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1 The Pre-training of Feature Generator

In recent generalized zero-shot learning (GZSL) methods [13,14,8], training a
generator with WGAN [5] has been proved to be an effective way to synthesize
discriminative features for unseen objects. Inspired by those works, we also utilize
WGAN to pre-train our feature generator (FG). Then the pre-trained FG can
generate features of target objects to guide the navigation agent.

The pre-training of the FG aims at obtaining G (SE (y) , z) that synthesizes
the object features x = G (SE (y) , z) of the target category y based on its seman-
tic embedding SE (y) and a random Gaussian noise z. The SE (·) is an embed-
ding module that converts the object category into its class-specific semantic vec-
tor. The dataset for pre-training is Dtrain = {(xs, SE (ys)) |xs ∈ X s , ys ∈ Ys},
where the X s is the set of seen object features (extracted by ResNet18) and
the Ys is the set of seen object labels. The collection process of Dtrain has been
introduced in the main text. Although the generator G is pre-trained with seen
objects to generate seen object features conditioned on the semantic embedding,
the well pre-trained generator can transfer the ability of synthesizing features
to unseen objects (i.e. generating unseen objects features via their semantic em-
beddings).

The generator is pre-trained together with a discriminator Dpre via adversar-
ial learning. Note that in the conventional works [5], the discriminator is written
as D by default. In order to differentiate the pre-trained discriminator from our
environmental meta-discriminator (EMD) in the main text, the discriminator
in the pre-training is written as Dpre. In adversarial learning, the discriminator
Dpre tries to distinguish the real features xs ∈ X s and the generated features x
conditioned on the semantic embedding SE (y), while the generator G tries to
fool the discriminator by generating more realistic features. Such a pair of ad-
versarial learners G and Dpre are learned by optimizing min

G
max
Dpre

LWGAN , where

the optimization objective LWGAN is given by

LWGAN =E[Dpre(xs, SE(y))]− E[Dpre(x, SE(y))]

− λE[(∥∇x̂D
pre(x̂, SE(y))∥2 − 1)2]

(1)
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Table 1. Distribution of the target objects in different scene types in AI2THOR [6].

Scene Type Seen Objects Unseen Objects

Kitchen

Microwave, Fridge, Coffee Machine,
Bowl, Cabinet, Drawer, Kettle,
Garbage Can, Pan, Stove Burner, Pot,
Toaster Faucet, Plate

Living Room

Garbage Can, Box, Plate, Drawer,
Pillow, Laptop, Arm Chair,
Shelf, Television, Desk Lamp
Side Table, Sofa,
Floor Lamp

Bedroom
Book, Chair, Desk Lamp,
Mug, Alarm Clock Arm Chair, Drawer

Bathroom
Bathtub, Sink, Drawer, Faucet,
Light Switch, Shower Door,
Shower Curtain Toilet Paper, Toilet

Table 2. Distribution of the target objects in RoboTHOR [3].

Seen Objects Unseen Objects

Book, Bowl, Chair, Mug, Arm Chair, Plate,
Side Table, Laptop, Box, Pot, Drawer
Shelf, Television, Sofa

where x = G (SE (y) , z) is the generated features, x̂ = εxs + (1− ε)x with
ε ∈ U (0 , 1 ) and λ is the penalty coefficient.

The first thing should be noticed that although the motivation of pre-training
the FG is similar to some GZSL works [13,14,8], there are some differences in the
way of training the generator. To ensure that the generated features are more
suitable for the classification task, the conventional optimization objectives of
GZSL methods usually introduce an additional prediction likelihood [13] or a
reconstruction constraint [8,14] in the Eq. 1. While our FG pre-training only
adopts the original LWGAN , the main improvements of our method (making
the FG more suitable for navigation) are essentially achieved by the later FG
adaptation with our EMD.

Another thing should be noticed that although the FG pre-training and the
FG adaptation during navigation both utilize the adversarial learning, there are
three differences between these two adversarial learning processes: 1) The gen-
erator’s initial parameters are different. The FG pre-training begins with the
random initialized parameters, while the FG adaptation starts with the trained
parameters in FG pre-training; 2) The structure of the discriminator is different.
The Dpre is a conditional discriminator (i.e. conditioned on the semantic embed-
ding SE(y) of the input object category), while EMD adopts a non-conditional
discriminator. Besides, the number of hidden units is also different; 3) The goal of
the adversarial learning is different. In FG pre-training, the goal of the adversar-
ial learning is to let the generator learn the characteristics of objects conditioned
on their semantic embeddings. While the adversarial learning in FG adaptation
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(with EMD) aims at adapting the generator to learn the environmental features,
so that the generated object features could obtain more environment informa-
tion. Then the adapted generator could synthesize more precise features of the
target for the agent, especially helpful in the unseen object navigation.

