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Abstract. Object navigation is a task to let the agent navigate to a tar-
get object. Prevailing works attempt to expand navigation ability in new
environments and achieve reasonable performance on the seen object cat-
egories that have been observed in training environments. However, this
setting is somewhat limited in real world scenario, where navigating to
unseen object categories is generally unavoidable. In this paper, we focus
on the problem of navigating to unseen objects in new environments only
based on limited training knowledge. Same as the common ObjectNav
tasks, our agent still gets the egocentric observation and target object
category as the input and does not require any extra inputs. Our solution
is to let the agent “imagine” the unseen object by synthesizing features
of the target object. We propose a generative meta-adversarial network
(GMAN), which is mainly composed of a feature generator and an en-
vironmental meta discriminator, aiming to generate features for unseen
objects and new environments in two steps. The former generates the ini-
tial features of the unseen objects based on the semantic embedding of
the object category. The latter enables the generator to further learn the
background characteristics of the new environment, progressively adapt-
ing the generated features to approximate the real features of the target
object. The adapted features serve as a more specific representation of
the target to guide the agent. Moreover, to fast update the generator
with a few observations, the entire adversarial framework is learned in
the gradient-based meta-learning manner. The experimental results on
AI2THOR and RoboTHOR simulators demonstrate the effectiveness of
the proposed method in navigating to unseen object categories. The code
is available at https://github.com/sx-zhang/GMAN.git.
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1 Introduction

Visual object navigation is a task that requires an agent to navigate to the target
object depending on the visual environment information. Recent works are typi-
cally trained by reinforcement learning (RL) to predict actions in real-time, with
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Fig. 1. Overview. We focus on navigating to the unseen objects in unseen environ-
ments. Given an unseen object category, our method is to firstly generate the initial
features, and then adapt the generator to be compatible with the environment. The
adapted features serve as a more specific goal to guide the agent.

the input of observed visual information and target object embedding. Existing
object navigation methods achieve reasonable performance on seen objects (ob-
served in training environments) [5,60,56,62]. However, these seen objects make
up only a subset of all real world objects. As illustrated in Fig. 1, imagine a
situation where the agent is trained to find several indoor furnitures (e.g. chair,
sofa, shelf), when adapting to more practical applications, it’s unavoidable that
the user may require it to find the unseen objects (e.g. spray bottle). Since the
actions of the agent are mainly driven by the correlation between visual represen-
tation and target semantic embedding, while the unseen object categories have
not been trained to correlate with such visual information. Thus, the navigation
ability of the agent to unseen objects is significantly limited.

Now that the agent is unfamiliar with the unseen target, a great challenge
here is how to associate the unseen target with the limited “knowledge” learned
from training. Some previous works rely on the helpful visual semantic informa-
tion (e.g. object detection or instance segmentation) to establish semantic SLAM
[7,5] or relation knowledge graph [62,10]. These methods may be unsuitable for
unseen object navigation since unseen object detection or segmentation is not
supported in those works. For other works focusing on visual embedding [35] or
policy learning [56,33], although they can process the unseen objects (similar
to seen objects) by using the same pipelines as seen objects, the performance
is still limited, for that the visual representation and semantic embedding of
unseen objects are neither modeled nor correlated during training. Therefore,
an intuitive idea is to introduce some priors about the unseen targets, e.g. the
object relationships [60] (involving seen and unseen objects) from the external
dataset. Such way may be helpful in guiding agent to get close to unseen objects
according to the relationships with other seen objects. However, only getting
close may not be capable of locating the precise location of the target, since the
visual characteristics of unseen objects are essentially unknown to the agent (i.e.
the agent does not know what unseen objects look like).



Generative Meta-Adversarial Network for Unseen Object Navigation 3

In order to precisely locate the unseen objects, the agent may be required
to “imagine” what the unseen objects look like. In some generative methods
[13,25,58,59], the model learns the mapping from the semantic embedding to the
visual features on seen object categories. Then given the semantic embedding
of the unseen object, the model could “imagine” its visual features by analogy.
Those works focus on generating the representations of the object itself, which
are effective in static tasks (e.g. object recognition and fine-grained classification)
that do not require many environment descriptions. However, in the navigation
task, the visual observations typically contain objects and background. In this
case, only generating objects features is not enough, and predicting precise nav-
igation actions also requires considering the current environmental background.

In general, the key challenge of unseen object navigation is how to generate
the unseen object representations the current working environment. In particu-
lar, the visual characteristics of both objects and environment (foreground and
background) are critical to the navigation. Motivated by the challenges of gen-
erating comprehensive representations of unseen objects in new environments,
we investigate our researches mainly from the following two aspects: 1) gener-
ating initial visual features of the unseen object from its semantic embedding;
2) proposing the generative adversarial learning model within the meta-learning
structure to fast adapt the generator to the current working environment.

