Object Manipulation via Visual
Target Localization

Kiana Ehsani! Ali Farhadi? Aniruddha Kembhavil*?> Roozbeh Mottaghi!:?

! Allen Institute for AI ? University of Washington

Abstract. Object manipulation is a critical skill required for Embodied
AT agents interacting with the world around them. Training agents to ma-
nipulate objects, poses many challenges. These include occlusion of the
target object by the agent’s arm, noisy object detection and localization,
and the target frequently going out of view as the agent moves around in
the scene. We propose Manipulation via Visual Object Location Estima-
tion (m-VOLE), an approach that explores the environment in search for
target objects, computes their 3D coordinates once they are located, and
then continues to estimate their 3D locations even when the objects are
not visible, thus robustly aiding the task of manipulating these objects
throughout the episode. Our evaluations show a massive 3z improvement
in success rate over a model that has access to the same sensory suite but
is trained without the object location estimator, and our analysis shows
that our agent is robust to noise in depth perception and agent local-
ization. Importantly, our proposed approach relaxes several assumptions
about idealized localization and perception that are commonly employed
by recent works in navigation and manipulation — an important step to-
wards training agents for object manipulation in the real world. Our code
and data is available at prior.allenai.org/projects/m-vole.

Keywords: Object Manipulation; Embodied AI; Mobile Manipulation

1 Introduction

In recent years the computer vision community has made steady progress on a
variety of Embodied AI tasks including navigation [1, 4, 59, 6], object manipu-
lation [11, 51, 45, 46] and language-based tasks [42, 2, 14, 9] within interactive
worlds in simulation [24, 39, 12, 50]. Performances of state-of-the-art systems on
these tasks vary greatly depending on the complexity of the task, the assump-
tions made about the agent and environment, and the sensors employed by the
agent. While robust and reliable methods have emerged for some of these tasks,
developing generalizable and scalable solutions remains a topic of research. A
challenging problem in this domain is visual object manipulation, a critical skill
that enables the agents to interact with objects and change the world around
them. Avoiding the collision of the arm with other objects in the scene, inferring
the state of the scene using noisy visual observations, and planning an efficient

https://prior.allenai.org/projects/m-vole

2 K. Ehsani et al.

PointNav ObjectNav
. " " . N Object Not Visible from

this POV? = m-VOLE!
|

Goal: Navigate to
<Object Category>

ArmPointNav

abul
s =

Goal: Bring <Object Category>
to <Object Category>

"~ Goal: Bring the Object at
BBy, B> t0 <Al B, >

Fig. 1. We propose to solve a manipulation task, Object Displacement (ObjDis), where
the goal is to bring a source object towards a destination object (e.g., bring a bowl
to sink). In previous popular Embodied AI tasks shown in the left panel, either the
goal is defined by the relative 3D coordinates (PointNav [39] and ArmPointNav [11])
or there is no manipulation involved (ObjectNav [4]). In contrast, we estimate the goal
location from visual observations and manipulate objects across the scenes. The right
panel shows an example that the agent robustly estimates the relative object location
despite the occlusion by the arm and being out of view.

path for the agent and its arm towards objects are a few of many interesting
challenges in this domain.

One of the main obstacles in training capable and generalizable agents for vi-
sual object manipulation is the sparsity of training signals. Early works in visual
navigation in the Embodied AI (EAI) research community (e.g., [59]) suffered
from this training signal problem. To alleviate this issue, the EAI community
provided the agent with a powerful suite of sensors. The first incarnations of the
Point Goal Navigation (PointNav) task (navigating to a specified X-Y coordi-
nate within an environment) relied on perfect sensory information that included
GPS localization for the target along with compass and GPS sensors for the
agent [39]. As a result, the agent was able to access accurate relative coordinates
of its goal at every time step, which acted as a dense supervisory signal during
training and inference. Under these assumptions, models with minimal induc-
tive biases achieve near-perfect accuracy [48] in unseen test environments given
enough training. Mirroring this success story, researchers have also been able to
train effective agents for visual object manipulation [11].

While these are promising steps towards building embodied agents, the strong
sensory assumptions employed by these models limit their applicability in the
real world. Their task definition requires specifying the target via 3D coordi-
nates, which can be extremely hard to determine, if not impossible, in indoor
environments. Moreover, they rely on a perfect compass and GPS sensory infor-
mation, which enables the agent to localize itself with respect to the target. In
this paper, we take a step closer to a more realistic task definition for object ma-
nipulation by specifying the goal via a representative image of a particular object

Object Manipulation via Visual Target Localization 3

category (instead of their 3D coordinates) and propose a method to localize the
target object without relying on any perfect localization sensory information.

We introduce Object Displacement (ObjDis), the task of bringing an object
to a target location (e.g., bring a bowl to the sink). This involves searching for
an object, navigating to it, picking it up, and placing it at the desired target
location. Figure 1(left) contrasts ObjDis with other popular navigation and ma-
nipulation tasks. We propose Manipulation via Visual Object Location Estima-
tion (m-VOLE), a model for ObjDis that continually estimates the 3D relative
location of the target to the agent via visual observations and learns a policy to
perform the desired manipulation task. m-VOLE predicts a segmentation mask
for the objects of interest and leverages the depth sensor to estimate the relative
3D coordinates for these objects. However, target segmentations are not always
available to the agent due to several reasons including: objects may be out of
view due to the agent being in a different location, objects may be occluded by
the arm of the agent, and masks may be unavailable due to imperfect object
segmentation models; and these noisy observations of the target can lead to the
failure of the agent. To alleviate these issues, m-VOLE aggregates estimates for
the objects’ 3D coordinates over time, leverages previous estimates when the
object mask is unavailable, and can seamlessly re-localize the object in its co-
ordinate frame when the agent observes it again — rendering the model robust
to noise in movement and perception. Figure 1(right) shows a schematic of the
agent’s object localization in the presence of occlusion.