2 Navigation Target Objects

Tab. 1 and Tab. 2 demonstrate the split of seen and unseen target objects
in AI2THOR and RoboTHOR, respectively. Considering that each room in
AI2THOR belongs to a specific scene and some objects only appear in cer-
tain scenes (e.g. the toilet only appears in the bathroom), we set different target
objects for different scene types. While in RoboTHOR, each apartment has con-
sistent layout so that all apartments share the same split of seen and unseen
target objects. We use the seen objects for training, and test our model with
both seen and unseen objects. Moreover, we adjust the initial distribution of
objects in the simulator to avoid dense objects areas, and remove the unseen
objects during the model training.

3 Semantic Embedding

Since the feature generation is based on the semantic embedding of the object
category, semantic embedding plays a vital role in transferring the knowledge
of feature generation from seen to unseen objects. Currently, two related do-
mains (i.e. object navigation and generalized zero-shot learning) adopt different
semantic vectors to embed the object categories. Most object navigation re-
searches typically utilize the Glove vector [10], while most generalized zero-shot
learning (GZSL) researches employ the attribute vector. We investigate such two
widely used semantic embeddings as follows.

3.1 The Collection of Attribute Vector

Receptacle, Toggleable, 

Breakable,  Dirtyable, 

Can be used up, 

Cookable,  Pickupable, 

Can fill with liquid, 

Moveable, Sliceable, 

Openable

Material 
Metal, Wood, Plastic, 

Glass, Ceramic,  Stone, 

Fabric, Rubber, Food, 

Paper, Wax, Soap, Sponge, 

Organic, Leather

Volume
Small, Middle, Big

Mass
Light, Heavy, Unmovable

Temperature

Hot, Cold, Room Temperature

Color

Black, Gray, White, Red, 

Orange,  Yellow, Green, 

Cyan, Blue, Purple

Ability

Fig. 1. The object attributes in the AI2THOR and
RoboTHOR simulator.

The GZSL works generally
synthesize the visual features
based on the annotated at-
tribute vector, which converts
the object category into a
class specific semantic vec-
tor. The attribute annota-
tions are easily acquired in
some GZSL datasets (e.g.
CUB [11], FLO [9]). However,
attribute annotations for ob-
ject categories are not directly
provided in the existing navi-
gation datasets (e.g. AI2THOR [6], RoboTHOR [3]). Therefore, we collect the
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Fig. 2. The number of attributes for each object class. We only illustrate the object
categories involved in our navigation task.

attributes for all object categories in AI2THOR and RoboTHOR simulator, and
annotate the attribute vector as the semantic embedding.

We consider 45 common attributes as shown in Fig. 1. Through interacting
with all objects in the simulator, we could obtain a 45-dimensional bag-of-words
vector for each object instance to represent its owned attributes. Then, from
instance-level to class-level, for each object class, we can get an average at-
tribute vector by averaging all related (belonging to such object class) instances’
attribute vector. In this way, we statistically collect the attribute vectors that
reflect the general characteristic of each object category, i.e. each object cat-
egory corresponds to a 45-dimensional attribute vector, where each dimension
represents the probability of containing such attribute.

The number of attributes for each object class is illustrated in Fig. 2. These
attributes come from different aspects (ability, material, volume, mass, color,
temperature), which are the basic components to describe an object. According
to the statistics, an object category covers 11.36 attributes in the average case,
and could still cover 6 attributes even in the lowest case (e.g. shower curtain,
toilet paper). Such attribute distribution guarantees adequate information to
represent each object category. Besides, each dimension of the attribute vector
is a constant probability value from 0 to 1. Therefore, although the considered
attribute types (i.e. 45) are limited, the attribute vectors can theoretically rep-
resent and distinguish infinite object categories. Each object involved in our
experiments has a unique attribute vector as semantic embedding.