In this paper, we propose a generative meta-adversarial network (GMAN)
for unseen object navigation, which consists of a feature generator (FG) and
an environmental meta discriminator (EMD). The FG is pre-trained in advance
to generate the unseen object features by learning the mapping from semantic
embedding to the visual features on seen objects. Furthermore, to obtain the
background information of current working environment, the EMD is proposed
to adapt the FG to fit the environment, with an adversarial loss between the real-
time observation features and generated object features. Significantly, a gradient-
based meta-learning method is implemented to rapidly adapt the FG based on
a few observations, which is shown as Fig. 1, where the adaptation of the FG
the current environment can be regarded as the inner-loop, and maximizing
the navigation reward serves as the outer-loop. The experimental results on
AI2THOR [29] and RoboTHOR [8] simulators demonstrate the effectiveness of
our GMAN on unseen object navigation.

2 Related Work

Visual object navigation. Goal-driven visual navigation can be categorized
[2] into PointGoal [19,6,50,55], AreaGoal [30,57] and ObjectGoal. Several Object-
Goal works set an image as the goal [7,49,63], which contains more environment
information, while our work sets the object category as the target (following most
works) and our agent does not know about the unseen environments at all. Pre-
vious map-based methods typically construct a map in advance or in real-time
[26,11,49,53]. Recently, learning-based methods are mainly composed of visual
embedding and policy learning. The basic visual representation generally utilizes
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the ResNet [21]. [60] extracts a knowledge graph from external dataset and uses
GCN [28] to embed the egocentric view and the knowledge graph. [35] proposes
the attention probability module. Some works use more visual semantic informa-
tion (e.g. object detection, instance segmentation) to establish semantic SLAM
[5], spatial layout [39], prior knowledge graph [62,61] and scene memory[12]. [5]
projects the segmentation of first-person view into a top-down semantic map.
[62,61] utilize object detection to construct prior objects relationships. [39] takes
both semantic segmentation and object detection to jointly train models on real
and simulated data to realize sim-to-real transfer. [12] proposes a memory-based
transformer policy to embed the RGB-D observation and segmentation. As to
the policy learning, [56] adopts meta-reinforcement learning so that the agent
can dynamically adapt to an unseen scene. These works mainly focus on nav-
igating to seen objects in the unseen environments, while our work focuses on
unseen objects in the unseen environments. So far, there are few researches on
navigating to unseen objects. [60] first proposes the unseen objects (namely novel
objects) and builds a knowledge graph (from the external dataset) which pro-
vides the spatial and visual relationships between seen and unseen objects. Only
the seen objects are used for training. During testing, the agent can infer the
location of unseen objects according to the prior spatial relationships with seen
objects. [61] employs similar settings. These two works both provide the strong
prior knowledge to correlate the unseen objects with seen objects. Our work
transfers the knowledge (i.e. mapping the semantic embedding to the visual fea-
tures and navigating with the generated features) from seen to unseen objects
without such strong priors. Therefore, our task is more general and challenging.

Feature generation. Feature generation for unseen objects has been widely
studied in zero-shot recognition tasks [23,1,17,16,47,46,58]. Early works [23,31]
learn attribute classifiers to associate seen and unseen categories. Some works
[1,16,47] learn matching functions between visual representation and semantic
representation. Recently, generative adversarial network [18] has been used in
the generalized zero-shot learning (GZSL) to synthesize unseen category features
to train GZSL classifiers [13,32,58,59]. Our idea of generating features for the
unseen object based on its semantic embedding is motivated by [58], while we
focus on the navigation task more challenging than the static classification task.

Meta-learning. Meta-learning (learning to learn) adapts to new tasks effi-
ciently through experience learned from multiple tasks. The previous methods
are as follows: 1) gradient-based methods [42,22,45,15,3,4,14] optimize through
gradient updates. 2) metric-based methods [51,52,54] adapt to new tasks through
significant distance metrics. 3) memory-based methods [37,40,43,48] store the
past experience as memory to learn efficiently. [14] proposes a model-agnostic al-
gorithm MAML, which learns the parameters initialization that can perform well
in new tasks within a few gradients updates. Recently, some object navigation
works use the gradient-based meta-learning for adapting in new scenes [56,35]
and multi-task [33]. Our work also adopts the gradient-based meta-learning,
while we aim at fast adaptation in adversarial learning and effectively initial
parameters learning for both feature generator and policy.
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Fig. 2. Framework. Our generative meta-adversarial network (GMAN) mainly con-
sists of a feature generator (FG) and an environmental meta discriminator (EMD). The
FG synthesizes initial features of the target, then the EMD adversarially optimizes the
FG to incorporate environmental features into object features. During navigation, the
observation embedding st, generated features xt and the action at are continually saved
into a buffer Ψ , which is used to fast adapt the FG with meta-learning.

