL), that explores pixel-wise abstention learn-
ing (AL) with a model that learns an adaptive pixel-level anomaly class,
and an energy-based model (EBM) that learns inlier pixel distribution.
More specifically, PEBAL is based on a non-trivial joint training of EBM
and AL, where EBM is trained to output high-energy for anomaly pixels
(from outlier exposure) and AL is trained such that these high-energy
pixels receive adaptive low penalty for being included to the anomaly
class. We extensively evaluate PEBAL against the SOTA and show that
it achieves the best performance across four benchmarks. Code is avail-
able at https://github.com/tianyu0207/PEBAL.

1 Introduction

Recent advances in semantic segmentation have shown tremendous improve-
ments on complex urban driving scenes [23]. Despite the accurate predictions
on the inlier classes, the model fails to properly recognise anomalous objects
that deviate from the training inlier distribution (col. 2 of Fig. 1). Addressing
such failure cases is crucial to road safety for autonomous driving vehicles. For
example, anomalies can be represented by unexpected objects in the middle of
the road, such as a large rock or an unexpected animal that can be incorrectly
predicted as a part of the road class, leading to potentially fatal traffic collisions.

Current methods [2,4,6,11,20,30,34,40] to detect and segment anomalous ob-
jects in complex urban driving scenes tend to depend on classification uncertainty
or image reconstruction. The association of high classification uncertainty with
anomaly is intuitive, but it has a few caveats. For instance, classification uncer-
tainty happens when samples are close to classification decision boundaries, but
there is no guarantee that all anomalies will be close to classification boundaries.
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Fig. 1: Anomaly segmentation overview. From the input image (anomaly
highlighted with a yellow box), the initial prediction shows the original seg-
mentation results with anomalies classified as a one of the pre-defined inlier
classes. Anomaly predictions by the previous SOTA Meta-OoD [6] and our
method show an anomaly map with high scores (in yellow and red) for anomalous
pixels, where our approach shows less false positive and false negative detections.
Consequently, our method can detect small and distant anomalies (row 2) and
blurry/unclear anomalies (rows 1, 3, 4) more accurately than Meta-OoD [6]. In
our final prediction, anomalous pixels are coloured as cyan. Some anomalies
are small and blurred (e.g., row 2), so please zoom in the PDF for
better visualisation.

Furthermore, samples close to classification boundaries may not be anomalies at
all, but just hard inlier samples. Hence, these uncertainty based methods may
detect a large number of false positive and false negative anomalies. For example,
Fig. 1 shows that the previous SOTA Meta-OoD [6] misses important anomalous
pixels (all rows), while misclassifying anomalies (e.g., vegetation in rows 1, 2,
3), even with the use of the outlier exposure (OE) strategy [19]. In fact, the OE
strategy maximises the uncertainty for proxy anomalies, which can cause the
model to be more uncertain for all inlier classes and detect false positive anoma-
lies (e.g., Meta-OoD mis-classifies trees or bush with high anomaly scores – Fig. 1
col 4). Reconstruction methods [11,40] add an extra network to reconstruct the
input images from the estimated segmentation, where differences are assumed
to be anomalous. Not only does this approach depend on accurate segmentation
results for precise reconstruction, but they also require an extra reconstruction
network that is hard to train and inefficient to run in real-time self-driving em-
bedded systems. Moreover, reconstruction methods that rely on a discrepancy
module require re-training whenever the inlier segmentation model changes due
to input distribution shift [11], limiting their applicability in real-world systems.
Furthermore, previous approaches [2,6,11,15,20,30] ignore a couple of important
constraints for anomaly segmentation, namely smoothness (e.g., Meta-OoD fails
to classify neighbouring anomaly pixels in Fig. 1, rows 1, 4) and sparsity (e.g.,
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Meta-OoD incorrectly detects a large number of anomalous pixels–see yellow and
red regions in Fig. 1, rows 1, 2, 3). Another common issue shared by previous
methods [2,6,30] is that they usually rely on the re-training of the entire network
for OE, which is inefficient and can also bias the classification towards outliers.

In this paper, we propose a new anomaly segmentation method, the pixel-
wise energy-biased abstention learning (PEBAL), that directly learns a pixel-
level anomaly class, in addition to the pre-defined inlier classes, to reject/abstain
anomalous pixels that are dissimilar to any of the inlier classes. It is achieved
by a joint optimisation of a novel pixel-wise anomaly abstention learning (PAL)
and an energy based model (EBM) [14, 24, 31]. Particularly, abstention learn-
ing (AL) [32] was originally developed to learn an image-level anomaly class,
which is significantly challenged by the pixel-wise anomaly segmentation task
that requires pixel-level anomaly class learning. This is because the original AL
model treats all pixel inputs equally with a single pre-defined fixed penalty fac-
tor to regularise the classification of anomalous pixels, while adaptive penalties
are typically required for different pixels in a complex driving scene, e.g., pixels
in small (distant) objects vs. large (near) objects, or centred pixels vs fringe
pixels of objects. PEBAL is designed to address this issue by learning adaptive
pixel-wise energy-based penalties, which automatically decreases the penalty for
pixels that are likely to be anomalies. Hence, our model does not explore previ-
ously proposed uncertainty measures (e.g., entropy or softmax criteria) or image
reconstruction, and instead, for the first time, explicitly learns a new pixel-wise
anomaly class. The learned penalty factors are jointly optimised with EBM, re-
sulting in a mutually beneficial optimisation of anomaly and inlier segmentation.
Additionally, we impose smoothness and sparsity constraints to the learning of
the anomaly segmentation by PEBAL, incorporating local and global dependen-
cies into the pixel-wise penalty estimation and anomaly score learning. Finally,
the training of PEBAL is efficient given that we only need to fine-tune the last
block of the segmentation model to achieve accurate inference. To summarise,
our contributions are the following:

