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Abstract. LiDAR is widely used to capture accurate 3D outdoor scene
structures. However, LiDAR produces many undesirable noise points in
snowy weather, which hamper analyzing meaningful 3D scene structures.
Semantic segmentation with snow labels would be a straightforward solu-
tion for removing them, but it requires laborious point-wise annotation.
To address this problem, we propose a novel self-supervised learning
framework for snow points removal in LiDAR point clouds. Our method
exploits the structural characteristic of the noise points: low spatial cor-
relation with their neighbors. Our method consists of two deep neu-
ral networks: Point Reconstruction Network (PR-Net) reconstructs each
point from its neighbors; Reconstruction Difficulty Network (RD-Net)
predicts point-wise difficulty of the reconstruction by PR-Net, which we
call reconstruction difficulty. With simple post-processing, our method
effectively detects snow points without any label. Our method achieves
the state-of-the-art performance among label-free approaches and is com-
parable to the fully-supervised method. Moreover, we demonstrate that
our method can be exploited as a pretext task to improve label-efficiency
of supervised training of de-snowing.

Keywords: LiDAR de-snowing, vision for adverse weather, self-supervised
de-snowing

1 Introduction

Robust and accurate 3D scene measurement is an essential component of outdoor
machine perceptions, e.g., autonomous vehicles. LiDAR is a commonly used 3D
measurement sensor that gives reliable 3D point clouds in favorable weather
conditions. However, in snowy weather conditions, LiDAR frequently generates
a large number of particle noise points by detecting solid snowflakes [42]. These
noise points could have a fatal impact on point cloud applications for outdoor
systems [14,22,50].

Conventional filter-based approaches [5, 40, 47] have been presented for the
LiDAR de-noising task to alleviate this problem. They attempt to remove the
noise points by evaluating their spatial vicinity, but these approaches often suffer

⋆ Inwook Shim is the corresponding author.
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(a) Noisy point cloud (b) Reconstruction difficulty (c) De-snowed point cloud

Fig. 1: An example of the proposed LiDAR de-snowing process estimating how
difficult to reconstruct each point from neighboring points. In (b), the closer to
the red, the more difficult to reconstruct.

from misclassification since they only rely on simple spatial sparsity. Following
the success of deep learning in various 3D point cloud applications (e.g., classi-
fication [43, 44], detection [49, 59], segmentation [27, 38], etc.), a deep learning-
based LiDAR de-noising approach, WeatherNet [16], is recently introduced. It
takes advantage of deep learning-based semantic segmentation methods to detect
point-wise LiDAR noise points.

While WeatherNet [16] outperforms the conventional approaches by a sig-
nificant margin, it requires point-wise annotations. Even though there were at-
tempts on efficient 3D point annotation [32, 33, 41], manual annotation of 3D
point cloud is still laborious and time-consuming [10]. Moreover, labeling snow
noise points requires even more efforts. Labeling the snow points is hard to take
advantage of the assistance of camera view, which is the convention in point
cloud labeling process [4,11,52], since camera images are also heavily degraded,
e.g., snowflakes on the lens and in the air. Besides, in most cases, the degradation
is not consistent with the noise points of LiDAR.

To address this issue, we propose a self-supervised learning framework for de-
noising LiDAR point clouds in snowy weather, i.e., LiDAR de-snowing. We focus
on the structural characteristic of the noise points in snowy weather that they
have low spatial correlations with their neighbors. Therefore, they are difficult
to be reconstructed from their neighboring points. Based on this insight, we pro-
pose a novel self-supervised learning approach for snow points removal in LiDAR
point clouds. Our method consists of two deep neural networks: Point Recon-
struction Network (PR-Net) reconstructs randomly selected target points from
their neighbors; Reconstruction Difficulty Network (RD-Net) predicts point-wise
error of PR-Net reconstruction, which we call reconstruction difficulty. An ex-
ample of the estimated reconstruction difficulty and the de-snowing result is
visualized in Fig. 1. A set of reconstruction target points for training is selected
from the point cloud itself, which leads to a self-supervised training scheme.
The two deep neural networks are jointly trained with a shared loss function,
and then only RD-Net, followed by simple post-processing, is used to detect the
noise points in the inference step. Our model trained without any labeled data
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outperforms previous label-free approaches with a large margin and achieves a
comparable performance to the fully supervised model.