We conduct our experiments using the ManipulaTHOR [11] framework which
provides visually rich, physics-enabled environments with a variety of objects.
We show that:

(a) Our model achieves 3x success rate compared to a model that is trained
without target localization but with an identical set of sensory suites.

(b) Our model is robust against noise in perception and agent movements com-
pared to the baselines.

(¢) Our method allows for zero-shot manipulation of novel objects in unseen
environments.

2 Related Works

Robotic manipulation. Manipulation and rearrangement of objects is a long-
lasting problem in robotics [26, 20, 22]. Various approaches assume the full visi-
bility of the environment and operate based on the assumption that a perception
module provides the perfect observation of the environment [19, 23, 25, 13]. In
contrast to these approaches, we focus on the visual perception problem and
solve the task when the agent has partial and noisy observations. Several ap-
proaches have been proposed (e.g., [8, 54, 27, 56]) that address visual perception
as well. However, the mentioned works focus on the tabletop rearrangement of
objects. In contrast, we consider mobile manipulation of objects, which is a more
general problem. Mobile manipulation has been explored in the literature as well.

4 K. Ehsani et al.

However, they typically use a single environment to develop and evaluate the
models [44, 5, 34, 33]. One of the important problems we address in this paper
is the generalization to unseen environments and configurations.
Manipulation in virtual environments. Recently, various works have ad-
dressed the problem of object manipulation and rearrangement in virtual envi-
ronments. These works typically abstract away grasping and, unlike the works
mentioned above, mostly focus on visual perception for manipulation, learning-
based planning, and generalization to unseen environments and objects. Robo-
suite [60], RLBench [21] and Meta-world [55] provide a set of benchmarks for
tabletop manipulation. ManiSkill benchmark [31] built upon the Sapien frame-
work [52] is designed to benchmark manipulation skills over diverse objects using
a static robotic arm. In contrast to these works, we focus on object displacement
(i.e., navigation and manipulation) in unseen scenes (e.g., a kitchen). [51] and
[45] propose a set of tasks in the iGibson [40] and Habitat 2.0 [45] frameworks.
However, the same environment and objects are used for train and test. In con-
trast, our focus is on generalization to unseen environments. ManipulaTHOR [11]
is an object manipulation framework that employs a robotic arm and introduces
a task and benchmark for mobile manipulation. Their task highly depends on
various accurate sensory information, which renders the task unrealistic. In con-
trast to this work, we relax most supervisory signals to better mimic real-world
scenarios.

Relaxing supervisory sensors. There have been some attempts to relax the
assumptions about perfect sensory information using visual odometry for the
navigation task [58, 10]. While these are effective approaches for PointGoal nav-
igation, the same approach does not apply to manipulation as they still require
the goal’s location in the agent’s initial coordinate frame. In contrast, we have
no access to the target or goal location at any time step.

Embodied interactive tasks. Navigation is a crucial skill for embodied agents.
Various recent techniques have addressed the navigation problem [59, 53, 38, 49,
48, 1, 16, 4, 36, 6]. These tasks mostly assume the environments are static, and
objects do not move. We consider joint manipulation and navigation, which poses
different challenges. [57, 50] assume objects can move during navigation, but the
set of manipulation actions is restricted to push actions. [2, 42, 30] propose in-
struction following to navigate and manipulate objects. They are designed either
for static environments [2] or abstract object manipulation [42, 30] (e.g., objects
snap to the agent). Works such as [29, 28] use auxiliary tasks to overcome the is-
sues related to sparse training signals for navigation. We focus on manipulation,
which deals with a different set of challenges. [43] uses high-level primitives such
as placeOnTop, which uses privileged information to plan a path for the arm.
Similarly, [12] uses Go to Grasp (object) action that moves the agent towards
the object and grasps the object using privileged information provided by the
environment. [35] uses grab (id) action, which ignores arm movements. [46, 3]
propose room rearrangement tasks using mobile robots. However, their object
manipulation is unrealistic in that they assume a magic pointer abstraction, i.e.,

Object Manipulation via Visual Target Localization 5

no arm movement is involved. In contrast, we manipulate objects using an arm,
which introduces unique challenges.

3 Object Displacement

We introduce the task of Object Displacement (ObjDis), which requires an agent
to navigate and manipulate objects in visually rich, cluttered environments.
Given two object references, a source object Og and a destination object Op,
the goal is to locate and pick up Og and move it to the proximity of Op (e.g.,
bring an egg to a pot). The objects of interest are specified to the agent via
query images of an instance of each of the categories. Referring to objects via
query images as opposed to object names enables us to task the agent with
manipulating objects that it has not been trained for. Note that the query images
do not match the appearance of objects within the scene but are canonical object
images (we obtain the images from simulation, but they can also be obtained via
other sources such as an image search engine). This enables the user to easily
specify the task without the knowledge of object instances in the environment.