3.2 Comparisons between Glove Vector and Attribute Vector

As shown in Tab. 3, We compare the navigation performance of our GMAN
with different semantic embeddings (Glove vector and attribute vector). For
navigating to the unseen objects, our GMAN with the Glove vector has a per-
formance similar to the baseline (i.e. A3C model), while the GAMN with the
attribute vector outperforms the baseline by a large margin. For navigating to
the seen objects, our GMAN with the Glove vector brings some improvements
than the baseline. However, such improvements are still less significant than
those achieved by using the attribute vector.
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Table 3. The comparisons of the Glove vector and attribute vector. In order to more
intuitively observe the differences between such two semantic embeddings, we addi-
tionally list the A3C model here as a comparison.

Models
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

A3C baseline 21.50 1.23 9.36 0.66 8.56 0.15 1.09 0.01 31.37 1.00 14.19 0.30 9.36 0.18 1.06 0.01

GMAN-Glove [10] 21.60 1.84 8.55 0.64 8.78 0.71 1.08 0.03 33.83 0.60 14.37 0.36 10.51 0.01 1.03 0.01

GMAN-Attribute 28.03 0.91 13.02 0.14 8.71 0.52 1.18 0.02 39.30 0.87 15.61 0.14 10.46 0.17 0.98 0.02

The experimental results indicate that the visual features generated via Glove
vectors only have a little effect on the seen object categories that are pre-trained
in advance, while transferring the generation knowledge from seen to unseen
with the Glove vector is poor. On the contrary, using the attribute vector as se-
mantic embedding, our GMAN could generate more informative visual features
for both seen and unseen objects, thus achieving better performance on both
cases. We compare the two semantic embeddings and conclude that attributes
vectors could more accurately reflect the visual characteristics of the object (e.g.
ability, material, volume, mass, color, temperature), thus more helpful for trans-
ferring the knowledge (visual features generation based on semantic embeddings)
from seen to unseen objects. As a result, we employ the attribute vector as the
semantic embedding for the target object categories.

4 More Evaluations

4.1 Datasets

We employ two editable simulators AI2THOR [6] and RoboTHOR [3] for evalu-
ations. AI2THOR provides 120 rooms in 4 types: kitchen, living room, bedroom
and bathroom. Each type scene consists of 30 rooms, and we choose 20 for train-
ing, 5 for validation and 5 for testing. Different from AI2THOR where each
environment contains only one scene category, RoboTHOR contains a variety of
scene categories in each environment. We define each environment in AI2THOR
as room and RoboTHOR as apartment. RoboTHOR consists of 75 apartments
for training and validation, while the testing data is not in public. Thus, we
choose 60 apartments for training, 5 for validation and 10 for testing.

4.2 Evaluation Metrics

We evaluate the models using Success Rate (SR), Success weighted by Path
Length (SPL), Exploration Area (EPA) and Distance to Success (DTS). The
detailed definitions of these evaluation metrics are as follows:

SR. The SR is used to evaluate the success rate of the agent in finding
the target object (i.e. the agent finally gets close to the target object within
a threshold of distance (i.e. 1m) and the target is visible in agent’s egocentric
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Table 4. Comparisons with the image-goal navigation and our object-goal navigation.

Settings
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Image-goal 29.17 0.32 13.69 0.36 8.51 0.46 1.15 0.04 30.63 0.31 12.94 0.47 11.13 0.50 0.99 0.01

Object-goal (ours) 28.03 0.91 13.02 0.14 8.71 0.52 1.18 0.02 39.30 0.87 15.61 0.14 10.46 0.17 0.98 0.02

view), which is defined as SR = 1
N

∑N
i=1 Si , where N is the number of total

episodes and Si is a binary indicator to represent whether the i-th episode is
successful.

SPL. The SPL is an improved evaluation metric that considers both the suc-

cess rate and the path length. It is formulated as SPL = 1
N

∑N
i=1 Si

L∗
i

max(Li,L∗
i )
,

where Li represents the actual path length and L∗
i is the shortest path length

provided by the simulator.
EPA. The EPA is defined as the percentage of explored area, which is com-

puted by the ratio of explored points to all reachable points.
DTS. The DTS records the average distance of the agent towards the target

at the end of episode. It is formulated as DTS = 1
N

∑N
i=1 max (∥li − lo∥2 − ξ, 0),

where li is the end location of i-th episode, lo is the target object’s location and
ξ = 1m is the success threshold. The optimal value of DTS is 0.