While our self-supervised method is basically label-free, it can be extended to
a semi-supervised training scheme where training data consist of a small amount
of labeled data and a large amount of unlabeled data. We demonstrate that an
extension of our method as a pretext task enables supervised training of de-
snowing in a label-efficient manner. Our semi-supervised extension yields better
performance with fewer labeled data, which shows that our method as a pretext
task is well-aligned with supervised training of de-snowing.

Our contributions can be summarized as follows:

– To the best of our knowledge, we are the first to introduce a self-supervised
approach for LiDAR de-noising under snowy weather, i.e., LiDAR de-snowing.
Our method identifies noise points that have low spatial correlations with their
neighboring points.

– Our method outperforms previous label-free approaches by a large margin and
achieves comparable results to the supervised method.

– We demonstrate that our self-supervised approach can be exploited as a pre-
text task for supervised de-snowing, which largely improves label-efficiency.

2 Related Work

2.1 LiDAR Point Cloud De-noising

Conventional filter-based methods classify noise points by their spatial spar-
sity [5, 40, 46, 47, 58]. Radius outlier removal (ROR) [47] finds the number of
neighbors within a fixed radius and classifies points as noises if the number of
neighbors is lower than a predefined threshold. ROR often fails at far-distant
points because the density of the LiDAR point cloud decreases as the distance
increases. Dynamic radius outlier removal (DROR) [5] employs varying search
radii according to the distance to overcome the limitation of the previous works
and successfully removes snow noise points. While those filter-based methods are
easy to use and have a low computational burden, they still cannot handle point
cloud’s irregularity well, which often results in a significantly worse performance.

Recently, a supervised learning-based approach, WeatherNet [16], is intro-
duced. It formulates the LiDAR de-noising problem as 2D semantic segmenta-
tion on the range image representation. Despite WeatherNet outperforms the
filter-based methods, it requires expensive point-wise annotated training data.

2.2 Self-supervised Image De-noising

Self-supervised deep learning approaches have accomplished remarkable advances
in the image de-noising task. Noise2Noise [31] is a pioneering work that restores
a noisy image using another noisy image generated from the same clean image
source. Since it is difficult to obtain a pair of noisy images in dynamic scenes,
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following works [1, 25] improved the idea to work with a single noisy image by
predicting a de-noised version of each pixel without depending on the pixel itself.

Despite the success of self-supervised de-noising in the image domain [1, 23,
25, 31, 45] and dense point cloud domain [17, 34, 35], there are problems in uti-
lizing those methods for the LiDAR de-noising task in snowy weather, i.e., the
de-snowing task. First, the image de-noising cannot produce sufficiently reliable
results when a pixel value is difficult to be precisely predicted by its neighboring
pixel information [25]. Second, the objective of LiDAR de-noising [5, 40, 46, 47]
mainly focuses on removing noise points, not restoring the original points. For
many applications that use LiDAR data (e.g., grasping an object, avoiding ob-
stacles), rather than restoring the clean version of every elements, which is the
main objective of the image de-noising tasks, it is essential to discard unreliable
measurements while preserving clean measurements.

2.3 Semi-supervised Learning

Semi-supervised learning is a training scheme to learn from both labeled data and
unlabeled data [54]. How to design an unsupervised loss function for leveraging
sufficient unlabeled data is the main concern of semi-supervised learning. The
categories of semi-supervised learning methods include unsupervised pretraining
followed by fine-tuning [7,19,28,56], consistency regularization [26,48,53], pseudo
labeling [18, 29, 55], and combination of these methods [2, 51, 60]. While our
method is label-free, i.e., self-supervised, we demonstrate that our method can
be extended to a semi-supervised training scheme. Combining our self-supervised
loss with a supervised loss from a limited number of labeled data, the large
performance gain shows that our method as a pretext task is well-aligned with
supervised learning, which leads to an effective semi-supervised training scheme.