– We propose the pixel-wise energy-biased abstention learning (PEBAL) that
jointly optimises a novel pixel-wise anomaly abstention learning (PAL) and
energy-based models (EBM) to learn adaptive pixel-level anomalies. PEBAL
mutually reinforces PAL and EBM in detecting anomalies, enabling accurate
segmentation of anomalous pixels without compromising the segmentation
of inlier pixels (cols. 4,5 of Fig. 1).

– We introduce a new pixel-wise energy-biased penalty estimation, which can
learn adaptive energy-based penalties to highly varying pixels in a com-
plex driving scene, allowing a robust detection of small/distant and blurry
anomalous objects (Fig. 1 row 2).

– We further refine our PEBAL training, using a novel smoothness and sparsity
regularisation on anomaly scores to consider the local and global dependen-
cies of the pixels, enabling the reduction of false positive/negative anomaly
predictions.
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We validate our approach on Fishyscapes leaderboard [4], and achieve SOTA
classification accuracy on all relevant benchmarks. We also achieve the best
classification results on LostandFound [36] and Road Anomaly [30] test sets,
significantly surpassing other competing methods.

2 Related work

Uncertainty-based Anomaly Segmentation. Early uncertainty-based meth-
ods [18, 25, 28] focused on the estimation of image-level anomalies, but they
tended to misclassify object boundaries as anomalies [20]. Jung et al. [20] mit-
igate this issue by iteratively replacing false anomalous boundary pixels with
neighbouring non-boundary pixels that have low anomaly score. In [21, 22, 34],
the boundary issue was tackled with a pixel-wise uncertainty estimated with
MC dropout, but they showed a low pixel-wise anomaly detection accuracy [30].
Without fine-tuning using a proxy outlier dataset, uncertainty estimation may
not be accurate enough to detect anomalies and can predict high uncertainty for
challenging inliers or low uncertainty for outliers due to overconfident misclassi-
fication.
Reconstruction-based Anomaly Segmentation. Anomalies can also be seg-
mented from the errors between the input image and its reconstruction obtained
from its predicted segmentation map [1,8,10,11,16,30,39,40]. Those approaches
are challenged by the dependence on an accurate segmentation prediction, by
the complexity of reconstruction models that usually require long training and
inference processes, and also by the low quality of the reconstructed images.
Anomaly Segmentation via Outlier Exposure. Hendrycks et al. [19] pro-
pose the outlier exposure (OE) strategy that uses an auxiliary dataset of outliers
that do not overlap with the real outliers/anomalies to improve the anomaly de-
tection performance. This OE strategy uses outliers from ImageNet [2,3,38], void
class of Cityscape [11] or COCO [6], where the expectation is that the model
can generalise to unseen outliers. Maximising uncertainty for outliers using the
OE strategy can lead to a deterioration of the segmentation of inliers [3, 38].
Another major drawback of OE methods is that they are trained using outlier
images or objects without considering the fact that outliers are rare events that
appear around inliers. Hence, the training contains a disproportionately high
amount of outliers [6] that can bias the segmentation toward the anomaly class.
We address this issue by respecting the anomaly detection assumption, where
anomalous objects are rare, contribute to a small proportion of the training set,
and appear around inliers.
Abstention Learning. The abstention learning mechanism [12] adds a “re-
serve” (i.e., anomaly) class that is predicted when the classification predictions
for all inlier classes are not high enough. This method shows good performance in
learning holistic image-level anomaly class with a single pre-defined penalty fac-
tor for the whole training set, but it fails to learn fine-grained pixel-level anomaly
class as an adaptive pixel-wise penalty is required for highly varying pixel-level
anomalies (see Table 5). We address this issue by learning a novel pixel-wise
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energy-biased penalty estimator that is jointly trained with fine-grained absten-
tion learning. It is worth noting that differently from uncertainty-based meth-
ods [4, 6, 17, 20] that assume anomaly even when the model is uncertain but
confident, abstention learning requires all classes to have low confidence to pre-
dict the anomaly class.
Energy-based Models. EBM is trained such that inlier training samples have
low energy, whereas non-training outlier samples (i.e., anomalies) are expected
to have high energy [24]. This energy value can then be used to compute the
probability of a sample to belong to the inlier distribution. Recently, EBMs are
being implemented with deep learning models [14,31,35], and to learn them, it is
necessary to compute the partition function, which is generally estimated with
Markov Chain Monte Carlo (MCMC) [14], but this estimation cannot generate
accurate high-resolution images. Hence, we follow the simpler idea of estimating
the energy score with the logsumexp operator [14, 31], where we minimise the
energy of inliers and use an OE strategy [19] to maximise the energy of outliers.
Hence, we do not need to compute the partition function.