4.3 Comparisons with Image-goal Navigation

As to the unseen object navigation, our task setting follows the typical Object-
Goal navigation which provides the object category as the goal. Then the agent
learns to transfer the navigation ability from seen to unseen objects based on the
semantic embedding of the object categories. However, another setting following
ImageGoal navigation can also be applied to unseen object navigation, which
provides an egocentric image [16] or a panoramic image [2] around the unseen
object as the goal. As shown in Tab. 4, we compare these two settings in unseen
object navigation. For a fair comparison, we representatively choose the image-
goal navigation method [16] since both of us utilize the egocentric image as the
visual input. Besides, all methods are trained with equal amounts of episodes.

For the unseen objects, since our method takes the generated visual features
as a clue for navigation, our performance is reasonably worse than that of the
image-goal method, which directly provides the ground truth image as the target.
Nevertheless, the performance gaps are not significant. However, for the seen
objects, our method significantly outperforms the image-goal method [16]. We
analyze the experimental results and infer that, for image-goal setting, the visual
features of the provided image usually contain both the target object and the
surrounding background (where the proportion of the background is usually
relatively larger). For our object-goal setting, the generated features focus more
on the target itself (based on the semantic embedding) even though the generator
would be optimized (only within a few iterations) by EMD to introduce some
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Fig. 3. The ablations on the buffer length k. We evaluate the impact of different buffer
length k on the navigation metrics SR, SPL, EPA and DTS.

environmental features. Thus when navigating to unseen objects, the effects of
our features (“imaginal” but more focusing) and the image features (“true” but
more distracting) are similar. However, when navigation to seen objects, our
features (“well-trained” and focusing) are more effective than the image features
(“true” but distracting). As a result, our method outperforms the image-goal
method by a large margin in seen objects and achieves comparable performance
in unseen objects.

In summary, the advantages of our object-goal settings compared to the
image-goal navigation are as follows: 1) More user-friendly target settings.
In our settings, the user only needs to provide an object category no matter
whether it belongs to seen or unseen object categories. However, in image-goal
setting, the user needs to obtain an image of the target beforehand. Although
the images are easily acquired in the simulators with the oracle vision, it is
impractical and inconvenient in real-world applications because the user must
first locate the object and take a photo before demanding the agent to find it. 2)
Better performances on averaging both seen and unseen objects. Under
equal amounts of training episodes, our method achieves better performance on
seen objects and comparable performance on unseen objects. Thus our setting
is an averagely better choice considering both seen and unseen objects.

4.4 The Ablations on the Buffer Length

In order to explore the optimal hyper-parameters for the best performance, we
choose the A3C† baseline to evaluate the impact of different buffer length k, as
illustrated in Fig. 3. Note that these ablations are conducted in the validation
set. When the buffer length is 0, the GMAN† degenerates into the substitute
method without the environmental meta-discriminator (EMD) module (i.e. line
5 of Tab. 2 in main text). The impacts of the buffer length on SR, SPL and DTS
are basically same. For seen objects, the buffer length generally has a weak effect
on SR, SPL and DTS metrics since the blue lines change steadily. However, for
unseen objects, the impact of the buffer length is more obvious with the orange
lines fluctuate. The navigation performances on unseen objects in SR, SPL and
DTS metrics all indicate the same trend (getting better gradually and then
getting worse with the buffer length k growing). We infer that as the buffer
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Table 5. Comparisons with the related works for navigation in seen environments on
AI2THOR simulator.

Method
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Random 6.70 0.17 3.58 0.42 4.01 0.03 1.57 0.02 6.37 0.25 3.63 0.30 3.98 0.06 1.56 0.04

A3C 20.47 0.93 10.20 0.62 6.60 0.10 1.32 0.01 71.17 0.42 43.65 0.56 7.77 0.16 0.67 0.01

SP [15] 21.13 0.25 10.53 0.05 6.93 0.53 1.25 0.11 72.50 0.92 44.32 0.76 8.10 0.42 0.66 0.01

SAVN [12] 15.17 1.10 5.35 0.51 7.84 0.82 1.38 0.04 80.17 0.38 41.83 0.05 9.76 0.04 0.48 0.01

EOTP [7] 14.83 0.95 5.25 0.55 7.71 0.68 1.39 0.05 80.83 0.97 42.17 0.56 9.93 0.26 0.47 0.01

GMAN (ours) 29.63 0.88 16.13 0.41 7.70 0.36 1.23 0.02 80.20 0.70 42.25 0.11 9.77 0.16 0.47 0.01