3 Proposed Method

Section 3.1 describes the representation of input LiDAR data. Section 3.2 ex-
plains our self-supervised learning framework for detecting noise points. Sec-
tion 3.3 and 3.4 give detailed information on multi-hypothesis point reconstruc-
tion and post-processing process, respectively. Section 3.5 explains the extension
of our self-supervised method into a semi-supervised training scheme.

3.1 Input Representation

The input to the proposed method is a 2D range image representation, which is
the raw data structure of rotating LiDAR [9,37,38], e.g., Velodyne LiDAR. Such
representation simplifies the 3D position reconstruction problem into 1D depth
reconstruction along the LiDAR rays. The range image is generated as follows:
Let P be a finite LiDAR point cloud, which contains K points: P = {p1, ...,pK}.
Each point p = (px, py, pz) is projected onto the image plane as u = (u, v) via
a mapping function Π : R3 7→ R2. By following [16, 37], column u is defined
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Fig. 2: The overall structure of our proposed LiDAR de-snowing method.

by u = (π − arctan(py, px))/δh, where δh is the horizontal resolution of the
LiDAR we used. Row v represents the laser id of p, which corresponds to one of
the sender/receiver modules in LiDAR. The projected point at (u, v) has a range
value r = (p2x+p2y+p2z)

1/2. For each scan of LiDAR, we generate a corresponding
range image R ∈ Rn×m.

3.2 Self-supervised Learning Framework

We propose a self-supervised approach of LiDAR de-snowing that does not re-
quire point-wise annotations. To detect noise points that have low spatial corre-
lations to their neighboring points, we designed a point reconstruction task and
utilized errors from the task as guidance for training our de-snowing network. As
shown in Fig. 2, reconstruction target points are randomly selected in the range
image for every iteration of training. The Point Reconstruction Network (PR-
Net) then predicts depth values of the target points by aggregating information
of their neighboring points. At the same time, the Reconstruction Difficulty
Network (RD-Net) estimates the extent of errors of the points reconstructed by
PR-Net, which we call reconstruction difficulty .

The two deep neural networks, PR-Net and RD-Net, are jointly trained with
a shared loss function. We design a loss function with two objectives. First,
as seen in the left figure in Fig. 3, the loss function should guide RD-Net to
produce high output for noise points on which PR-Net has high error. Second,
when training the point reconstruction task, the loss function should attenuate
the loss contribution of noise points because they are extremely difficult to be
reconstructed. It is to make PR-Net concentrate on reconstructing non-noise
points. Our baseline loss function is given as follows:

Lself =
∑

I ⊙

√2
∣∣∣θ(R̃)−R

∣∣∣
exp(ϕ(R))

+ ϕ(R)

 , (1)

where R is a range image of LiDAR data and R̃ is a randomly blanked range
image. I is a binary mask that only selects loss from the blanked points. ⊙ is an
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Fig. 3: The left image explains how PR-Net and RD-Net infer differently depend-
ing on whether a clean point or a noise point is blanked. The right image presents
an example of ambiguity inherent in the point reconstruction task. PR-Net with
multiple hypotheses can infer both of the multiple plausible reconstructions.

element-wise multiplication. θ(·) and ϕ(·) denote PR-Net and RD-Net, respec-
tively. The blanked points are selected randomly for each iteration of training.
The structure of Eq. (1) is inspired by the negative log-likelihood of a Laplacian
distribution [21,24].

PR-Net’s reconstruction error guides RD-Net to learn to estimate the re-
construction difficulty of each point. PR-Net takes the blanked range image R̃
as an input and predicts the depth value of the blanked points, and then we
calculate L1 loss. Eq. (1) guides exp(ϕ(R)) to be high when the reconstruction
error L1 is expected to be high, and to be low for the opposite. In other words,
RD-Net is trained to predict the expected reconstruction quality of PR-Net for
each point by taking the original range image R, which is not blanked, as an
input. Consequently, we can identify the noise points by only utilizing the pre-
diction of RD-Net. The regularization term ϕ(R) is added to prevent RD-Net
from predicting an infinite value.

Eq. (1) also allows training of PR-Net to be robust to noise points. Trying
to minimize the loss on noise points could decrease the reconstruction ability for
clean points. Therefore, in Eq. (1), gradients from noise points are attenuated
by exp(ϕ(R)) as a weighting factor for the loss given to PR-Net. Points with
high output from RD-Net have a smaller effect on the loss of PR-Net.