3 Unseen Object Navigation

3.1 Task Definition

The prevailing object navigation task requires the agent to navigate to the seen
target objects in new environments. In our work, the target categories in evalu-
ation involve both seen and unseen object classes.

Formally, let Ys = {ys1, . . . , ysM} denote the set of M seen target object
classes. Let Yu = {yu1 , . . . , yuN} denote the set of N unseen classes. These two
sets have no intersection. Considering a set of scenes, in each navigation episode,
the agent is initialized at a random location p in an environment e ∈ Env given
the target object y (y ∈ Ys ∪ Yu). The agent captures an egocentric RGB
image (embedded as st) at the timestamp t and is trained to learn a policy
π(at|st, y) that predicts an action at ∈ A. At each time t, the agent takes action
at until executing the termination action. The successful episode is defined
as the situation, where the agent finally gets close to the target object within a
threshold of distance and the target is visible in agent’s egocentric view.

Note that there are two “unseen” concepts in our task: 1) unseen scene (en-
vironment); 2) unseen object class. In the training stage, the agent is trained
with seen object classes in the seen environments, while during the evaluation
stage, the agent is tested in the unseen scenes given the target category which
may refer to a seen or unseen object.
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3.2 A3C Baseline Model

The conventional object navigation methods [63,60,56,35] employ the Asyn-
chronous Advantage Actor-Critic (A3C) [38] model as a baseline to learn the
policy π(at|st, y) at each timestamp. The inputs of A3C model are the current
egocentric RGB image embedding (typically obtained with ResNet18 [21] pre-
trained on ImageNet [9]) and the semantic embedding of the target object. The
embeddings are then input to a GRU or LSTM to predict the action and the
value. Generally, the agent is trained to minimize the supervised actor-critic
navigation loss Lnav [63,36,56], which is used to optimize the whole model. In
this paper, our GMAN follows the framework of the A3C model and additionally
synthesizes the target object features to guide the unseen object navigation.

4 Generative Meta-Adversarial Network

4.1 Feature Generator

The Generative Meta-Adversarial Network (GMAN) is illustrated in Fig. 2. The
feature generator (FG) module contains a generator G that synthesizes features
of the unseen objects based on their semantic embedding and a random noise.
The generator is formulated as G (SE (y) , z), where y ∈ Ys ∪ Yu is the target
category, z is a random Gaussian noise and SE (·) is the embedding module that
converts the object category into a class-specific semantic vector. The generator
is pre-trained with the datasetDtrain = {(xs, SE (ys)) |xs ∈ X s , ys ∈ Ys}, where
X s is the set of seen object features and Ys is the seen object labels. We collect
the dataset Dtrain in the training scenes of the AI2THOR and RoboTHOR
simulators, where the agent collects several egocentric RGB images for each
object ys ∈ Ys . The images are then extracted by ResNet18 pre-trained on
ImageNet to obtain object feature xs ∈ X s . The pre-training process teaches
the generator to learn the mapping from the semantic embedding to the visual
features. Therefore, the pre-trained generator could synthesize the unseen objects
features based on their semantic embedding. This pre-training process is similar
with [58] and detailed in supplements.

4.2 Environmental Meta Discriminator

The pre-trained G initially generates the class-specific object features according
to semantic embedding. However, such features imply a general representation of
all seen environments, rather than the current specific unseen environment. As
shown in Fig. 3, the initial generated features are far from the real features of the
target (different in different scenes). These initial features are not informative to
guide the agent due to the lack of current environment information. Therefore, we
propose the environmental meta discriminator (EMD) to optimize the generator
G to learn the environment information during navigation. The EMD consists
of a navigation buffer Ψ = [Ψs, Ψx, Ψa] and a discriminator D, where Ψs records
the embedded observation st during navigation, Ψx records the generated target
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Fig. 3. The T-SNE [34] visualization of initial features and adapted features.
The orange and blue colors mean different environments. The light colored circles
represent the environment features (sampled by the random agent in the egocentric
view). Given an unseen target, the squares represent the real features (sampled from 5
different views around the target object). The arrows represent the process of features
adaptation, where the initial features are generated by the initial generator, and the
adapted features are generated by the optimized generator that is adapted by our
environmental meta discriminator.

features xt = G (SE (y) , z) and Ψa records the action at output by the policy π.
The capacity of Ψs, Ψs and Ψs are all set to k. Set that θ denotes the parameters
of the pre-trained generator G, ω denotes the parameters of the discriminator
D and ϕ denotes the remaining parameters of our model.