The ObjDis task consists of multiple implicit stages. To be successful, an
agent must (1) explore its environment until it finds the source object, (2) navi-
gate to it, (3) move its arm to the object so that its gripper may pick it up, (4)
locate the destination object within the environment (5) navigate to this object
and (6) place the object within its gripper in the proximity of the destination
object. In visually rich and cluttered environments such as the ones present in
AT2-THOR [24], this poses several challenges to the agent. Firstly, the agent must
learn to move its body (navigate) as well as its arm (manipulate) effectively to-
wards objects of interest to complete the desired task. Secondly, the agent must
avoid collisions with other objects in the scene, which may occur with its body,
its arm, or the source object once it has been picked up. Thirdly, the agent must
be able to plan its actions over long horizons as it involves multiple objects, ex-
ploration, and manipulation. Finally, the agent must overcome noisy perception
caused by frequent obstruction of its view due to its occluding arm, noisy depth
sensors, and imperfect visual processing such as object detection.

We situate our experiments in AI2-THOR [24], a simulated set of environ-
ments built in Unity with a powerful physics engine, and adopt the agent pro-
vided by the ManipulaTHOR [11] framework. This agent has a rigid body with a
6DOF arm. The agent is capable of moving its body and arm in the environment
while satisfying the kinematic constraints of the arm. Grasping is abstracted to
a magnetic gripper (i.e., the object can be grasped if the gripper touches the ob-
ject). While object grasping is a rich and challenging problem, using a magnetic
gripper enables us to focus our efforts on other challenges, including exploration,
navigation, arm manipulation, and long-horizon planning.

The action space for the agent consists of 11 actions. There are three agent
movement actions (MoveAhead, RotateRight, and RotateLeft), two arm base
movements (MoveUp, MoveDown), which move the base of the arm up and
down with respect to the body of the agent, and six arm movements that move

6 K. Ehsani et al.

the gripper in x, y, z directions in agent’s coordinate frame. Similar to [11],
the agent movement actions move/rotate the agent’s body by 0.2m/45 degrees,
and the arm movements move the base of the arm or the gripper by 5cm. The
framework uses inverse kinematic to calculate the final position of each joint.

4 Manipulation via Visual Object Location Estimation

One of the main challenges of the ObjDis task is finding and localizing the
object of interest in the scenarios that the object is out of the field of view, is
not detected, or is occluded by the arm. We propose a model to find the target,
estimate its location, keep track of the location over time, and plan a path to
accomplish the task.

Agents tackling the task of ObjDis accept as input ego-centric RGB and
Depth observations along with query images for the source and destination ob-
jects. They must choose one of 11 actions at each step and follow a long sequence
of steps to succeed. In the absence of perfect perception and localization, this
task proves quite hard to learn, and models fail to generalize to new environments
(as shown in Sec. 5).

4.1 Estimating Relative 3D Object Location

We first explain how the relative location of the object of interest is estimated.
This is not possible for an unobserved object because its location remains un-
known. However, once the object comes into view (while exploring the envi-
ronment using the policy described later in Sec. 4.3), the agent can start this
estimation. Note that this is in contrast to the ARMPOINTNAV [11] task where
the groundtruth location of the target is provided at all time steps.

At time step t, if the desired objects are in view, one can generate their
segmentation masks (we explain in Sec. 4.2 how we obtain these masks). We
refer to these segmentations as Mg and Mp for the source and destination
objects, respectively. Given a segmentation mask and the depth observation,
the object’s center in 3D is estimated by backprojecting the depth map within
the segmentation mask into the 3D local coordinate of the agent. Formally,
do = m(D[Mp), K), where do is the estimated 3D distance from the agent to the
center of the object O in the agent’s coordinate frame, My is the segmentation
mask of the object in the current observation, D[Mp)] is the observed depth frame
masked by the object’s segmentation (i.e., depth values for the visible regions
of the object), K is the intrinsic matrix of the camera, and 7 is a function that
projects pixels into the 3D space based on the depth values and camera intrinsics.

There are various sources of noise in object instance segmentation that make
it challenging to have a reliable estimate of the 3D object location. First, seg-
mentation models are far from perfect. They often have false positives and false
negatives. Policies that rely on these masks or a quantity derived from these
masks would not be able to produce a reliable sequence of actions. Second, the
arm may obstruct the view of the agent as it moves in the scene — this causes the

Object Manipulation via Visual Target Localization 7

Residual Connections

ResNet18 Image
Features

Up-Convolutional Layers
with Pixel Shuffle

RGB Image

Segmentation Mask
224x224

Query
Resnet18 Features

Query Object Categories

Fig. 2. Conditional Segmentation Architecture. We use a conditional segmenta-
tion model to estimate the segmentation mask. The network receives an RGB image
and a query image (representing an object category) as input and outputs the segmen-
tation mask for an instance of that category.

segmentation mask to periodically disappear. Third, the object might go outside
the agent’s camera frame after it is observed once and as a result not visible. To
overcome these issues, we propose to aggregate this information over time.

To sequentially aggregate the relative coordinates of the object, a weighted
average of the previous and the current estimated 3D distance is used. At each
time step (after observing the target once), m-VOLE calculates the distance do
in the agent’s coordinate frame at time ¢. However, as the agent takes action,
its coordinate frame keeps shifting. At each time step that the target object
is visible, the agent re-localizes the goal in its current observation frame and
can readjust the coordinates. To accurately convert all the past estimates to the
current agent frame, we must keep track of the agent’s relative location L} with
respect to its starting location. Since we aim to reduce the reliance on perfect
sensing, we evaluate the effect of noise in the location estimation (see Sec. 5).