A3C† 34.37 1.37 19.69 0.74 10.02 0.46 1.23 0.05 74.53 0.21 48.24 0.13 7.42 0.05 0.68 0.01

SP† 37.70 1.01 20.36 0.41 10.69 0.70 1.16 0.03 77.83 0.61 48.57 0.45 7.75 0.56 0.69 0.01

SAVN† 41.87 0.38 21.17 0.82 15.46 0.18 1.08 0.02 81.20 1.73 43.16 0.76 12.85 0.11 0.53 0.02

EOTP† 38.17 0.40 19.71 0.32 11.80 0.64 1.13 0.02 83.00 0.40 51.44 0.23 8.86 0.06 0.48 0.01

GMAN† (ours) 48.87 0.38 25.08 0.81 14.31 0.19 0.96 0.02 83.57 0.21 54.26 0.90 9.18 0.36 0.51 0.01

length increases, the batch size for optimizing the discriminator in EMD will
increase, which causes the discriminator to capture more general environment
information without overfitting to a small amount of observations. However, a
large buffer length will make it difficult to accumulate enough observations to
activate the inner-loop. This will make the inner-loop unable to optimize the
feature generator (FG) and the policy.

The EPA reflects the efficiency of navigation. Under the same SR, the lower
EPA indicates the higher navigation efficiency. For seen objects, the change trend
of EPA is consistent with that of SR, which indicates that the buffer length
has little effect on the efficiency of seen object navigation. However, for unseen
objects, when the buffer length is set to 4-20, as the buffer length increases, the
performance increases in the SR while decreases in EPA, which indicates that
the navigation efficiency is increasing during this period. We infer that as the
buffer length increases, a wiser EMD (as described above) will be obtained. A
wiser EMD will adapt the FG to synthesize more accurate features of the target
object, thereby improving the efficiency of unseen object navigation. Besides,
when the buffer length is larger than 20, the performance shows a downward
trend.

Therefore, selecting a suitable buffer length for SR, SPL, DTS and EPA is
actually a trade-off between a wiser EMD and more optimization for FG and
policy. Based on the above experimental results and analysis in the validation
set, we set the buffer length as k = 20.

4.5 Comparisons on Seen Environments

In the main paper, we report the experimental results on two cases: 1) test
on unseen objects in unseen environments; 2) test on seen objects in unseen
environments. As shown in Tab. 5 and Tab. 6, there are more experimental
results on other cases: 3) test on unseen objects in seen environments; 4) test
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Table 6. Comparisons with the related works for navigation in seen environments on
RoboTHOR simulator.

Method
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Random 2.27 0.35 1.07 0.14 6.43 0.17 2.56 0.04 2.47 0.32 1.11 0.12 6.52 0.13 2.44 0.02

A3C 13.30 1.91 8.18 1.86 7.04 0.51 2.53 0.05 32.33 0.67 20.05 2.31 8.17 0.08 2.16 0.01

SP [15] 12.03 0.76 6.15 0.30 7.30 0.12 2.53 0.02 33.37 0.50 20.18 0.41 8.08 0.02 2.02 0.04

SAVN [12] 12.43 0.45 7.54 0.40 8.40 0.42 2.43 0.06 50.37 0.25 29.57 0.47 9.35 0.05 1.64 0.05

EOTP [7] 12.10 0.26 7.44 0.26 8.26 0.20 2.49 0.10 50.83 0.67 29.77 0.25 9.61 0.24 1.60 0.01

GMAN (ours) 13.87 0.23 7.70 0.26 8.67 0.47 2.30 0.05 50.27 0.25 29.43 0.54 9.47 0.15 1.63 0.02

A3C† 15.73 0.40 10.62 0.32 7.64 0.05 2.48 0.01 32.73 0.72 22.77 0.11 8.32 0.10 2.18 0.01

SP† 17.07 0.75 11.95 0.87 7.91 0.26 2.25 0.20 35.07 0.72 24.10 0.52 9.15 0.17 1.96 0.06

SAVN† 29.80 1.25 15.83 0.81 10.24 0.08 2.04 0.06 54.13 0.64 31.60 0.84 12.22 0.16 1.50 0.01

EOTP† 28.83 0.75 15.24 0.45 10.15 0.13 2.08 0.06 53.50 1.17 31.02 0.51 12.07 0.47 1.53 0.04

GMAN† (ours) 32.10 0.30 18.21 0.09 10.32 0.01 1.93 0.02 53.93 0.25 36.78 0.28 8.67 0.12 1.61 0.05

on seen objects in seen environments. It should be noticed that the 4th case
reflects the performance on the training data, which has little correlation with
the model’s generalization performance since there may be over-fitting problems.
Therefore, we just list the results here and do not compare with this case.