At the test time, only RD-Net is used to detect noise points. It takes a range
image R as an input and predicts how difficult it will be to reconstruct each
point. If the output of RD-Net ϕ(R) is higher than a certain threshold, the
point is classified as a noise point.
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(a) Before post-processing (b) After post-processing

Fig. 4: RD-Net’s output of each point in order of depth before (a) and after post-
processing (b). Red lines indicate the 20th percentile of each meter of depth.

3.3 Point Reconstruction with Multiple Hypotheses

PR-Net is trained to reconstruct randomly selected target points and their re-
construction errors are computed. However, the point reconstruction task has
an inherent ambiguity, where some clean points may have multiple plausible an-
swers for reconstruction. For example, in the right of Fig. 3, when a point on
the object boundary is selected as a target, there can be two plausible answers:
the object boundary or background. Since PR-Net with a single output cannot
cover both answers precisely, the output is collapsed to the mean of them, which
leads to an undesirable increase of the reconstruction error for clean points.

In order to distinguish the ambiguous clean points and noise, PR-Net is
modified to have multiple outputs as shown in Fig. 2, which is inspired by multi-
hypothesis learning. Following [30, 57], only predictions with a minimum error
are used for loss calculation. Such prediction for each point is given as follows:

Ci = min
k

∣∣∣θk(R̃)−R
∣∣∣
i
, (2)

where θk(·) is the kth output, i.e., hypothesis, of PR-Net and Ci indicates the
output of point i with a minimum error. Then, our reconstruction loss in Eq. (1)
can be modified as follows:

Lself,mhl =
∑

I ⊙
[√

2
C

exp(ϕ(R))
+ ϕ(R)

]
. (3)

The modified loss guides PR-Net to have multiple plausible predictions rather
than to be collapsed to the mean. If at least one of the multiple predictions
is well-reconstructed, the reconstruction error will be low. However, since noise
points are still difficult to reconstruct, albeit with a finite number of multiple
predictions, reconstruction errors will be high.

3.4 Post-processing

As the sensing distance increases, the minimum output of RD-Net gradually
increases, as shown in Fig. 4a. This can be seen as the effects of the decreased
density of the point cloud at a far distance, which makes the reconstruction more



8 G. Bae et al.

Reconstruction

Difficulty

Noise 

Probability

Supervised Loss

Self-Supervised Loss

Unlabeled Data Labeled Data

: PR-Net : RD-Net : Noise Cls. Net

Fig. 5: Architecture design of our semi-supervised extension. The feature encoder
of RD-Net and the noise classification network is shared.

(a) Ramp up/down (b) Pretrain (c) Smooth transfer

Fig. 6: Weighting functions for combining the supervised and self-supervised loss.

difficult. To compensate this effect, with partitioning the points by 1m depth
interval, RD-Net’s output is shifted downward in the amount of the shifting
parameter for each depth interval. For example, in Fig. 4b, the shifting param-
eter is defined as the 20th percentile of RD-Net’s output value. It compensates
the depth-dependent bias on reconstruction difficulty. We then detect the noise
points based on a certain threshold that is empirically determined. The ablation
studies on the shifting parameter are described in Section 4.1.

3.5 Semi-supervised Learning

While our self-supervised method is able to remove noise points without any
labeled data, we found out that it can also be extended to a semi-supervised
training scheme. Since RD-Net is trained to regress the reconstruction difficulty,
which is one of the characteristics to distinguish noise points from others, we
can expect that the backbone network of RD-Net extracts features suitable for
noise classification. As shown in Fig. 5, the feature encoder of RD-Net is shared
for the feature encoder of a noise classification network. All of the networks are
jointly trained with the weighted sum of two loss functions as follows,

L = wself ∗ Lself,mhl + wsup ∗ Lsup, (4)

where Lsup is the cross entropy loss by following WeatherNet [16]. wself and wsup

are the weights for the self-supervised loss and the supervised loss, respectively.
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Three different weighting functions are proposed and evaluated. Fig. 6a in-
dicates weighting functions that are widely used in consistency regularization
methods for semi-supervised learning [20,26,36,53]. Weighting functions in Fig. 6b
are inspired by self-supervised learning [6,8,12,13,39]. Our self-supervised method
is regarded as a pretext task. The feature encoder of the noise classification net-
work is initialized with the feature encoder of RD-Net. We further extend Fig. 6b
into Fig. 6c. The pretrained features for estimating reconstruction difficulty are
smoothly transferred into the noise classification network. The equations for the
weighting functions are explained in the supplementary material.