The generator G and discriminator D are a pair of adversarial learners and
trained in a self-supervised way. We adopt the classical WGAN [20] to optimizeG
and D. The D aims to accurately distinguish the embedded observation features
and the generated features, which is optimized by maximizing the following

LD = E[D(s)]− E[D(x)]− λE[(∥∇x̃D(x̃)∥2 − 1)2] (1)

where s ∈ Ψs, x ∈ Ψx, λ is the penalty coefficient, x̃ = εs + (1− ε)x with
ε ∈ U (0 , 1 ), and the E (·) represents the mathematical expectation. The gener-
ator tries to generate realistic object features that are close to the environment
features. The optimization objective of generator is to minimize the following

LG = −E[D (x )] (2)

As illustrated in Fig. 3, the adversarial learning (see the arrows) narrows the
gap between the generated features and the real features by reducing the distance
between the generated features and the environment features. The adversarial
learning makes the generator capture the feature distributions of current envi-
ronment, thus helping generate more informative features of the unseen objects.

Furthermore, since the navigation trajectory is limited and the navigation
process is dynamic compared to various static images in classification tasks
[58,41], a fast adaptation of the generator, with reference to only a few observa-
tions, is also necessary to be considered. The MAML [14] provides an algorithm
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Algorithm 1 The training of our GMAN.

Input: Pre-trained parameters θ. Randomly initial parameters ω and ϕ. Buffer Ψ =
[Ψs, Ψx, Ψa]. The buffer length k. The learning rate α1, α2, β. The distribution over
training tasks p(T ).

1: while not converged do
2: Sample batch of tasks τi ∼ p(T )
3: for all τi do
4: θi ← θ, ϕi ← ϕ, t← 0
5: while termination action is not issued do
6: Obtain the observation embedding st
7: Generate target features xt ← Gθi

8: Take action at from πθi,ω,ϕi

9: t← t+ 1
10: if t is not divisible by k then
11: Update Ψs by Ψs ∪ {st}
12: Update Ψx by Ψx ∪ {xt}
13: Update Ψa by Ψa ∪ {at}
14: if t is divisible by k then
15: Calculate LD with Ψs, Ψx (Eq. 1)
16: ω ← ω + α1∇ωLD(ω, θi)
17: Calculate Lad with Ψx, Ψa (Eq. 3)
18: θi ← θi − α2∇θiLad(ω, θi, ϕi)
19: ϕi ← ϕi − α2∇ϕiLad(ω, θi, ϕi)
20: Empty Ψs, Ψx and Ψa

21: θ ← θ − β
∑

τi∼p(T )∇θLnav(ω, θi, ϕi)

22: ϕ← ϕ− β
∑

τi∼p(T )∇ϕLnav(ω, θi, ϕi)

Output: θ, ω, ϕ

to find the optimal initial parameters, which could fit the sub-tasks within only
a small number of adaptation steps. Inspired by MAML, we introduce the meta-
learning into the adversarial learning. The MAML and its variants consist of
an inner-loop and an outer-loop. The inner-loop updates the initial parameters
through a few gradient steps to achieve great performance on a specific task. The
outer-loop is to minimize the total loss on all tasks. The inner-loop is executed in
both training and inference, while the outer-loop is only conducted in training.

In our case, we regard each episode in navigation as a new task. In the inner-
loop, we expect to obtain a well-adapted generator and a wise policy which takes
the generated features as the input. Therefore, we propose the adaptation loss
Lad to optimize the generator and the policy by minimizing the following

Lad = −E[D (x ) · ∥a∥] (3)

where a ∈ Ψa represents the action output by the policy function π. Each di-
mension of a ∈ R1×6 denotes the probability of each action. The adaptation loss
Lad is based on LG (Eq. 2) with additional optimization to the policy function
π rather than only to the generator. The intuition behind multiplying −D (x )
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and ∥a∥ is to encourage those policies whose decisions are made based on more
realistic features (i.e. −D (x) is lower). When calculating the gradient ∇ϕLad for
the policy (line 19 in Algorithm 1), −D (x) is regarded as the weight of∇ϕE [∥a∥]
(i.e. the policy with more realistic features will have a lower loss). Considering
p(T ) as the distribution of training episodes, in every training sample τi ∼ p(T ),
the generator parameters and policy parameters are firstly optimized by adap-
tation loss Lad and updated to θi and ϕi. Then the outer-loop minimizes the
total loss over all episodes. The training objective of the outer-loop is given by

min
θ,ϕ

∑
τi∼p(T )

Lnav (ω, θi, ϕi) (4)

where Lnav is the navigation loss. Algorithm 1 summarizes the details of our
method for training. Note that the D (with parameter ω) is optimized over all
training episodes and the G is optimized in each episode with only a few itera-
tions different from many iterations in prevailing works [58,41,59]. The inference
process is similar to the training, except that the line 21 and 22 are removed.

