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In the supplementary material, we present more details on the data synthesis
method used for quantitative evaluations in Section 1. Then, we demonstrate
more qualitative results on the synthetic data in Section 3 and on the real-world
data in Section 4.

1 Details on Data Synthesis Method

Here, we present detailed information on our data synthesis method which is
introduced to enable extensive quantitative evaluations. Real-world snowy point
clouds and clean point clouds are captured by using our stationary data captur-
ing system. Then, snow points are picked out by comparing noisy point clouds
and clean point clouds. After augmenting the collected snow points, snow points
are synthesized into other road scene point clouds captured under favorable
weather conditions.

1.1 Data Capturing System

We set up a data capturing system that consists of a LiDAR sensor (Velodyne
‘HDL-32E’) and a control computer in a rainproof ruggedized case. Our system
captures data periodically. To capture weather effects only, the system is placed
in the controlled outdoor environment where people are not allowed to come
into the scene. Fig. 1 shows our data capturing system. LiDAR is installed at a
height of 1.7m which is similar to the height of LiDAR mounted on the top of
autonomous vehicles.

1.2 Data Acquisition

Noisy LiDAR point cloud sets (Noise-Set) are captured in snowy weather condi-
tions, and clean point cloud sets (Clean-Set) are captured in favorable weather
conditions. In most cases, the detected snow noise point is located between a
sensor origin and a background point; that is, we cannot detect the background
point if the noise point is placed on the same ray of the LiDAR. The range
image representation inherently involves this ray direction property, and we can
directly pick out noise points by comparing range images of Noise-Set and Clean-
Set. We generate a reference range image from Clean-Set of 200 range images by
selecting the minimum range value of each sensor ray. Then, snow noise points
are collected from Noise-Set of 7, 687 range images.
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Side view Top view

Fig. 1: Our stationary data capturing system.

(a) Noisy scene RN (b) Reference scene RF (c) Collected noise
points

Fig. 2: Data annotation process. A label map LN is assigned by comparing a
noisy range image RN (a) and the reference range image RF (b). Collected noise
points are depicted as the red points in (c).

1.3 Data Annotation

To distinguish noise points from background points, we compare the range values
between the reference range image RF∈ R

n×m and each range image RN∈ R
n×m

of Noise-Set, where n and m indicate the height and width of the range image.
Then, we assign label information as follows:

LN
(u,v) ←

{

N (Noise), if RF
(u,v) ≥ RN

(u,v) + τ

C (Clean), else
(1)

where LN∈ R
n×m indicates a label map of RN and τ is a margin for sensing

errors of LiDAR. In the case of scanning an empty space (e.g., sky), since no
valid background information is projected to RF

(u,v), we always assign the ‘Noise’

label to LN
(u,v). Through this process, we collect real-world noise points from each

noisy point cloud in snowy weather, as seen in Fig. 2.
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Fig. 3: The number of data obtained for each noise level.

(a) Road Scene RB (b) Noise Points in RN (c) Synth. Scene RS

Fig. 4: Process of generating a synthesized scene RS . Noise points in RN are
synthesized into a road scene RB .

1.4 Data Augmentation

The label map LN only covers a part of the entire scanning area of LiDAR
because our data capturing system has a limited horizontal Field-of-View as
seen in Fig. 1. To supplement this limited scanning area, we need to augment
the annotated noise points in RN . To this end, we generate the augmented noise
points by combining multiple RN s belonging to the same noise level. The noise
level is decided based on the density of noise points, following the criterion used
in the Canadian Adverse Driving Condition Dataset [5]: Light (0.0 − 0.6m−3),
Medium (0.3 − 0.6m−3), Heavy (0.6 − 0.9m−3), and Extreme (above 0.9m−3).
Fig. 3 shows the number of data obtained for each noise level.

1.5 Data Synthesis

We now generate synthetic snowy scenes by injecting the augmented snow noise
points into road scene point cloud sets taken in clean weather (Base-Set). When
synthesizing the augmented snow noise points into Base-Set, we have to consider
scene structures of point clouds in Base-Set. If snow points are injected naively,
unrealistic results may occur (e.g., snowflakes inside a car). To prevent this issue,
a clean point in Base-Set is replaced by a noise point as follows:

RS
(u,v) =

{

RN
(u,v), if RN

(u,v) ≤ Rmax
(u,v) and LN

(u,v) = N (Noise)

RB
(u,v), else

(2)
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(a) Light (b) Medium (c) Heavy (d) Extreme

Fig. 5: Synthesized scenes of each noise level.