4 Experimental Result

4.1 Point-wise Evaluation on Synthetic Data

Dataset A number of scene data with point-wise annotations should be pro-
vided for a fair quantitative evaluation, regardless of whether training is done in
a supervised or an unsupervised manner. However, to the best of our knowledge,
there is no published dataset that satisfies it. We collect real-snow noise points
using our stationary data-capturing system and synthesize the collected noise
points into various clean weather road scenes.

Since a background point cannot be detected if a noise point is on the same
LiDAR ray, we can directly pick out noises by comparing range images of noisy
point cloud sets (Noise-Set) and clean point cloud sets (Clean-Set) as follows:

LN
(u,v) ←

{
N (Noise), if RF

(u,v) ≥ RN
(u,v) + τ

C (Clean), else
(5)

where RF is the reference range image generated from Clean-Set, RN is a range
image of Noise-Set, LN indicates a label map of RN and τ is a margin for sensing
errors of LiDAR. In the case of scanning an empty space (e.g., sky), since no
valid background information is projected to RF

(u,v), we always assign the ‘Noise’

label to LN
(u,v). The collected noise points are then injected into road scene point

cloud sets (Base-Set) taken in clean weather as follows:

RS
(u,v) =

{
RN

(u,v), if RN
(u,v) ≤ Rmax

(u,v) and LN
(u,v) = N (Noise)

RB
(u,v), else

(6)

where RB is a range image in Base-Set, and RS is a synthesized range im-
age. Rmax is the maximum detectable range which is introduced for a realistic
synthesis [3, 16] by considering scene structures of RB as follows:

Rmax
(u,v) = min(

−ln( n
IB
(u,v)

+g
)

2 ∗ β
,RB

(u,v)),
(7)

given the received laser intensity IB(u,v), the adaptive laser gain g, the atmo-
spheric extinction coefficient β, and the detectable noise floor n. In this paper,
Nuscenes dataset [4] is used as Base-Set to synthesize snowy scenes. Please see
the supplementary material for more details of the dataset generation process.
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Table 1: Quantitative results on the synthesized snow noise data. Labeled data
indicates the number of labeled training data used.

Method Labeled Data IoU Precision Recall

ROR [47] 0 17.82 17.86 98.65
DROR [5] 0 33.68 33.87 98.37

Ours w/o MHL 0 65.75 70.38 90.89
Ours 0 79.62 85.69 91.83

WeatherNet [16] 239 41.40 76.78 47.32
Ours(Semi.sup.) 239 82.44 96.39 85.07

WeatherNet [16] 23,908 84.04 97.48 85.90
Ours(Semi.sup.) 23,908 84.24 97.24 86.30

Implementation Details Our self-supervised model is trained with the syn-
thesized snow noise dataset. We split a total of 34, 139 scans into training, val-
idation, and test sets at a ratio of 70 : 15 : 15. PR-Net and RD-Net consist
of residual blocks [15] for the self-supervised model. For the semi-supervised
model, PR-Net and RD-Net use the same backbone with WeatherNet to en-
sure a fair comparison. Separated layers in Fig. 5 consist of a LiLaBlock [41]
and a convolution layer by following WeatherNet. Each training step encounters
an independently selected random set of target points in order to learn vari-
ous cases of the reconstruction. Horizontal flipping is randomly performed to
augment training data. At the test time, points with an RD-Net output higher
than the threshold are classified as noise points. Throughout experiments in this
paper, the threshold is determined as 2.9, which achieves the highest perfor-
mance for the validation dataset. Quantitative performance is evaluated using
the Intersection-over-Union (IoU) metric, following WeatherNet [16].