4.2 Conditional Segmentation

Estimating the 3D location of an observed object requires the agent to estimate
its segmentation mask. We refer to this segmentation as ‘conditional’ since the
goal is to obtain a mask for an object instance from the object category shown
in the conditioning query image. Formulating the problem as a conditional seg-
mentation problem as opposed to the traditional instance segmentation enables
the network to focus on generating the mask for the target object!, and the task
reduces to a simpler task of category matching.

We train an auxiliary segmentation network in an offline setting, indepen-
dent of the policy network. This allows us to employ a fully supervised setting
resulting in efficient policy learning. This network accepts as input two images,
the ego-centric RGB observation and a query object, and outputs a mask for all
objects from the desired category. This reduces to a binary classification problem

1 'We use target object to refer either the source or destination object.

8 K. Ehsani et al.

at each pixel in the image. The two input images are encoded via ResNet18 [18]
models. The features are then concatenated and passed through five upconvolu-
tional layers. The upconvolutional layers are implemented following PixelShuf-
fle [41]. The final output is a segmentation mask of the same size as the original
image (details in Figure 2). We use the Cross-Entropy loss to train this model.

We train and evaluate this model using an offline dataset collected from
the train scenes in AI2-THOR [24], where we randomize object locations, tex-
tures, and scene lighting. We initialize the ResNet18 models with ImageNet
pre-training and finetune them on our offline dataset. We compare this method
with using a state-of-the-art instance segmentation model trained on the same
data in Section 5.3.

4.3 Policy Network

Figure 3 shows a schematic of our proposed model m-VOLE. m-VOLE receives
the RGBD observation I; at the current timestep ¢, and the query images
Og and Op. The conditional segmentation module estimates the segmentation
masks for the target objects Mg and Mp and the visual object location estima-
tor calculates the relative object coordinates d,. The policy network then uses

1;,,05,0p, Mg, Mp,d, to sample actions.

Conditional Segmentation Module Policy Network

Conditional
Segmentation
Model

Convl Conv2 Conv: Image
B8] [4al (3] Features

RS i) ering

Object Mask

Query Object Categories

- ® 3D to the Object Distance

1 Features

1

1

1

1

1 Project to
1 —_—
1

1

1

]

1Depth and Object Mask H

Fig. 3. Model architecture. Our model, m-VOLE, uses the RGBD observation and
a canonical query image of the object to 1) predict the target object’s mask (Condi-
tional Segmentation Module), 2) estimate the relative distance of the target object in
agent’s coordinate frame (Object Location Estimator Module), and 3) predict the next
action (Policy Network). Note that we use target object to refer to either the source or
destination object.

The RGBD observation and segmentation masks of the target objects in the
current observation Mg, Mp are concatenated depth-wise and embedded using

Object Manipulation via Visual Target Localization 9

Standard RL Reward Motivating Exploration Efficient Manipulation

Failed Action -0.03 | Object Observed +1 | Pick Up Og +5
Step -0.01 | Visit New State +0.1 | A distance to obj -6
Episode Success +10
Table 1. Rewards. In addition to standard RL reward for embodied Al, we include
reward components encouraging exploration and efficient manipulation.

three convolutional layers. This visual encoding is combined with ResNet18 [18]
(pre-trained on ImageNet [37]) features of the query images of target classes
Og, Op and the embedding of object’s relative location d,. The resulting feature
vector is provided to an LSTM, and a final linear layer generates a distribution
over the possible actions. We use DD-PPO [48] to train the model. Since our
method does not have access to the object’s location, and the object is not
necessarily initially in sight (only in 13.9% of episodes the object is initially
visible to the agent), our agent is required to explore the environment until
the object is found. We use rewards shown in Table 1 to encourage exploration
and more efficient manipulation. In the appendix, we ablate the effects of these
rewards on the agent’s performance.

5 Experiments

We present our experiments comparing m-VOLE with baselines (Sec. 5.1), a
robustness analysis of our model with regards to noise in the agent’s motions
and sensors (Sec. 5.2) and ablations of m-VOLE’s design choices (Sec. 5.3). Fi-
nally we evaluate m-VOLE for displacing novel objects, not used during training
(Sec. 5.4).

Baselines: We consider the following baselines:

— No Mask Baseline — This model uses the RGBD observation and the query
image as input and directly predicts a policy for completing the task. It does
not have a segmentation module and does not have access to the agent’s
location relative to the starting point.

— Mask Driven Model (MDM) — This network uses a very similar architec-
ture as our model with RGBD observation, query images, and the segmenta-
tion mask of the target objects as inputs. However, it does not have access to
the agent’s location relative to the starting point.

— Location-aware Mask Driven Model (Loc-MDM) — This baseline shares
the same architecture as MDM. However, it also uses the agent’s relative
location from the start of the episode. The inputs available to Loc-MDM
are the same as our proposed model (m-VOLE). The difference is that Loc-
MDM uses the agent’s location naively, whereas m-VOLE uses it for target
localization.