where RB∈ R
n×m is a range image in Base-Set, and RS∈ R

n×m is a synthesized
range image. Rmax is the maximum detectable range of noise points which is
introduced for a realistic synthesis [1, 4] by considering scene structures of RB

as follows:

Rmax
(u,v) = min(

−ln( n
IB
(u,v)

+g
)

2 ∗ β
,RB

(u,v)),
(3)

given the received laser intensity IB(u,v)∈ R
n×m, the adaptive laser gain g, the

atmospheric extinction coefficient β, and the detectable noise floor n.
Examples of the data synthesis process and results are described in Fig 4 and 5,

respectively. Note that we use the same road scene RB to highlight the differ-
ences of each noise level. In our experiments, we do not re-use the same road
scene to generate RS . We utilize the Nuscenes dataset [2] as Base-Set to generate
a number of synthetic snowy scenes.

2 Details on the Semi-supervised Extension

We proposed and evaluated three different weighting functions for combining the
supervised and the self-supervised loss functions. In this section, the weighting
functions are explained. Firstly, weighting functions for Ramp up/down are as
follows,

wself,ramp =



















0, t < Ts

exp(−5(1− t−Ts

Tu−Ts
)2), Ts ≤ t < Tu

1, Tu ≤ t < Td

exp(−12.5(1− Te−t
Te−Td

)2), Td ≤ t < Te

(4)

wsup,ramp =

{

0, t < Ts

1, Ts ≤ t < Te

(5)

where wself and wsup are the weights for the self-supervised loss and the super-
vised loss, respectively. t is the current epoch. Ramp up starts at Ts and ends
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at Tu. Ramp down starts at Td and ends at Te. Secondly, the weighting functions
for Pretrain are as follows,

wself,pretrain =

{

1, t < Ts

0, Ts ≤ t < Te

(6)

wsup,pretrain = 1− wself,pretrain. (7)

Lastly, the weighting functions for Smooth transfer are as follows,

wself,smooth =

{

1, t < Ts

exp(−12.5( t−Ts

Te−Ts
)2), Ts ≤ t < Te

(8)

wsup,smooth = 1− wself,smooth. (9)

3 Additional Qualitative Results on Synthetic Data

More qualitative results are provided for comprehensive evaluations. Our self-
supervised de-snowing method is compared with the state-of-the-art label-free
method, DROR [3] and the state-of-the-art supervised method, WeatherNet [4].
Fig. 6 - 9 presents qualitative comparisons on a light, medium, heavy, and ex-
treme snow scenes, respectively.

4 Additional Qualitative Results on Real-world Data

More qualitative results on real-world data are presented for comprehensive eval-
uations. In Fig. 10 and Fig. 11, our self-supervised de-snowing method is com-
pared with the state-of-the-art label-free method, DROR [3], which also does not
use any point-wise annotation. The supervised method, WeatherNet [4], cannot
be used in this scenario since the collected data do not contain point-wise anno-
tations.
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(a) DROR [3] (b) WeatherNet [4] (c) Ours

Fig. 6: Additional qualitative comparisons on a light snow scene of the syn-
thesized snow noise data. The first row shows all points with their prediction
results (red: true positive, green: false positive, gray: true negative, yellow: false
negative). The second row shows de-snowed point clouds.

(a) DROR [3] (b) WeatherNet [4] (c) Ours

Fig. 7: Additional qualitative comparisons on a medium snow scene of the
synthesized snow noise data. The first row shows all points with their prediction
results (red: true positive, green: false positive, gray: true negative, yellow: false
negative). The second row shows de-snowed point clouds.
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(a) DROR [3] (b) WeatherNet [4] (c) Ours

Fig. 8: Additional qualitative comparisons on a heavy snow scene of the syn-
thesized snow noise data. The first row shows all points with their prediction
results (red: true positive, green: false positive, gray: true negative, yellow: false
negative). The second row shows de-snowed point clouds.

(a) DROR [3] (b) WeatherNet [4] (c) Ours

Fig. 9: Additional qualitative comparisons on a extreme snow scene of the
synthesized snow noise data. The first row shows all points with their prediction
results (red: true positive, green: false positive, gray: true negative, yellow: false
negative). The second row shows de-snowed point clouds.
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(a) DROR [3] (b) Ours

Fig. 10: Additional qualitative comparisons on the real-world snowy weather
data (red: positive, gray and blue: negative).

(a) DROR [3] (b) Ours

Fig. 11: Additional qualitative comparisons on the real-world snowy weather
data (red: positive, gray and blue: negative).
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