5 Experiments

5.1 Experiment Setup

Datasets. We employ two editable simulators AI2THOR [29] and RoboTHOR
[8], which are detailed in supplements. To guarantee that unseen objects do not
appear in the seen (training) scenes, we edit the simulators to remove the un-
seen objects from the training scenes. We choose 24 types seen objects and 12
types unseen objects in AI2THOR, and 10 types seen objects and 4 types un-
seen objects in RoboTHOR. The split of the seen and unseen object categories
is detailed in supplements. For both simulators, each validation set is used to
select the best model, which is then respectively evaluated for 1000 episodes on
seen and unseen objects. All experimental results are repeated three times and
presented with the mean and standard deviation (in small gray font). Addition-
ally, although our method focuses on the navigation task of unseen objects, the
evaluations for seen objects (typically in the conventional navigation task) are
also included.
Semantic Embedding. Semantic embedding serves as a bridge that trans-
fers the knowledge of visual feature generation from seen to unseen objects.
Therefore, selecting an informative semantic embedding for object categories is
critical for generating discriminative object features. Previous object navigation
works [56,60,10] typically utilize the Glove [44] or FastText [24] as the semantic
embedding for the object category, while zero-shot learning works [58,41] gener-
ally employ the attribute vector as the semantic embedding. Each dimension of
the attribute vector represents the probability of containing such an attribute.
We evaluate two semantic embeddings: Glove and attribute vector (detailed in
the supplements), and find that the attribute vector achieves better navigation
performance. Therefore, we adopt the attribute vector as semantic embedding.
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Table 1. The impact of different rewards. We compare the effect of the navigation re-
ward Rn, distance reward Rn+d, similarity reward Rn+s and the mixed reward Rn+d+s.

Reward
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Rn 14.50 1.15 6.95 0.52 5.65 0.74 1.24 0.02 27.03 0.72 12.46 0.66 7.88 0.08 1.20 0.01

Rn+d 18.430.50 8.23 0.11 5.92 0.61 1.20 0.04 30.83 0.85 14.14 0.56 9.08 0.25 1.11 0.02

Rn+s 21.43 0.75 9.60 0.38 6.51 0.45 1.16 0.01 29.53 0.35 13.14 0.61 9.24 0.29 1.11 0.01

Rn+d+s 21.50 1.23 9.36 0.66 8.56 0.15 1.09 0.01 31.37 1.00 14.19 0.30 9.36 0.18 1.06 0.01

Every input object category is converted into an attribute vector through the
semantic embedding module. Note that such converting process is pre-defined
and does not require the user’s involvement. More details of the attribute vector
are also introduced in the supplements.

Rewards. We experiment with the following four rewards to train the agent.

Navigation reward Rn. The previous works [62,56,60,35,10] typically em-
ploy the navigation reward Rn that penalizes each step with −0.01 and rewards
agent for successfully finding the target object with 5.

Distance reward Rn+d. The distance reward Rn+d is based on the Rn

with an additional reward rd = max (0.1 · (Dis (st, y)−Dis (st+1, y)) , 0) for
each step, where Dis (st, y) computes the Euclidean distance from state st to
target y, and st+1 is the transferred state after performing the action at.

Similarity reward Rn+s. To enhance the transfer ability from seen to un-
seen objects, the similarity reward Rn+s is designed to add an additional reward
rs to Rn, whenever the object (e.g. orange) found by the agent at last is simi-
lar to the target (e.g. tangerine) in some semantic aspects. The rs is defined as
rs = 0.1Sjaccard (SE (y) , SE (V (sdone))), where V (sdone) represents the visible
object categories when the agent executes the action Done, SE (·) represents
the semantic embedding (i.e. the attribute vector) of an object, and Sjaccard (·)
computes the Jaccard similarity. When V (sdone) contains multiple objects, we
only consider the one that maximizes the Sjaccard.

Mixed reward Rn+d+s. We also combine the distance reward Rn+d and the
similarity reward Rn+s for the experiment.

Evaluation metrics. We evaluate models using Success Rate (SR), Success
weighted by Path Length (SPL), Exploration Area (EPA) and Distance To Goal
in meters (DTS). These metrics are detailed in the supplements and the “Suc-
cess” (i.e. successful episode) is defined in Sec. 3.1. In the following results, ↑
indicates that the larger value is better, while ↓ indicates the opposite.