In addition to these baselines, we also train the model from [11] on our task
ObjDis. Note that this model uses the perfect location of the agent and the

10 K. Ehsani et al.

Model Segmentation Additional Input PU SR SRwD
(1) No Mask Baseline Prediction N/A 0.0 0.0 0.0
(2) Mask Driven (MDM) Prediction N/A 16.6 1.62 0.09
(3) Loc-MDM Prediction Agent’s Relative Loc 20.3 3.24 1.08
(4) m-VOLE (Ours) Prediction Agent’s Relative Loc 38.7 11.6 4.59
(5) Mask Driven (MDM) GT mask N/A 50.5 17.1 8.74
(6) Loc-MDM GT mask Agent’s Relative Loc 57.3 21.6 9.01
(7) ArmPointNav [11] N/A Compass + GPS 76.6 58.3 28.5
(8) m-VOLE (Ours) GT mask Agent’s Relative Loc 81.2 59.6 31.0

Table 2. Quantitative Results. Rows (1)-(4) present the results with the predicted
segmentation masks. Rows (5)-(8) present the results for models when provided with
ground truth segmentation. Our model m-VOLE outperforms all the baselines across
all metrics. The No Mask Baseline is simply unable to train well, in spite of repeated
attempts by us to vary hyperparameters and other design choices.

target objects at each time step, so it is not a fair comparison to our model.
However, it is a useful point of reference.

— ArmPointNav [11] — This method is the same architecture as the one intro-
duced in [11] with the addition of the query images as input. The network is
provided with the perfect location information for the agent and source and
destination objects.

Dataset. We use the APND dataset proposed in [11] to define the tasks’ config-
urations. APND consists of 12 object categories (Apple, Bread, Tomato, Lettuce,
Pot, Mug, Potato, Pan, Egg, Spatula, Cup, and SoapBottle), 30 kitchen scenes,
130 agent initial locations per scene, and 400 initial locations per object-pair
per room. For each task, we choose two objects, place them in two locations
(randomly chosen from APND) and choose one as the source object Og and the
other as the destination Op. We also randomize the initial location of the agent.
We split the 30 scenes into 20 for training, 5 for validation, and 5 for testing. We
generate 132 object pairs per training scene and 1600 pairs of initial locations of
objects per training scene. We select a fixed set of 1100 tasks evenly distributed
across scenes and object categories for validation and test. For more details on
the dataset used for training the conditional segmentation model refer to the
appendix.

Metrics. We use the same evaluation metrics as [11]: 1) Success rate (SR) —
Fraction of episodes in which the agent successfully picks up the source object
(Og) and brings it to the destination object (Op). 2) Success rate without dis-
turbance (SRwD) — Fraction of episodes in which the task is successful, and the
agent does not move other objects in the scene. 3) Pick up success rate (PU) —
Fraction of episodes where the agent successfully picks up the object.

Object Manipulation via Visual Target Localization 11

0T=3

5=}

Source: Destination:
Pot Tomato

Query Images t=43 t=52

Fig. 4. Qualitative Results. The figure presents a successful episode of Bringing a
Pot to Tomato. Despite the errors in Pot segmentation and with only a few pixels of the
object being segmented, our agent successfully completes the task. Moreover, towards
the end of the episode (¢ = 52), the pot in hand occludes the target object (tomato),
but the agent is able to remember the target location despite the occlusion. Note that
the topdown view (bottom row) is only shown for visualization purposes and is not an
input to the network.

5.1 How well does m-VOLE work?

Table 7 presents our primary quantitative findings on the test environments.
Rows 1-4 provide results for m-VOLE compared to our baselines. Rows 5-8
evaluate these models when using ground truth segmentation masks in order to
assess these models independent of the segmentation inaccuracies.

Our model m-VOLE, row 4, outperforms all of the baselines (rows 1-3).
Directly learning a policy from input images results in a 0 success rate, showing
the advantage of using a separate segmentation and target localization network.
This result is despite trying various hyperparameters and designs to get this
model off the ground. The improvement of the location-aware methods (rows 3
and 4) over the Mask-driven model (row 2) that does not encode relative location
demonstrates that the agents benefit from encoding localization information.
Our method m-VOLE provides a massive 3x improvement over the baseline in
row 3 in terms of Success Rate (SR). This result shows that our approach that
estimates the object’s distance from the agent is quite effective.

Rows 5-8 evaluate models when employing ground truth segmentation masks.
m-VOLE outperforms all baselines significantly, including Loc-MDM with access
to the same information as m-VOLE. An interesting observation is that m-VOLE
achieves better performance in unseen scenes compared to the ArmPointNav [11]
baseline (row 7), which receives the relative location of the target object at each

12 K. Ehsani et al.

time step. Object Displacement requires attending to the visual observations to
avoid collisions of the arm with objects in the scene. Therefore, our conjecture
for the higher performance is that the ArmPointNav baseline relies heavily on
the GPS and location sensors leading to less focus on visual observations. We
discuss this further in the Appendix. Figure 4 shows our qualitative results. More
qualitative results are presented in the supplementary video.

One of the main contributions of m-VOLE is the ability to maintain an
estimation of the target’s location regardless of its visibility. To quantify this
contribution, we calculated the percentage of the frames in an episode for which
the target is not visible during the inference time. Our experiments show that
only in 43.9% and 10.5% of the observed frames the source and goal objects
are visible in the agent’s frame, respectively (mainly due to arm occlusion or
object not being in the frame). More importantly, in 70.5% of those frames,
the segmentation model fails to segment the object (misdetection). Despite the
low percentage of object visibility, m-VOLE successfully completes the task by
aggregating the temporal information.

5.2 How robust is m-VOLE to noise?

There are two primary sources of noise that can impact our model, noise in the
agent’s movements and noise in depth perception. In the following experiments,
we evaluate the effect of each one.