For the 3rd case navigating to unseen objects in seen environments, both
GMAN and GMAN† achieve better performance compared with the related
work. Notably, the GMAN† outperforms the state-of-the-art by 7.00% in SR,
3.91% in SPL and -0.12m in DTS within the AI2THOR simulator and 2.30%
in SR, 2.38% in SPL and -0.11m within the RoboTHOR simulator. The experi-
mental results indicate that our method is still better than the related works for
navigating to unseen objects in seen environments.

Additionally, we notice that the GMAN performs better in the 3rd case (un-
seen objects in seen environments) than the 1st case (unseen objects in unseen
environments). This difference demonstrates that the familiar (seen) environ-
ments can bring more improvements, which also supports our motivation that
the environment background is important for navigating to unseen objects.

4.6 Comparisons with Other Navigation Methods

There are several other related works [4,1] for object navigation. These works
achieve satisfactory performance on seen object navigation by applying pre-
trained visual modules such as object detection or instance segmentation to con-
struct object relation graphs or semantic maps. These methods are inapplicable
to unseen objects since unseen object detection or unseen instance segmentation
is not supported . For a fair comparison with these methods, we first consider
modifying them by adding attribute detection or attribute segmentation. How-
ever, unlike the object detection or instance segmentation where a region or a
pixel in an image normally has a unique object or instance label, the region or
pixel may have a variety of attribute labels because an object or instance has
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Table 7. Comparisons with the relation-based method (e.g. ORG) and the map-based
method (e.g. SemExp) in AI2THOR.

Settings
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

ORG [4] 10.60 0.43 4.04 0.22 17.29 0.58 1.14 0.02 65.50 0.71 43.53 0.88 8.06 0.40 0.62 0.01

SemExp [1] 9.60 0.52 3.62 0.48 15.18 0.47 1.16 0.02 68.70 0.47 48.67 0.42 7.80 0.40 0.61 0.03

GMAN† (ours) 48.83 0.60 25.09 0.37 10.04 0.09 0.93 0.01 57.80 0.78 28.41 0.66 14.12 0.15 0.91 0.03

A
3C

†
G

M
A

N
†

Stove Burner Plate Coffee MachineDesk Lamp

Fig. 4. Visualization of unseen object navigation in AI2THOR. We illustrate the tra-
jectory of the agent, where the black arrows represent rotation, the yellow arrows
represent the navigation start and the red arrows represent the navigation end.

various attributes. As a result, it is impossible to annotate the ground truth of
attribute detection or segmentation in an image. Thus, it is hard to realize the
attribute detection or attribute segmentation. Therefore, we choose to modify
these methods by adding the PS module, which contains the information of the
semantic similarity between the target object.

Tab. 7 compares our GMAN† with the relation-based and the map-based
methods under the A3C† framework (i.e. all models are equipped with the PS
module). These related methods benefit from robust object detection or seg-
mentation modules and achieve outstanding performance on seen objects (note
that our GMAN† only utilizes egocentric images without detection or segmen-
tation inputs). However, their performances on unseen objects are really poor.
We infer that these related methods depend excessively on those visual back-
bones (e.g. detection or segmentation modules) which offer explicit information
about whether the target appears, while ignore the semantic similarity informa-
tion provided by the PS module. As a result, these methods perform poorly on
unseen objects which the detection and segmentation module cannot observe.
Conversely, our method generalizes well from seen objects to unseen objects and
significantly outperforms these methods in unseen object navigation.
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A3C† GMAN†
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Fig. 5. Visualization of unseen object navigation in RoboTHOR.

5 Case Studies

5.1 Comparisons with the Baseline

As shown in the Fig. 4 and Fig. 5, we visualize the trajectory of the agent for un-
seen object navigation in AI2THOR and RoboTHOR. We consider two models
A3C† and GMAN† for comparisons. Both agents are initially placed at the same
position and given the same target object. The baseline A3C† model combines
the A3C policy with the PS module. Based on A3C†, our GMAN† is additionally
equipped with the feature generator (FG) and the environmental meta-learner
(EMD). It can be observed that without generated features of unseen objects,
the baseline agent executes straightforward or meaningless actions such as sim-
ply moving ahead, frequently spinning around and backing. However, our agent
equipped with the FG and the EMD utilizes the generated feature as a more
clear goal and performs efficient actions to reach the target object.
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(e) Faucet

(c) Pot

(f) Plate(d) Pot

(b) Arm Chair(a) Toilet Paper

Fig. 6. Visualization of error cases. We illustrate six error cases for unseen object
navigation in both AI2THOR and RoboTHOR.