Quantitative Comparisons In Table 1, our proposed methods are compared
with previous LiDAR de-noising approaches: ROR [47], DROR [5], and Weath-
erNet [16]. Table 1 shows that our proposed method yields a significantly higher
IoU than the state-of-the-art label-free method, DROR. Notably, our approach
achieves a comparable IoU to the supervised method without using any la-
beled data. Applying multi-hypothesis learning in Eq. (3) improved the baseline
method in all metrics. For the case where only 1% of labeled data provided,
the semi-supervised extension yields significantly higher performance than the
supervised method, WeatherNet. Even when 100% labeled data provided, our
method performs better than the supervised method without using any addi-
tional unlabeled data, which shows better exploitation of the same given data.
Ours (Semi-sup) refers to the semi-supervised extension with Smooth transfer
in Fig. 6, which is described in Section 3.5.

Table 2 shows an analysis on the performance changes of our method accord-
ing to the noise level. The noise level is decided by following Canadian Adverse
Driving Condition Dataset [42]. While WeatherNet and our semi-supervised
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(a) DROR [5] (b) WeatherNet [16] (c) Ours

Fig. 7: Qualitative comparisons on the synthesized snow noise data. The first
row shows all points with their prediction results (red: true positive, green: false
positive, gray: true negative, yellow: false negative). Classification as noise cor-
responds to positive. The second row shows de-snowed point clouds. DROR mis-
classifies many sparsely distributed points at the side facade of the truck.

(a) Reconstruction difficulty (b) De-snowing result

Fig. 8: Estimated reconstruction difficulty and its corresponding de-snowing re-
sult. In (a), the closer to the red, the higher reconstruction difficulty. In (b), the
color of each points follows Fig. 7.

model generate relatively consistent performances when the noise level changes,
all of the label-free methods including ours have lower IoU as the noise level
decreases. Since unsupervised methods do not use direct supervision from point-
wise labeled data, noise-like points among clean points can be misclassified as
false positives. Fig. 9 depicts the case where noise-like clean points exist. Al-
though only clean points are displayed, clean points floating in the air look very
similar to noise points, and those are removed in Fig. 9b.

In Table 3, we evaluate three weighting functions proposed for our semi-
supervised method in Fig. 6. All of the weighting functions have better perfor-
mances than the supervised method when limited data are given. Compared to
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Table 2: Analyses on the performance changes according to the noise level.

Method Metric
Noise Level

Light Medium Heavy Extreme

DROR [5] IoU 12.76 22.57 32.99 52.59
WeatherNet [16] IoU 82.29 83.57 83.57 84.60
Ours(Semi-sup) IoU 82.35 83.87 83.72 84.83

Ours IoU 60.81 71.48 79.37 85.69
Ours Precision 64.35 77.81 85.48 85.69
Ours Recall 91.70 89.78 91.74 92.42

(a) Clean (b) De-snowed

Fig. 9: A de-snowing result of only-
clean points scene. Some of floating
clean points are similar to noises and
eliminated by our method.

(a) w/o MHL (b) w/ MHL

Fig. 10: Comparison between the sin-
gle hypothesis model and the multi
hypotheses model.

the supervised method, Ramp up/down, which is widely used in semi-supervised
methods, shows higher IoU when 1% and 10% labels are given but lower when
sufficient labels are given, 100%. Pretrain yields better IoU than the supervised
method even when 100% of labels are given. Smooth transfer shows the highest
performance when 1% data are labeled and higher than the supervised method
even when 100% of data are available for both of methods.

Ablation Studies In Table 4, we investigate performance changes of our self-
supervised method according to variations in configurations. First, multi hy-
potheses learning yields significantly better performance than our baseline method
that has a single hypothesis. Among the different number of hypotheses, the
model predicting three hypotheses achieves the highest IoU. Second, we analyze
the effects of the blank ratio for training. Our method yields the highest perfor-
mance when 50% of points are blanked. Third, we look into the impact of dif-
ferent shifting parameters in the post-processing step. The experiment with the
minimum RD-Net output value for each depth interval as the shifting parameter
shows a slightly lower result while other settings achieve similar performance.