80 = PU(Ours)
. SR(Ours)
70 = SRWD(Ours)
=+« PU(ArmPointNav)
SR(ArmPointNav)
« = SRwD(ArmPointNav)

Performance
IS
3

0.0 0.2 0.4 0.6 0.8 1.0
Effect of noise in agent's location

Fig. 5. Robustness to noise in agent’s movements. We use the noise model from
[32]. The x axis shows the noise multiplier and the y axis shows the performance on
the Object Displacement task. Performance without any noise is shownat x = 0. x =1
corresponds to a noise as large as the agent step size (20cm).

Noise in agent movements. We use the motion model presented in [32], which
models the noise in the traveled distance and angle of rotation. The details of
the noise model can be found in the supplementary material. Figure 5 shows the
robustness of our method to motion noise in comparison with ArmPointNav [11]
modified to incorporate the same noise model. Our approach m-VOLE is far more

Object Manipulation via Visual Target Localization 13

Model PU SR SRwD

MDM @100M 20.5 (-40.0%) 3.5 (-71.5%) 2.07 (-72.6%)
Loc-MDM @114M 25.3 (-27.3%) 4.05 (-64.8%) 1.89 (-75.1%)
m-VOLE (Ours) @20M 36.3 (-6.2%) 6.13 (-47.7%) 2.52 (-45.0%)

Table 3. Robustness to noise in depth. Our model achieves the best performance
on all metrics and the lowest relative performance drop compared to the baselines
(shown in parentheses).

Model PU SR SRwD
Our Policy with MaskRCNN [17] detection 31.3 8.7 3.87

Our Policy with Conditional Segmentation 38.7 11.6 4.59
Table 4. Instance segmentation ablation. We ablate the performance of our model
using different instance segmentation methods. To do so we train a MaskRCNN [17]
model on our data and show that our conditional segmentation helps our policy achieve
better performance on the ObjDis task.

robust, whereas ArmPointNav degrades significantly. We believe our method
better leverages visual information to recover from noisy estimates.

Noise in depth perception. We use the Redwood depth noise model presented
in [7]. Table 3 shows the performance of models in the presence of this noise.
Note that models are trained with no noise, but inference takes place in the
presence of noise. In this experiment, we are not only interested in evaluating
models’ absolute performance in the presence of noise but also in the relative
degradation of each model. With this in mind, to have a fair comparison, we
train all models until they reach the same success rate on the training set as
m-VOLE. We then evaluate them with and without depth noise and calculate
the relative performance drop in all metrics. As seen in Table 3, m-VOLE is
more robust to noise in depth compared to our baselines (in absolute terms) and
also shows a smaller relative performance degradation. We hypothesize that the
aggregated information throughout the episode helps our model recover from
the locally observed noise in depth.

5.3 Why Conditional Segmentation?

Simultaneously learning to segment objects and learning to plan is challenging.
Hence, we isolate the segmentation branch of our network. Most approaches
to ObjectNav [4] (navigating towards a specified object) do not use external
object detectors and learn to detect and plan jointly, but that is not effective
for our task. As we showed in Table 7, the baseline that does not use a separate
segmentation network (row 1) generalizes poorly and achieves 0 success rate.
There are two advantages to our conditional segmentation method compared
to the standard state-of-the-art detection/segmentation models such as MaskR-~
CNN [17]. First, our task is more straightforward since we are interested in

14 K. Ehsani et al.

Model Object Set PU SR SRwD
Loc-MDM NovelObj 9.52 0.9 0
m-VOLE NovelObj 26.2 5.24 3.33

Loc-MDM SeenObj 29.3 5.67 2.33

m-VOLE SeenObj 49.3 18.7 10.7
Table 5. Zero-shot Manipulation Results.

simply segmenting an instance of the specified object category. Thus, we can
afford to train a much smaller network. Second, as shown in Table 4, the model
that uses conditional segmentation obtains better performance in all metrics.
For this experiment, we use the MaskRCNN [17] model pre-trained on the LVIS
dataset [15] and finetuned on AI2-THOR images. We obtain the highest confi-
dence prediction for the target class from MaskRCNN and use that as the input
to our policy. This is effective because there is typically just one object instance
of the specified category in view.

5.4 Can m-VOLE do zero-shot manipulation?

So far, we have evaluated our model on generalization to unseen scenes. We
evaluate whether the model can manipulate novel objects not used for training.
This is a challenging task since the variation in object size and shape can result
in different types of collisions and occlusions. For this evaluation, we train our
model on six object categories (Apple, Bread, Tomato, Lettuce, Pot, Mug) and
evaluate on the held-out classes (Potato, Pan, Egg, Spatula, Cup, SoapBottle).
Note that our conditional segmentation model that provides the segmentation
input to the policy has been trained on all categories. However, our policy has not
been exposed to the test objects. Table 5 shows the results. Our model generalizes
well to the novel categories, which is challenging as the novel objects’ shapes and
sizes can result in unseen patterns of collision.

6 Conclusion

We propose a method for visual object manipulation, where the goal is to displace
an object between two locations in a scene. Our proposed approach learns to
estimate target object location via aggregating noisy observations caused by
missed detection, view occlusion by the arm, and noisy depth. We show that our
approach provides a 3x improvement in success rate over a baseline without this
auxiliary information, and it is more robust against noise in depth and agent
movements.