Implementation details. Following primary recommendation of [60,56,35], the
action set is defined as A = {MoveAhead,RotateLeft,RotateRight, LookUp,
LookDown,Done}. The horizontal rotation angle is set as 45 degrees while the
pitch angle is 30 degrees. The action Done is decided by the agent rather than
the simulator. The generator G and discriminator D are implemented as 2 fully
connected layers. The G following [58,59] has 4096 hidden units, while D is
adjusted to have 1024 hidden units. We train our model using reinforcement
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Table 2. The ablation studies on different components (FG and EMD) with two base-
lines (A3C and A3C†(i.e. A3C with the PS module)).

PS FG EMD
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

21.50 1.23 9.36 0.66 8.56 0.15 1.09 0.01 31.37 1.00 14.19 0.30 9.36 0.18 1.06 0.01

✓ 23.20 1.82 8.87 0.41 8.68 0.03 1.09 0.03 34.20 1.42 15.11 0.72 8.85 0.27 1.06 0.01

✓ ✓ 28.03 0.91 13.02 0.14 8.71 0.52 1.08 0.02 39.30 0.87 15.61 0.14 10.46 0.17 0.98 0.02

✓ 32.70 0.75 20.30 0.38 8.02 0.07 1.17 0.01 48.80 0.17 26.85 0.42 10.09 0.06 1.02 0.01

✓ ✓ 34.20 1.56 19.64 0.24 10.99 0.06 1.13 0.02 50.73 0.38 26.38 1.32 12.03 0.48 0.99 0.01

✓ ✓ ✓ 48.83 0.60 25.09 0.37 10.04 0.09 0.93 0.01 57.80 0.78 28.41 0.66 14.12 0.15 0.91 0.03

Table 3. Comparisons on different EMD variants. “CosSim” replaces the discriminator
with the cosine similarity. “w/o meta” removes the meta-learning from our EMD.

EMD variants
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

CosSim 46.47 0.31 24.20 0.26 14.58 0.28 0.98 0.02 53.63 0.58 24.66 0.56 15.73 1.07 0.92 0.03

w/o meta 41.93 0.80 21.13 0.40 10.73 0.41 1.01 0.01 53.47 0.92 25.68 0.15 13.09 0.21 0.93 0.03

EMD (ours) 48.83 0.60 25.09 0.37 10.04 0.09 0.93 0.01 57.80 0.78 28.41 0.66 14.12 0.15 0.91 0.03

learning with 12 asynchronous workers. The inner-loop is updated by SGD,
while the outer-loop is optimized by Adam [27]. The learning rates (α1, α2, β)
are all set to 10−4. The penalty coefficient is λ = 10. The buffer length is set to
k = 20.

5.2 Methods For Comparison

We compare the following methods: 1) Random: The agent adopts a random
action at each step. 2) A3C: The baseline model described in Sec. 3.2. 3) SP
[60]: The agent navigates using scene priors knowledge graph extracted from
the external dataset. 4) SAVN [56]: The agent minimizes the self-supervised
loss to optimize the policy function with MAML for fast adaptation in unseen
environments. 5) EOTP [35]: The agent is based on SAVN with additional
attention probability module, which encodes semantic and spatial information.

Inspired by the effectiveness of the similarity rewards Rn+s on unseen objects
(discussed in Sec. 5.3), an intuitive idea is that the similarity of the semantic
embedding between the target object SE(y) and the objects appearing in cur-
rent observation SE(V (st)) may be beneficial for navigating to unseen objects.
Therefore, a simple module PS is proposed to take the current egocentric view
as the input and Predicts the Semantic embedding of all contained objects. The
PS is pre-trained using collected images and the semantic embedding ground
truth Ey′∈V (I) (SE (y′)), where V (I) is the set of visible objects in the image
I. The PS is implemented with the ResNet pre-trained on ImageNet. The pre-
training only uses the seen objects in the seen environments. Thus, there is



12 S. Zhang et al.

another experimental group. 6) A3C†: The output of the PS is concatenated
with the semantic embedding of the target object, together input to the LSTM.
The A3C† (the A3C model equipped with the PS) is defined as another baseline.
7) SP†, SAVN†, EOTP†: All original methods are equipped with the PS.

There are other methods [5,10,7,61] for object navigation. However, these
methods require pre-trained visual clues such as object detection or instance
segmentation to construct object relation graphs [10,61] or semantic maps [5,7].
These methods are inapplicable to unseen objects because they require unseen
object detection or segmentation, so that we modify them by fairly adding the PS
module and the mixed reward. The comparisons are detailed in the supplements.