3 Method

We present our PEBAL in this section (see Fig. 2), where we first describe the
dataset, then introduce abstention learning and EBM. Next, we present the loss
function to train the model, followed by the training and inference procedures.

3.1 Training Set

We assume to have a set of inlier training images and annotations Din =

{(xi,y
in
i )}|D

in|
i=1 , where x ∈ X ⊂ RH×W×C denotes an image with C colour

channels, and yin ∈ Yin ⊂ {0, 1}H×W×Y denotes the inlier pixel level labels
that can belong to Y classes. We also have a set of outlier images and annota-

tions Dout = {(xi,y
out
i )}|D

out|
i=1 , where yout ∈ Yout ⊂ {0, 1}H×W×(Y+1) denotes

the outlier pixel-level labels, with the class Y + 1 reserved for pixels belonging
to the anomaly class. Note that similarly to previous papers [6], the types of
anomalies in training set Dout do not overlap with the anomalies to be found in
the testing set.

3.2 Pixel-wise Energy-biased Abstention Learning (PEBAL)

The PEBAL model is denoted by

pθ(y|x)ω =
exp(fθ(y;x)ω)∑

y′∈{1,...,Y+1} exp(fθ(y
′;x)ω)

, (1)

where θ is the model parameter, ω indexes a pixel in the image lattice Ω,
pθ(y|x)ω represents the probability of labelling pixel ω with y ∈ {1, ..., Y + 1},
and fθ(y;x)ω is the logit for class y at pixel ω.

To train the model in (1), we formulate a cost function that jointly trains PAL
and EBM to classify anomalous pixels. An important training hyper-parameter
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Fig. 2: PEBAL. The pixel-wise anomaly abstention (PAL) loss ℓpal learns to
abstain the prediction of outlier pixels from xout containing OE objects (i.e.,
cyan coloured masks) and calibrate the logit of inlier classes (i.e., reduction of
the inlier logits) from both inlier image xin and outlier image xout. The EBM loss
ℓebm pushes the free energy Eθ to low values for inlier pixels and pulls that to high
values for outlier pixels, where a regularisation loss ℓreg enforces the smoothness
and sparsity constraints on the energy maps. Such EBM learning reduces the
logit of inlier classes to share similar values at the same time, facilitating the ℓpal
learning. Then, the pixel-wise penalty aω associated with the abstention class
at position ω is estimated to bias the penalty to be low for outlier pixels and
high for inlier pixels, which in turn encourages high free energy for anomalies
and enforces ℓpal to abstain the anomalous pixels.

for PAL is the penalty to abstain from the classification into one of the in-
lier classes in {1, ..., Y }–this penalty is generally tuned to a single value for all
training samples through model selection (e.g., cross validation) [32]. Instead of
treating this as a tunable hyper-parameter, we propose the use of EBM (defined
below in (4)) to automatically estimate this penalty during the training process
for each pixel within each training image. More specifically, the cost function to
train the PEBAL model in (1) is:

ℓ(Din,Dout, θ) =∑
(x,yin)∈Din

(
ℓpal(θ,y

in,x, Eθ(x)) + λℓinebm(Eθ(x)) + ℓreg(Eθ(x))
)
+

∑
(x,yout)∈Dout

(
ℓpal(θ,y

out,x, Eθ(x)) + λℓoutebm(Eθ(x)) + ℓreg(Eθ(x))
)
.

(2)

where ℓpal(.) denotes the PAL loss defined as

ℓpal(θ,y,x, Eθ(x)) = −
∑
ω∈Ω

log
(
fθ(yω;x)ω +

fθ(Y + 1;x)ω
aω

)
, (3)

with yω ∈ {1, ..., Y } for yin, yω ∈ {1, ..., Y + 1} for yout, and aω denotes the
pixel-wise penalty associated with abstaining from the classification of the inlier
classes. The minimisation of the loss in (3) will abstain from classifying outlier
pixels into one of the inlier classes, where a pixel is estimated to be an outlier
with aω. Before formulating aω, let us define the inlier free energy at pixel ω,
which is denoted by Eθ(x)ω and computed with the logsumexp operator as
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follows [14,24,31]:

Eθ(x)ω = − log
∑

y∈{1,...,Y }

exp(fθ(y;x)ω). (4)