Qualitative Comparisons Fig. 7 demonstrates a qualitative analysis of our
method with DROR and WeatherNet. First, DROR misclassifies clean points if
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Table 3: De-snowing performances of the supervised method and our semi-
supervised extension when limited labeled data are provided.

Method IoU (1% labels) IoU (10% labels) IoU (100% labels)

WeatherNet [16] 41.40 78.75 84.04
Ramp up/down 79.39 81.73 82.57

Pretrain 62.46 82.87 84.86
Smooth transfer 82.44 83.70 84.24

Table 4: Ablation experiments of the proposed self-supervised method.

# Hypotheses 1 2 3 4

IoU 65.75 76.17 79.62 76.52

Blank Ratio 10% 30% 50% 70%

IoU 76.64 78.93 79.62 76.57

Shifting Param. min 10th 20th 30th

IoU 72.63 79.36 79.62 79.22

they are sparsely distributed. Assuming the same distance, as an angle between
a LiDAR ray and its hitting surface gets farther from perpendicular, a point
density of the surface gets lower. As depicted in Fig. 7a, it leads to the failure
case of DROR, which solely depends on sparsity for detecting noise. For example,
in spite of strong semantic consistency of the side facade of the truck, DROR
incorrectly removes the points on it based on sparsity. In contrast, our method
preserves clean points if they can be reconstructed from neighboring points.
Second, WeatherNet has the smallest number of false positives, which are marked
as green points in Fig. 7. It still has remaining noise points around the LiDAR
sensor. More results are in the supplementary material.

Fig. 8 visualizes the reconstruction difficulty estimated by RD-Net and its
evaluation. Clean points have low reconstruction difficulty as they have high spa-
tial correlations with neighbors. On the contrary, RD-Net assigns high difficulty
to noise points. In Fig. 8a, points on trees have relatively high RD-Net output
than the points on the road and cars. It shows that RD-Net successfully learns
to reflect the reconstruction difficulty of each point. Although points on trees
are inferred as more difficult points than other clean points, they still have lower
difficulty than noise points and correctly classified as seen in Fig. 8b.

Fig. 10 demonstrates the effects of multi-hypothesis learning. When PR-Net
infers a single hypothesis, many points on the upper side of a car are misclassified
and removed, as shown in the yellow box in Fig. 10a. This is the case explained
in Fig. 3. On the contrary, as seen in Fig. 10b, many of those points are preserved
when multi-hypothesis outputs are inferred by PR-Net.
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(a) DROR [5] (b) Ours

Fig. 11: Qualitative comparisons on the real-world snowy weather data (red:
positive, gray and blue: negative).

4.2 Qualitative Evaluation on Real-world Data

We also evaluate our self-supervised method in real snowy weather scenarios
captured by our mobility platform, equipped with a Velodyne ‘VLS-128’. A
total of 9, 000 scans were captured in snowy weather. We qualitatively evaluate
our method with DROR, which also does not require point-wise labels. Other
experimental settings follow Section 4.1, except for the height of range images
which is set to 128.

Fig. 11 shows a de-snowing result of DROR and ours. As ‘VLS-128’ LiDAR
generates dense point clouds due to its high vertical resolution, the sparsity-based
de-snowing method, DROR, generates fewer false positives than in Section 4.1.
However, a number of clean points are still misclassified. For example, as shown
in the yellow boxes in Fig. 11a, clean points on the car and the wall are filtered
out when they have low spatial density. On the other hand, in Fig. 11b, since our
method estimates point-wise reconstruction difficulty, clean points on the surface
of objects are well preserved. More results are presented in the supplementary
material.

5 Conclusion

In this work, we proposed a novel self-supervised method for de-snowing LiDAR
point clouds in snowy weather conditions. By utilizing the characteristic of noise
points that they have low spatial correlations with their neighboring points, our
method is designed to detect noise points that are difficult to reconstruct from
their neighboring points. Our proposed self-supervised approach outperforms
the state-of-the-art label-free methods and yields comparable results to the su-
pervised approach without using any annotation. Furthermore, we present that
our self-supervised method can be exploited as a pretext task for the supervised
training, which significantly improves the label-efficiency.
Acknowledgement This work was supported by the Agency for Defense Devel-
opment (ADD) and by the National Research Foundation of Korea (NRF) grant
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