Object Manipulation via Visual Target Localization 15

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

. Anderson, P., Chang, A.X., Chaplot, D.S., Dosovitskiy, A., Gupta, S., Koltun, V.,

Kosecka, J., Malik, J., Mottaghi, R., Savva, M., Zamir, A.R.: On evaluation of
embodied navigation agents. ArXiv (2018) 1, 4

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Siinderhauf, N.; Reid,
I.D., Gould, S., van den Hengel, A.: Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In: CVPR (2018)
1,4

Batra, D., Chang, A.X., Chernova, S., Davison, A.J., Deng, J., Koltun, V., Levine,
S., Malik, J., Mordatch, I., Mottaghi, R., Savva, M., Su, H.: Rearrangement: A
challenge for embodied ai. arXiv (2020) 4

Batra, D., Gokaslan, A., Kembhavi, A., Maksymets, O., Mottaghi, R., Savva, M.,
Toshev, A., Wijmans, E.: Objectnav revisited: On evaluation of embodied agents
navigating to objects. arXiv (2020) 1, 2, 4, 13

Chang, L.Y., Srinivasa, S.S., Pollard, N.S.: Planning pre-grasp manipulation for
transport tasks. In: ICRA (2010) 4

Chaplot, D.S., Gandhi, D.P., Gupta, A., Salakhutdinov, R.R.: Object goal naviga-
tion using goal-oriented semantic exploration. In: NeurIPS (2020) 1, 4

Choi, S., Zhou, Q.Y ., Koltun, V.: Robust reconstruction of indoor scenes. In: CVPR
(2015) 13, 21

Danielczuk, M., Mousavian, A., Eppner, C., Fox, D.: Object rearrangement using
learned implicit collision functions. In: ICRA (2021) 3

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question
answering. In: CVPR (2018) 1

Datta, S., Maksymets, O., Hoffman, J., Lee, S., Batra, D., Parikh, D.: Integrating
egocentric localization for more realistic point-goal navigation agents. In: CoRL
(2020) 4

Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi,
A., Mottaghi, R.: ManipulaTHOR: A Framework for Visual Object Manipulation.
In: CVPR (2021) 1,2, 3, 4,5, 6,9, 10, 11, 12, 24

Gan, C., Schwartz, J., Alter, S., Schrimpf, M., Traer, J., Freitas, J.D., Kubilius, J.,
Bhandwaldar, A., Haber, N., Sano, M., Kim, K., Wang, E., Mrowca, D., Lingelbach,
M., Curtis, A., Feigelis, K.T., Bear, D., Gutfreund, D., Cox, D., DiCarlo, J.J.,
McDermott, J.H., Tenenbaum, J.B., Yamins, D.L.K.: Threedworld: A platform for
interactive multi-modal physical simulation. In: NeurIPS (dataset track) (2021) 1,
4

Garrett, C.R., Lozano-Perez, T., Kaelbling, L.P.: Ffrob: Leveraging symbolic plan-
ning for efficient task and motion planning. The Intl. J. of Robotics Research (2018)
3
Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: Iqa:
Visual question answering in interactive environments. In: CVPR (2018) 1
Gupta, A., Dollar, P., Girshick, R.: Lvis: A dataset for large vocabulary instance
segmentation. In: CVPR (2019) 14

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping
and planning for visual navigation. In: CVPR (2017) 4

He, K., Gkioxari, G., Dollar, P., Girshick, R.B.: Mask r-cnn (2017) 13, 14

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 8, 9

16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

K. Ehsani et al.

Huang, E., Jia, Z., Mason, M.T.: Large-scale multi-object rearrangement. In: ICRA
(2019) 3

Hwang, Y.K., Ahuja, N.: Gross motion planning—a survey. ACM Computing Sur-
veys (CSUR) (1992) 3

James, S., Ma, Z., Arrojo, D.R., Davison, A.J.: Rlbench: The robot learning bench-
mark & learning environment. IEEE Robotics and Automation Letters (2020) 4
Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief
space. The Intl. J. of Robotics Research (2013) 3

King, J.E., Cognetti, M., Srinivasa, S.S.: Rearrangement planning using object-
centric and robot-centric action spaces. In: ICRA (2016) 3

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon,
D., Zhu, Y., Gupta, A., Farhadi, A.: Ai2-thor: An interactive 3d environment for
visual ai. arXiv (2017) 1, 5, 8, 19

Krontiris, A., Bekris, K.E.: Dealing with difficult instances of object rearrangement.
In: RSS (2015) 3

Lozano-Pérez, T., Jones, J.L., Mazer, E., O’Donnell, P.A.: Task-level planning of
pick-and-place robot motions. Computer (1989) 3

Mahler, J., Goldberg, K.: Learning deep policies for robot bin picking by simulating
robust grasping sequences. In: CoRL (2017) 3

Marza, P., Matignon, L., Simonin, O., Wolf, C.: Teaching agents how to map:
Spatial reasoning for multi-object navigation. arXiv (2021) 4

Mirowski, P.W., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil,
M., Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran, D., Hadsell, R.: Learning
to navigate in complex environments. In: ICLR (2017) 4

Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin, M., Artzi, Y.: Mapping
instructions to actions in 3D environments with visual goal prediction. In: EMNLP
(2018) 4

Mu, T., Ling, Z., Xiang, F., Yang, D., Li, X., Tao, S., Huang, Z., Jia, Z., Su, H.:
ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demon-
strations. In: NeurIPS (dataset track) (2021) 4

Murali, A., Chen, T., Alwala, K.V., Gandhi, D., Pinto, L., Gupta, S., Gupta, A.:
Pyrobot: An open-source robotics framework for research and benchmarking. arXiv
(2019) 12, 21

Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., Kavraki, L.E.: Smt-based syn-
thesis of integrated task and motion plans from plan outlines. In: ICRA (2014)
4