5.2 Error Analysis

As shown in Fig. 6, we also visualize several error cases (for unseen objects) and
analyze the failure reasons to discover that the following situations may confuse
the agent:

1) Small objects. In the unseen environments, the features of small objects
are less obvious, making them difficult to be observed, e.g. the toilet paper in
the bathroom (Fig. 6(a)), the faucet in the kitchen (Fig. 6(e)) or the pot in the
apartment (Fig. 6(c)).

2) The semantic embeddings of unseen objects are similar to those of seen
objects. Our agent is only trained with seen objects and tries to utilize the
learned “knowledge” on the unseen objects. Therefore, if an unseen object has
some features highly similar to a seen object, the agent may intend to find this
“familiar” seen object. In Fig. 6(b), given the unseen target arm chair, the agent
wrongly finds the chair due to their similar semantic embeddings.

3) Similar functional objects. Since our method relies on semantic embed-
dings (e.g. attribute vectors) to adaptively generate the object features, it is
challenging for our agent to distinguish those similar functional (e.g. similar
attribute vector) objects. For example, the cooking tools usually have similar
attributes like pans, bowls, plates and pots, which may distract the agent. Both
Fig. 6(d) and Fig. 6(f) show that our agent navigates to the bowl while the
targets are respectively the pot and plate.

In the above error cases, the informative semantic embeddings are essential
to navigate to the unseen objects. Therefore, in future work, we will annotate
more types of attributes to provide more discriminative and informative semantic
embeddings for generating the object features.



Generative Meta-Adversarial Network for Unseen Object Navigation 13

References

1. Chaplot, D.S., Gandhi, D., Gupta, A., Salakhutdinov, R.R.: Object goal navigation
using goal-oriented semantic exploration. In: Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

2. Chaplot, D.S., Salakhutdinov, R., Gupta, A., Gupta, S.: Neural topological SLAM
for visual navigation. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. pp. 12872–
12881 (2020)

3. Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., Mottaghi, R., Sal-
vador, J., Schwenk, D., VanderBilt, E., Wallingford, M., Weihs, L., Yatskar, M.,
Farhadi, A.: Robothor: An open simulation-to-real embodied AI platform. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. pp. 3161–3171 (2020)

4. Du, H., Yu, X., Zheng, L.: Learning object relation graph and tentative policy for
visual navigation. In: Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part VII. pp. 19–34 (2020)

5. Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,
S.V.N., Garnett, R. (eds.): Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA (2017)

6. Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., Farhadi, A.: AI2-THOR:
an interactive 3d environment for visual AI. CoRR abs/1712.05474 (2017)

7. Mayo, B., Hazan, T., Tal, A.: Visual navigation with spatial attention. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. pp. 16898–16907 (2021)

8. Narayan, S., Gupta, A., Khan, F.S., Snoek, C.G.M., Shao, L.: Latent embedding
feedback and discriminative features for zero-shot classification. In: Computer Vi-
sion - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXII. pp. 479–495 (2020)

9. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing. pp. 722–729. IEEE (2008)

10. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL. pp. 1532–1543 (2014)

11. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.:
Caltech-ucsd birds 200 (2010)

12. Wortsman, M., Ehsani, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Learning
to learn how to learn: Self-adaptive visual navigation using meta-learning. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019. pp. 6750–6759 (2019)

13. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-
shot learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. pp. 5542–5551
(2018)

14. Xian, Y., Sharma, S., Schiele, B., Akata, Z.: F-VAEGAN-D2: A feature generating
framework for any-shot learning. In: IEEE Conference on Computer Vision and



14 S. Zhang et al.

Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp.
10275–10284 (2019)

15. Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic navi-
gation using scene priors. In: 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

16. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.:
Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In: 2017 IEEE International Conference on Robotics and Automation, ICRA 2017,
Singapore, Singapore, May 29 - June 3, 2017. pp. 3357–3364 (2017)


	Generative Meta-Adversarial Network for Unseen Object Navigation —–Supplementary Materials——