The pixel-wise penalty associated with abstaining from the classification of the
inlier classes is defined by

aω = (−Eθ(x)ω)
2, (5)

which means that the larger the aω (i.e., low inlier free energy, so the sample
is an inlier), the higher the loss to abstain from classifying into one of the Y
classes, and low value of aω (i.e., high free inlier energy, which means an outlier
sample) implies a lower loss to abstain from classifying one of the Y classes. Also
in (2), ℓinebm(.) (weighted by hyper-parameter λ) represents the EBM loss that
pushes the inlier free energy in (4) for samples in Din to low values, with

ℓinebm(Eθ(x)) =
∑
ω∈Ω

(
max(0, Eθ(x)ω −min)

)2
, (6)

representing the loss of having inlier samples with free energy larger than thresh-
old min, and

ℓoutebm(Eθ(x)) =
∑
ω∈Ω

(
max(0,mout − Eθ(x)ω)

)2
, (7)

denoting the loss of having outlier samples with inlier free energy smaller than
thresholdmout, where the margin losses in (6) and (7) effectively create an energy
gap between normal and abnormal pixels. The last term to define in (2) is the
inlier free energy regularisation loss to enforce that anomalous pixels are sparse
and pixel anomaly classification is smooth (i.e., anomalous pixels tend to have
anomalous neighbouring pixels), which is defined as

ℓreg(Eθ(x)) =
∑
ω∈Ω

β1|Eθ(x)ω − Eθ(x)N (ω)|+ β2|Eθ(x)ω|, (8)

where β1 and β2 are hyper-parameters that weight the contributions of the
smoothness and sparsity and sparsity regularisations, and N (ω) denotes neigh-
bouring pixels in horizontal and vertical directions.

3.3 Training and Inference

Training. An important point of the training process is how to setup the inlier
and outlier datasetsDin andDout. A recently published paper [6] carefully selects
images to be included in Dout by making sure that the segmentation labels
presented in those images do not overlaps with the inlier labels. In particular
for [6], Din has images and annotations from Cityscape and Dout has images
and annotations from COCO [29]. We argue that there are two issues with this
strategy to form Dout, which are: 1) the selected COCO images generally only
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contain anomalous pixel labels, leading to unstable training of the outlier losses
(i.e., second summation in (2)) given the exclusive presence of the anomaly
class (in effect, this becomes a one-class segmentation problem); 2) re-training
the model with images containing only anomalous pixels removes the semantic
context of inlier pixels when training for the outlier losses, which can deteriorate
the segmentation accuracy of the inlier labels.

To mitigate these issues, we form Dout using a novel extension based on Cut-
Mix and CutPaste [27,41], which we refer to as AnomalyMix. AnomalyMix cuts
the anomalous objects from an outlier dataset (e.g., COCO) using its labelled
masks and paste them into the images of the inlier dataset (e.g., CitySpace),
where we label the pixels of the anomalous object with the class Y + 1 – these
images are then inserted into Dout. AnomalyMix addresses the two issues above
because the outlier images now contain a combination of inlier and outlier pixels,
allowing a balanced learning and keeping the visual context of inlier labels when
training for the outlier losses. Furthermore, AnomalyMix can form a potentially
infinite number of training images for Dout given the range of transformations
to be applied to the cut objects and the locations of the inlier images that
the objects can be pasted. Previous papers [11, 20] argue that re-training the
whole segmentation model can jeopardise the segmentation accuracy for the in-
lier classes. Furthermore, such re-training requires a long training time, leading
to inefficient optimisation. In this work, we propose to fine-tune only the fi-
nal classification block using the loss in (2), instead of re-training the whole
segmentation model. Besides being efficient, this fast fine-tuning keeps the seg-
mentation accuracy of the model in the original dataset used for pre-training
the model. Furthermore, an interesting side-effect of our training is that the cost
function in (2) will calibrate the segmentation prediction for the inlier classes.
This happens because the terms ℓpal(.), ℓ

in
ebm(.) and ℓoutebm(.) jointly constrain

the maximisation of logits and naturally calibrate classification confidence (See
supplementary material).

Inference. During inference, pixel-wise anomaly detection is performed by com-
puting the inlier free energy score Eθ(x)ω from (4) for each pixel position ω given
a test image x and inlier segmentation is obtained from the inlier classes from
the PEBAL model in (1). Following [20], we also apply a Gaussian smoothing
kernel to produce the final energy map.

4 Experiment

4.1 Datasets

LostAndFound [36] is one of the first publicly available urban driving scene
anomaly detection datasets containing real-world anomalous objects. The dataset
has an official testing set containing 1,203 images with small obstacles in front
of the cars, collecting from 13 different street scenes, featuring 37 different types
of anomalous objects with various sizes and material.
Fishyscapes [4] is a high-resolution dataset for anomaly estimation in semantic
segmentation for urban driving scenes. The benchmark has an online testing set



PEBAL 9

that is entirely unknown to the methods. The dataset is composed by two data
sources: Fishyscapes LostAndFound that contains a set of real road anomalous
objects [36] and a blending-based Fishyscapes Static dataset. The Fishyscapes
LostAndFound validation set consists of 100 images from the aforementioned Lo-
stAndFound dataset with refined labels and the Fishyscapes Static validation set
contains 30 images with the blended anomalous objects from Pascal VOC [13].
For all datasets, we select the checkpoints based on the results on the public val-
idation sets, but submitted our code and checkpoints to the benchmark website
to be evaluated on their hidden test sets.
Road Anomaly [30] contains real-world road anomalies in front of the vehi-
cles. The dataset has 60 images from the Internet, containing unexpected ani-
mals rocks, cones and obstacles.Unlike the LostAndFound and Fishyscapes, this
dataset contains abnormal objects with various scales and sizes, making it even
more challenging.