Nieuwenhuisen, M., Droeschel, D.; Holz, D., Stiickler, J., Berner, A., Li, J.Y.,
Klein, R., Behnke, S.: Mobile bin picking with an anthropomorphic service robot.
In: ICRA (2013) 4

Puig, X., Shu, T., Li, S., Wang, Z., Liao, Y.H., Tenenbaum, J.B., Fidler, S.,
Torralba, A.: Watch-and-help: A challenge for social perception and human-{ai}
collaboration. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=w_7JMpGZRhO 4

Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Occupancy anticipation for effi-
cient exploration and navigation. In: ECCV (2020) 4

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. IJCV (2015) 9

Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for
navigation. In: ICLR (2018) 4

https://openreview.net/forum?id=w_7JMpGZRh0

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Object Manipulation via Visual Target Localization 17

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J.,
Liu, J., Koltun, V., Malik, J., et al.: Habitat: A platform for embodied ai research.
In: ICCV (2019) 1, 2

Shen, B., Xia, F., Li, C., Mart’in-Mart’in, R., Fan, L.J., Wang, G., Buch, S.,
D’Arpino, C.P., Srivastava, S., Tchapmi, L.P., Tchapmi, M.E.; Vainio, K., Fei-Fei,
L., Savarese, S.: igibson, a simulation environment for interactive tasks in large
realistic scenes. In: IROS (2021) 4

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: CVPR (2016) 8

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettle-
moyer, L., Fox, D.: Alfred: A benchmark for interpreting grounded instructions for
everyday tasks. In: CVPR (2020) 1, 4

Srivastava, S., Li, C., Lingelbach, M., Mart’in-Mart’in, R., Xia, F., Vainio, K., Lian,
Z., Gokmen, C., Buch, S., Liu, C.K., Savarese, S., Gweon, H., Wu, J., Fei-Fei, L.:
Behavior: Benchmark for everyday household activities in virtual, interactive, and
ecological environments. ArXiv abs/2108.03332 (2021) 4

Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning
among movable obstacles. In: ICRA (2007) 4

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre,
N., Mukadam, M., Chaplot, D.S., Maksymets, O., Gokaslan, A., Vondrus, V.,
Dharur, S., Meier, F., Galuba, W., Chang, A.X., Kira, Z., Koltun, V., Malik,
J., Savva, M., Batra, D.: Habitat 2.0: Training home assistants to rearrange their
habitat. In: NeurIPS (2021) 1, 4

Weihs, L., Deitke, M., Kembhavi, A., Mottaghi, R.: Visual room rearrangement.
In: CVPR (2021) 1, 4

Weihs, L., Salvador, J., Kotar, K., Jain, U., Zeng, K.H., Mottaghi, R., Kembhavi,
A.: Allenact: A framework for embodied ai research. arXiv (2020) 19, 24
Wijmans, E., Kadian, A., Morcos, A.S., Lee, S., Essa, 1., Parikh, D., Savva, M.,
Batra, D.: Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion
frames. In: ICLR (2020) 2, 4, 9

Wortsman, M., Ehsani, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Learning to
learn how to learn: Self-adaptive visual navigation using meta-learning. In: CVPR
(2019) 4

Xia, F., Shen, B.W., Li, C., Kasimbeg, P., Tchapmi, M.E., Toshev, A., Martin-
Martin, R., Savarese, S.: Interactive gibson benchmark: A benchmark for interac-
tive navigation in cluttered environments. IEEE Robotics and Automation Letters
(2020) 1, 4

Xia, F., Li, C., Martin-Martin, R., Litany, O., Toshev, A., Savarese, S.: Relmogen:
Leveraging motion generation in reinforcement learning for mobile manipulation.
In: ICRA (2021) 1, 4

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M., Jiang, H., Yuan,
Y., Wang, H., Yi, L., X.Chang, A., Guibas, L., Su, H.: SAPIEN: A SimulAted
Part-based Interactive ENvironment. In: CVPR (2020) 4

Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic navi-
gation using scene priors. In: ICLR (2019) 4

Yen-Chen, L., Zeng, A., Song, S., Isola, P., Lin, T.Y.: Learning to see before learn-
ing to act: Visual pre-training for manipulation. In: ICRA (2020) 3

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., Levine, S.: Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In: CoRL (2019) 4

18

56.

57.

58.

59.

60.

K. Ehsani et al.

Zeng, A., Song, S., Yu, K.T., Donlon, E., Hogan, F.R., Bauzd, M., Ma, D., Taylor,
O., Liu, M., Romo, E.; Fazeli, N., Alet, F., Dafle, N.C., Holladay, R., Morona,
I., Nair, P.Q., Green, D., Taylor, 1., Liu, W., Funkhouser, T.A., Rodriguez, A.:
Robotic pick-and-place of novel objects in clutter with multi-affordance grasping
and cross-domain image matching. In: ICRA (2018) 3

Zeng, K.H., Weihs, L., Farhadi, A., Mottaghi, R.: Pushing it out of the way: In-
teractive visual navigation. In: CVPR (2021) 4

Zhao, X., Agrawal, H., Batra, D., Schwing, A.G.: The surprising effectiveness of
visual odometry techniques for embodied pointgoal navigation. arXiv (2021) 4
Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.:
Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In: ICRA (2017) 1, 2, 4

Zhu, Y., Wong, J., Mandlekar, A., Martin-Martin, R.: robosuite: A modular sim-
ulation framework and benchmark for robot learning. arXiv (2020) 4