5.3 Evaluation Results

The impact of rewards. We use the A3C baseline to investigate the effect of
rewards Rn, Rn+d, Rn+s and Rn+d+s , as shown in Tab. 1. Compared to the nav-
igation reward Rn, the distance reward Rn+d provides the distance information
of the target. Thus, the Rn+d improves the efficiency of RL training, thereby sig-
nificantly improving the performance on both seen and unseen objects. Since the
similarity reward Rn+s gives additional rewards which encourage the agent to
find semantically similar objects. Thereby Rn+s enhances the transfer of naviga-
tion ability from seen to unseen objects (correlated through semantic embedding)
and achieves more improvement on the unseen objects. Additionally, combining
the advantages of Rn+d and Rn+s, the mixed reward Rn+d+s achieves the best
performance on both seen and unseen objects. As a result, we choose the mixed
reward Rn+d+s to train all models, including our method and the related works.

Ablation studies on different modules. We choose two baselines (A3C
and A3C†) for ablation studies as shown in Tab. 2. Directly using the FG brings
a slight improvement for both two baselines, which demonstrates that directly
employing feature generation methods without considering current environmen-
tal background is not enough for the unseen object navigation task. Compar-
atively, combining FG with EMD gains significant improvement especially on
unseen objects, indicating that the continuous adaptation of the FG to obtain
more environment information is necessary. Furthermore, the baseline A3C† also
significantly outperforms A3C, which shows the effectiveness of the PS module,
further indicating that our semantic embedding of the unseen object is meaning-
ful so that the semantic similarity in the PS module can play its value. Besides,
combining FG, EMD and PS obtains the best performance on both seen and un-
seen objects, again indicating that these modules could complement each other.

Comparisons on some EMD variants. To further explore the optimal
structure of the proposed EMD, based on the GMAN† (line 6 in Tab. 2), some
EMD variants are considered as shown in Tab. 3. The first variant (line 1)
replaces the discriminator D with cosine similarity to calculate the similarity
between the generated features xt and the environment features st. The results
indicate that the cosine similarity does bring some improvements compared with
that of no discriminator (line 5 in Tab. 2), while the improvement is less than
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Table 4. Comparisons with the related works for navigation in unseen environments
on AI2THOR simulator. The “†” indicates the combination with the PS module.

Method
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Random 6.70 1.01 3.58 0.67 4.01 0.03 1.57 0.02 6.23 0.60 3.63 0.30 3.89 0.06 1.53 0.04

A3C 21.50 1.23 9.36 0.66 8.56 0.15 1.09 0.01 31.37 1.00 14.19 0.30 9.36 0.18 1.06 0.01

SP [60] 22.43 1.71 9.60 1.25 7.21 0.35 1.16 0.01 34.00 0.87 13.23 0.87 8.33 0.11 1.13 0.02

SAVN [56] 17.63 0.59 4.69 0.61 9.76 1.74 1.19 0.04 35.87 1.48 13.47 0.58 10.99 0.37 1.02 0.02

EOTP [35] 19.90 0.40 4.36 0.41 11.89 0.07 0.99 0.01 36.97 0.39 14.56 0.32 11.03 0.16 0.98 0.02

GMAN (ours) 28.03 0.91 13.02 0.14 8.71 0.52 1.08 0.02 39.30 0.87 15.61 0.14 10.46 0.17 0.98 0.02

A3C† 32.70 0.75 20.30 0.38 8.02 0.07 1.17 0.01 48.80 0.17 26.85 0.42 10.09 0.06 1.02 0.01

SP† 38.00 0.40 21.77 1.38 8.98 0.45 1.06 0.01 49.40 0.61 26.84 0.49 9.81 0.04 1.02 0.02

SAVN† 41.47 1.26 18.97 0.90 15.64 0.14 1.00 0.01 53.63 0.68 23.31 0.43 16.22 0.07 0.89 0.01

EOTP† 38.57 1.19 15.44 0.25 11.41 0.06 1.03 0.01 52.87 1.19 29.50 0.58 10.34 0.10 0.95 0.02

GMAN† (ours) 48.83 0.60 25.09 0.37 10.04 0.09 0.93 0.01 57.80 0.78 28.41 0.66 14.12 0.15 0.91 0.03

the proposed EMD. Compared to the fixed similarity measurement (cosine dis-
tance), the discriminator D seems to be a better “learnable measurement”. The
second variant without meta-learning (only through adversarial learning) can
also obtain improvements than that of no discriminator (line 5 in Tab. 2), while
is still inferior to our method. The results indicate that meta-learning is indeed
a powerful tool to improve performance.