4.2 Implementation Details

Following [5,6], we use DeepLabv3+ [7] withWideResnet38 trained by Nvidia [42]
and ResNet101 from [20] as the backbone of our segmentation models. The train-
ing details of those models can be found in their original papers or our supple-
mentary material. The models are trained on Cityscapes [9] training set. For our
PEBAL fine-tuning, we empirically set the min and mout in Eq. 6 and Eq. 7 as
-12 and -6, respectively. The weights β1 and β2 in Eq. 8 are set to 5e − 4 and
3e−6 [37], λ in Eq. 2 to 0.1, and the weight of ℓebm to 0.1, respectively. Note that
those hyper-parameters are selected at the first training epoch to normalise loss
values to a similar scale. We also show our model can obtain consistently SOTA
results regardless of the selection of hyper-parameters in the supplementary ma-
terial. Our training consists of fine-tuning the final classification block of the
model for 20 epochs. We use the same resolution of random crop as in [42], and
use Adam with a learning rate of 1e−5. The batch size is set to 16. Following [6],
for our AnomalyMix augmentation, we randomly sample 297 images as training
data from the remaining COCO images that do not contain objects in Cityscapes
or our anomaly validation/testing sets and randomly apply AnomalyMix to mix
them into the Cityscape training images, following Chan et al. [6].

4.3 Evaluation Measures

Following [4,6,11,20], we compute the the area under receiver operating charac-
teristics (AUROC), average precision (AP), and the false positive rate at a true
positive rate of 95% (FPR95) to validate our approach. For Fishyscapes public
leaderboard, we use AP and FPR95 to compare with other methods, same as
their website.

4.4 Comparison on Anomaly Segmentation Benchmarks

Comparison on LostAndFound. Table 1 shows the result on the testing set
of LostAndFound. Notably, our approach surpasses the previous baseline ap-
proaches (i.e., MSP [17], Mahalanobis [26], Max Logit [18] and Entropy [18])
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Table 1: Anomaly segmentation results on LostAndFound testing set, with
WideResnet38 backbone. All methods use the same segmentation models. *
indicate that the model requires additional learnable parameters. † indicates that
the results are obtained from the official code with our WideResnet38 backbone.

Methods AUC ↑ AP ↑ FPR95 ↓
MSP [17] 85.49 38.20 18.56

Mahalanobis [26] 79.53 42.56 24.51
Max Logit [18] 94.52 65.45 15.56
Entropy [18] 86.52 50.66 16.95
Energy [31] 94.45 66.37 15.69

Meta-OoD [6] 97.95 71.23 5.95
†SML [20] 88.05 25.89 44.48

†SynBoost* [11] 98.38 70.43 4.89
Deep Gambler [32] 98.67 72.73 3.81

Ours 99.76 78.29 0.81

by 10% to 40% AP, and 13% to 22% FPR95, respectively. When compared
with previous SOTA approaches such as SynBoost [11], SML [20] and Meta-
OoD [6], we improve the AP performance by a large margin (15% to 40%),
and decrease the FPR95 by about 5% to 70%. This illustrates the robustness
and effectiveness on detecting small and distant anomalous objects given that
the dataset contains mostly real-world small objects. Our PEBAL also improves
the EBM baseline [31] and the AL baseline based on Deep Gambler [32]. This
demonstrates that a simple adaptation of AL and EBM is not enough to en-
able accurate pixel-wise anomaly detection. Previous SOTA SML [20] aims to
balance the inlier class-wise discrepancy on prediction scores, which is disadvan-
tageous for measuring performance on LostAndFound test set since there may
be no classes in the evaluation other than the road class (i.e., most of the inlier
classes within LF test set is road class), thus leading to significant performance
variations between LostAndFound and Fishyscapes. It is worth noting that our
approach achieves 1.03% FPR95, significantly reducing the false positive pixels,
improving the chances of applying it to real-world applications.

Comparison on Fishyscapes Leaderboard. Table 2 shows the leaderboard
results on the test set of Fishyscapes LostAndFound and Fishyscapes Static. Fol-
lowing [20], we compared the methods based on whether they require re-training
of the entire segmentation network, adding the extra network, or utilising the
OoD data. We achieve the SOTA performance by a large margin on Fishyscapes
leaderboard when compared with the previous methods except [2] (Static) that
rely on an inefficient re-training segmentation model, extra learnable parame-
ters, and extra OoD training data. Without re-training the entire network or
adding extra learnable parameters, our approach can work efficiently to surpass
previous SOTA competing approaches that fall into the same category by about
13% to 42% on LostAndFound and 40% to 50% AP on Static. Such significant
improvements indicate the generalisation ability of our proposed PEPAL on de-
tecting a wide variety of unseen abnormalities (i.e., of different size, type, scene,
and distance) substantially reducing false negative and positive pixels. Moreover,
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Table 2: Comparison with previous approaches on Fishyscapes Leaderboard.
We achieve a new state-of-the-art performance among the approaches that re-
quire extra OoD data, and without re-training the segmentation networks and
extra networks on Fishyscapes Leaderboard.

Models re-training Extra Network OoD Data
FS LostAndFound FS Static
AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

Discriminative Outlier Detection Head [2] " " " 31.31 19.02 96.76 0.29

MSP [17] $ $ $ 1.77 44.85 12.88 39.83

Entropy [18] $ $ $ 2.93 44.83 15.41 39.75

SML [20] $ $ $ 31.05 21.52 53.11 19.64

kNN Embedding - density [4] $ $ $ 3.55 30.02 44.03 20.25

Bayesian Deeplab [34] " $ $ 9.81 38.46 48.70 15.05

Density - Single-layer NLL [4] $ " $ 3.01 32.9 40.86 21.29

Density - Minimum NLL [4] $ " $ 4.25 47.15 62.14 17.43

Image Resynthesis [30] $ " $ 5.70 48.05 29.6 27.13

OoD Training - Void Class " $ " 10.29 22.11 45.00 19.40

Dirichlet Deeplab [33] " $ " 34.28 47.43 31.30 84.60

Density - Logistic Regression [4] $ " " 4.65 24.36 57.16 13.39

SynBoost [11] $ " " 43.22 15.79 72.59 18.75

Ours $ $ " 44.17 7.58 92.38 1.73

Table 3: Anomaly segmentation results on Fishyscapes validation sets (Lo-
stAndFound and Static), and theRoad Anomaly testing set, withWideRes-
net38 backbone. * indicate that the model requires additional learnable param-
eters. † indicates that the results are obtained from the official code with our
WideResnet38 backbone. Best and second best results in bold.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
MSP [17] 89.29 4.59 40.59 92.36 19.09 23.99 67.53 15.72 71.38

Max Logit [17] 93.41 14.59 42.21 95.66 38.64 18.26 72.78 18.98 70.48
Entropy [18] 90.82 10.36 40.34 93.14 26.77 23.31 68.80 16.97 71.10
Energy [31] 93.72 16.05 41.78 95.90 41.68 17.78 73.35 19.54 70.17

Mahalanobis [26] 96.75 56.57 11.24 96.76 27.37 11.7 62.85 14.37 81.09
Meta-OoD [11] 93.06 41.31 37.69 97.56 72.91 13.57 - - -
†Synboost* [11] 96.21 60.58 31.02 95.87 66.44 25.59 81.91 38.21 64.75

†SML [20] 94.97 22.74 33.49 97.25 66.72 12.14 75.16 17.52 70.70
Deep Gambler [32] 97.82 31.34 10.16 98.88 84.57 3.39 78.29 23.26 65.12

Ours 98.96 58.81 4.76 99.61 92.08 1.52 87.63 45.10 44.58

it is worth noting that PEBAL reduces the amount of false positive pixels to
7.58 and 1.73 FPR on the two datasets. This result is publicly available on the
Fishyscapes website.

Comparison on Fishyscapes validation sets and Road Anomaly. In
Tables 3 and 4, we compare our approach on the Fishyscapes validation sets
and Road Anomaly using two different backbones. Our model outperforms the
previous methods by a large margin on all three benchmarks, regardless of the
backbones and their segmentation accuracy. To verify the applicability of our
method, except for the modern WideResnet38 backbone, we use a ResNet101
DeepLabv3+ to investigate the performance in terms of the size of the archi-
tecture and its inlier segmentation accuracy. The results demonstrate that our
approach is applicable to a wide-range of segmentation models, indicating the
effectiveness of PEBAL to adapt to real-world systems.
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Table 4: Anomaly segmentation results on Fishyscapes validation sets
(LostAndFound and Static), and the Road Anomaly testing set, with
Resnet101 backbone. * indicate that the model requires additional learnable
parameters. † indicates that the results are obtained from the official code with
our Resnet101 backbone. Best and second best results in bold.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
MSP [17] 86.99 6.02 45.63 88.94 14.24 34.10 73.76 20.59 68.44

Max Logit [17] 92.00 18.77 38.13 92.80 27.99 28.50 77.97 24.44 64.85
Entropy [18] 88.32 13.91 44.85 89.99 21.78 33.74 75.12 22.38 68.15
Energy [31] 93.50 25.79 32.26 91.28 31.66 37.32 78.13 24.44 63.36