5.4 Comparisons with the Related Works

The experimental results in AI2THOR and RoboTHOR are shown in Table 4
and 5. The SP attempts to navigate to unseen objects, which is task-related to
our GMAN. Both SAVN and EOTP are structured in MAML-liked reinforce-
ment learning, which is framework-related to our GMAN. However, SAVN and
EOTP focus on seen objects and achieve poor performance on unseen objects.
For a fair comparison, we enhance all related works from two aspects. 1) The
mixed reward. All related works are implemented with the mixed reward that
is conducive to unseen objects. Therefore, the SAVN and EOTP can improve the
navigation ability on unseen objects although the performances are still lower
than the SP. The SP benefits from its object relation graph and outperforms
the A3C, SAVN and EOTP on unseen objects. 2) The PS module. All related
works are equipped with the PS (i.e. under the A3C† baseline), which are de-
noted with the superscript †. Since the PS compares the semantic similarity of
current view and the target object, all methods gain a significant improvement
on navigating to unseen objects. Besides, the MAML-liked methods SAVN† and
EOTP† outperform the SP†, which indicates that the MAML-liked methods get
more benefit from the semantic similarity information.

Comparing our GMAN with the related works on unseen objects, both GMAN
and GMAN† outperform the related works with a large margin. Significantly, un-
der A3C† baseline, the GMAN† outperforms the related works by 7.36% in SR,
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Table 5. Comparisons with the related works for navigation in unseen environments
on RoboTHOR simulator.

Method
Unseen Objects Seen Objects

SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m) SR↑ (%) SPL↑ (%) EPA (%) DTS↓ (m)

Random 2.12 0.91 1.03 0.35 6.53 0.09 2.26 0.02 2.30 0.26 1.11 0.12 6.58 0.10 2.22 0.08

A3C 9.73 0.06 5.06 0.61 7.69 0.08 2.11 0.01 11.33 0.64 5.39 0.33 9.46 0.09 2.18 0.01

SP [60] 11.37 0.76 5.52 0.37 8.76 0.19 2.08 0.05 10.33 0.64 5.03 0.38 9.76 0.52 2.17 0.02

SAVN [56] 11.00 0.35 4.32 0.30 9.86 0.42 1.98 0.02 13.93 0.38 6.02 0.50 10.79 0.48 1.97 0.10

EOTP [35] 11.30 0.62 4.39 0.33 10.56 0.16 1.99 0.01 14.53 0.91 6.25 0.71 11.12 0.17 2.04 0.05

GMAN (ours) 13.27 0.32 5.60 0.35 10.39 0.14 1.96 0.05 15.07 0.15 6.45 0.38 11.06 0.12 2.02 0.05

A3C† 10.87 0.51 7.26 0.38 8.97 0.08 2.17 0.02 17.23 0.06 11.78 0.05 10.49 0.09 2.11 0.01

SP† 12.93 0.93 7.33 0.45 10.82 0.14 2.11 0.01 18.67 0.46 11.89 0.47 11.00 0.12 2.09 0.01

SAVN† 23.97 0.30 13.02 0.80 12.23 0.23 1.73 0.03 31.90 0.70 17.01 0.78 13.45 0.10 1.82 0.01

EOTP† 21.53 0.45 10.38 0.41 14.32 0.03 1.87 0.03 36.43 1.06 18.94 0.75 14.28 0.09 1.81 0.03

GMAN† (ours) 27.67 0.67 14.29 0.37 12.47 0.02 1.68 0.02 37.10 0.61 19.12 0.12 13.65 0.04 1.78 0.02

3.32% in SPL, and -0.07m in DTS in AI2THOR and 3.70% in SR, 1.27% in
SPL, and -0.05m in DTS in RoboTHOR. The results reveal the great advantage
of our GMAN on unseen objects. As for the seen objects, since our GMAN is
based on the MAML-liked methods with a generative module that generates the
features of the target objects, both GMAN and GMAN† can also improve the
performance on seen objects, despite that the improvement is less outstanding
than that on unseen objects. The results indicate that the generated features
bring limited improvements to those well-trained seen objects.

Note that the reported results of SP, SAVN and EOTP is basically consistent
with [56,35] while different from [60]. Because our setting (24 types seen objects
and 12 types unseen objects) has huge difference with [60] (46 types seen objects
and 11 types unseen objects) but is similar to [56,35] (18 types seen objects).

6 Conclusions

In this paper, we propose a generative meta-adversarial network (GMAN) for
unseen object navigation. Our method is composed of a feature generator (FG)
and an environmental meta discriminator (EMD). The FG synthesizes the object
features by learning the mapping from semantic embeddings to features. The
EMD adapts the FG with adversarial learning to let FG learn the background
information of the navigation scene. Besides, meta-learning is introduced to the
adversarial learning for fast adaptation. Experimental results on AI2THOR and
RoboTHOR show the effectiveness of our method on unseen object navigation.
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