†SynthCP* [40] 88.34 6.54 45.95 89.9 23.22 34.02 76.08 24.86 64.69
†Synboost* [11] 94.89 40.99 34.47 92.03 48.44 47.71 85.23 41.83 59.72

SML [20] 96.88 36.55 14.53 96.69 48.67 16.75 81.96 25.82 49.74
Deep Gambler [32] 97.19 39.77 12.41 97.51 67.69 15.39 85.45 31.45 48.79

Ours 99.09 59.83 6.49 99.23 82.73 6.81 92.51 62.37 28.29

Moreover, our fine-tuning sacrifices only marginally the inlier segmentation
accuracy (i.e., 0.2% - 0.7% mIoU on Cityscapes) for both backbones, achieving
good performance on both inlier and anomaly segmentation. We present details
of all inlier segmentation models (i.e., Cityscapes training setup and mIoU), and
include more experimental results of other DeepLabv3+ checkpoints in supple-
mentary material.

Remarks – Superior Performance on Challenging Benchmarks. Each
dataset has different challenges. For example, the LostAndFound testing set
considers only drivable areas with homogeneous normal scenes (i.e., road) and
limited categories of abnormalities (i.e., road obstacles), leading to a relatively
less challenging benchmark on which most methods can obtain good AUC per-
formance, as shown in Tables 1, 3 and 4. On the contrary, Fishyscapes and Road-
Anomaly contain large number of heterogeneous inlier and outlier pixels from
diverse classes, leading to significantly more difficult testbeds than the LostAnd-
Found testing set. Furthermore, Fishyscapes and RoadAnomaly contain domain
shift compared with Cityscapes (e.g., both datasets contain different scenes than
Cityscapes) and have different types/sizes of OoD objects. Most existing SOTA
methods work ineffectively on these two datasets due to those challenges, while
our adaptive pixel-level anomaly class learning helps our model effectively detect
these challenging inlier and outlier pixels in the aforementioned heterogeneous
and domain-shifted scenes, yielding substantial improvements (i.e., 20% to 50%)
to previous approaches, as shown in Tables 2, 3 and 4.

4.5 Ablation Study

Table 5 shows the contribution of each component of our PEBAL on the Lo-
stAndFound testing set. All modules are trained with COCO OE images using
AnomalyMix. Adding an extra OoD class to learn the OE training samples with
entropy maximisation (EM) is our baseline (first row). To justify the effec-
tiveness of our proposed joint training, we show the results using energy-based
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Table 5: Ablation studies for anomaly segmentation on LostAndFound, with
WideResnet38 backbone, where all proposed modules are trained with COCO
OE images with AnomalyMix. EM denotes the baseline method that adds an
extra OoD class to learn the OE training samples with entropy maximisation
(first row).

EM ℓebm ℓpal ℓreg AUC ↑ AP ↑ FPR95 ↓
✓ 96.88 69.02 8.03

✓ 97.88 70.24 8.92
✓ 98.67 72.73 3.81

✓ ✓ 99.63 77.19 1.19
✓ ✓ ✓ 99.76 78.29 0.81

Table 6: The performance comparison of our approach on Fishyscapes bench-
mark w.r.t different diversity of OE classes (mean results over six random
seeds), in terms of AP and FPR95.

Class Per.
FS LostAndFound FS Static
AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

1% 53.57 ±3.74 6.97 ±1.98 85.84 ±1.01 3.05 ±0.97

5% 52.16 ±3.88 6.58 ±1.95 90.57 ±1.75 1.93 ±0.52

10% 55.14 ±3.02 5.78 ±1.59 91.37 ±1.28 1.64 ±0.58

25% 55.48 ±3.32 5.98 ±1.27 91.28 ±1.94 1.77 ±0.18

50% 56.69 ±2.57 5.32 ±1.16 91.88 ±0.71 1.62 ±0.05

75% 57.86 ±2.83 5.11 ±1.69 91.85 ±0.56 1.63 ±0.09

models (ℓebm without ℓpal) and pixel-wise abstention (ℓpal with pre-defined fixed
penalty). Both outperform the baselines (AP=70.2, FPR=8.9 and AP=72.7,
FPR=3.8 vs. AP=69, FPR=8.03), while our proposed joint training (ℓebm +
ℓpal) obtains 77.19% of AP and 1.19% of FPR, improving over each module by
4% to 7%. This indicates the effectiveness of our joint training and the signifi-
cance of our proposed PAL with learnable adaptive energy-based penalties aω.
Finally, the smoothness and sparsity regularisation losses stabilise the training
and further improve the performance.

4.6 Outlier Samples and Computational Efficiency

Outlier Diversity and Efficiency. In Table 6, we randomly select 1%, 5%,
10%, 25% 50%, and 75% of COCO classes as the OE data during training and
compute the mean results over six different random seeds. We achieve consis-
tent AP and FPR performance regardless of the number of COCO classes used
during the training on Fishyscapes. It is also worth noting that our approach
can effectively learn the PEBAL model using only one class (1% in Table 6)
of outlier data, which selects some of the irrelevant classes of COCO objects
that are not possible to be found on road in real life (e.g., dining table, laptop,
and clock). The results indicate that our model can consistently achieve SOTA
performance on Fishyscapes without a careful selection of OE classes, demon-
strating the robustness of our approach under diverse outlier classes. We also
investigate the outlier sample efficiency of our model w.r.t smaller OE training
sets with a fixed 100% COCO classes (80 classes) on Fishyscapes in Table 7,
and we achieve consistently good performance regardless the number of outlier
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Table 7: The performance comparison of our approach on Fishyscapes bench-
mark w.r.t different amount of OE training samples (mean results over six
random seeds), in terms of AP and FPR95.

Train Size
FS LostAndFound FS Static
AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

5% 54.32 ±1.89 5.77 ±2.38 89.11 ±1.52 2.23 ±0.65

10% 56.28 ±1.05 4.66 ±1.36 90.02 ±0.57 1.67 ±0.28

25% 56.18 ±1.69 4.81 ±1.44 91.23 ±0.95 1.63 ±0.22

50% 57.34 ±1.19 4.75 ±1.32 91.29 ±0.92 1.67 ±0.17

training samples. All those experiments show the applicability of our PEBAL to
real-world autonomous driving systems.

Computational Efficiency. We compare the computational efficiency of our
PEBAL with previous SOTA Meta-OoD [6] and Synboost [11] in terms of the
trainable parameters, training time and mean inference time per image, on an
NVIDIA3090. As PEBAL requires the fine-tuning of the final classification block,
it has only 1.3M parameters and each training epoch takes about 12 minutes,
which is significantly less than the re-training approach Meta-OoD that has
137.1M parameters and each training epoch takes about 26 minutes, and the
reconstruction based approach Synboost that takes about 33 minutes to train
a epoch of its re-synthesis and dissimilarity networks with 157.3M parameters.
Moreover, our method also has a much faster mean inference time of 0.55s com-
pared to 0.85s of Meta-OoD and 1.95s of Synboost. Those results suggest the
practicability of our model in real-world self-driving systems.

5 Conclusions and Discussions

We proposed a simple yet effective approach, named Pixel-wise Energy-biased
Abstention Learning (PEBAL), to fine-tune the last block of a segmentation
model to detect unexpected road anomalies. The approach introduces a non-
trivial training that jointly optimises a novel pixel-wise abstention learning and
an energy-based model to learn an adaptive pixel-wise anomaly class, in which a
new pixel-wise energy-biased penalty estimation method is proposed to improve
the precision and robustness to detect small and distant anomalous objects.
The resulting model significantly reduces the false positive and false negative
detected anomalies, compared with previous SOTA methods. The results on
four benchmarks demonstrate the accuracy and robustness of our approach to
detect anomalous objects regardless of the amount or diversity of exposed train-
ing outliers. Despite the remarkable performance on most datasets, PEBAL is
not as effective on the most challenging dataset, Road Anomaly, that contains
significantly more diverse and realistic anomalous objects. We plan to further
enhance the generalisation of our model to accurately detect more unknown,
diverse anomalies. 1

1Supported by Australian Research Council through grants DP180103232 and
FT190100525.
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3. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Discriminative out-of-distribution
detection for semantic segmentation. arXiv preprint arXiv:1808.07703 (2018) 4

4. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: The fishyscapes
benchmark: Measuring blind spots in semantic segmentation. arXiv preprint
arXiv:1904.03215 (2019) 1, 4, 5, 8, 9, 11

5. Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Salzmann,
M., Fua, P., Rottmann, M.: Segmentmeifyoucan: A benchmark for anomaly seg-
mentation. NeurIPS (2021) 9

6. Chan, R., Rottmann, M., Gottschalk, H.: Entropy maximization and meta classifi-
cation for out-of-distribution detection in semantic segmentation. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 5128–5137
(2021) 1, 2, 3, 4, 5, 7, 9, 10, 13

7. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European conference on computer vision (ECCV). pp. 801–818 (2018) 9

8. Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via inter-
polated gaussian descriptor (2021) 4

9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016) 9

10. Creusot, C., Munawar, A.: Real-time small obstacle detection on highways using
compressive rbm road reconstruction. In: 2015 IEEE Intelligent Vehicles Sympo-
sium (IV). pp. 162–167. IEEE (2015) 4

11. Di Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection
in complex driving scenes. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 16918–16927 (2021) 1, 2, 4, 8, 9, 10,
11, 12, 13

12. El-Yaniv, R., et al.: On the foundations of noise-free selective classification. Journal
of Machine Learning Research 11(5) (2010) 4

13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International journal of computer vision
88(2), 303–338 (2010) 9

14. Grathwohl, W., Wang, K.C., Jacobsen, J.H., Duvenaud, D., Norouzi, M., Swersky,
K.: Your classifier is secretly an energy based model and you should treat it like
one. arXiv preprint arXiv:1912.03263 (2019) 3, 5, 6
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