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In supplementary material, we describe the details of our agent training setup
and baseline implementation. Additionally, we explain the experiment setup
along with the list of scenes used for each experiment scenario, show the exper-
imental result of an additional baseline and describe the supplementary video.

1 Agent Training Setup

We implement our domain adaptation method, MoDA, on the visual naviga-
tion agent from Active Neural SLAM [2]. The agent navigates with a discrete
action selected from { move forward by 25cm, turn right by 10 °, turn left by
10 °}. The pretrained agent is trained in a noiseless environment with ground-
truth supervision using Adam optimizer [6] with a batch size of 4. We use the
learning rate of 1× 10−4. The pretrained agent then explores on 10 trajectories
for 50 steps each to collect the ground-truth map dataset Dgt. When the agent
is deployed in the new environment with visual and dynamics corruptions, it
similarly collects the noisy map dataset Dnoisy. Given the two collections, we
leverage CycleGAN [11] and train our map style transfer networks with a batch
size of 1 and Adam optimizer. The network is quickly trained within 5 epochs
using the learning rate of 2× 10−4.

During visual domain adaptation, our agent is fine-tuned on 30 unseen tra-
jectories where the agent explores for 100 steps each. We train our agent with
visual domain loss LV and set the loss weight λego

st = 0.8 and λfc = 0.2. For
dynamics domain adaptation, our visually adapted agent is further fine-tuned
on 50 trajectories exploring for 50 steps. The dynamics domain loss LD consists
of the loss weight λglobal

st = 1.0 and λtc = 0.2. We use Adam optimizer with a
batch size of 1 in all our adaptation setups. The learning rate of 1×10−6 is used
for visual domain adaptation and 1× 10−4 for dynamics domain adaptation.

2 Baseline Implementation Details

In this section, we explain the implementation details of baselines; “Domain
Randomization (DR)”, “Policy Adaptation during Deployment (PAD)” and
“Global Map Consistency (GMC)”.



2 E. Lee et al.

The Domain Randomization agent is trained on the domain randomly ex-
posed to various visual corruptions and dynamics corruptions. We randomly
select a visual variation among speckle noise, light variation, and defocus blur as
suggested in [3, 9]. For each noise type, we also variate the parameters to train
the agent for wide varieties of visual corruptions. For dynamics corruptions, we
implement the actuation noise model suggested in RobustNav [3]. However, the
magnitudes of noise parameters are modified from the proposed values based on
our agent’s action space. The actuation noise is generated from three types of
noise models; motion drift and stochastic/constant motion bias. The motion drift
is selected from [No drift, Drift right by 10°, Drift left by 10°]. The stochastic
motion bias is selected from N (µs, Σs). Specifically, µs is 0 and Σs is drawn from( 0.1 0 0

0 0.1 0
0 0 3.3

)
, where the diagonal values correspond to pose (x, y), and orientation

ϕ. Additionally, the constant motion bias for forward step and turn actions is
randomly chosen from [±0.05m, ±0.1m, ±0.15m] and [±1.7°, ±3.3°, ±5°].

As suggested in [5], we train PAD model using a visual domain adaptation
method utilizing an auxiliary self-supervision task. Specifically, the separate rota-
tion prediction task is implemented on our agent. The RGB observation given at
each step is randomly rotated by an angle selected from [0°, 90°, 180°, 270°]. The
agent then learns to predict the rotation angle during training. Once deployed,
the agent only fine-tunes the self-supervision task to adapt to the new visual do-
main. However, when we investigate the PAD model’s adaptation performance
only with the suggested visual domain adaptation, we observe no improvement
over the pretrained agent’s degraded performance. We thus additionally adapt
the agent with our proposed dynamics domain adaptation. PAD results in the
lowest pose estimation error on the logged trajectories, but it fails to improve the
pretrained agent’s performance in mapping and final navigation tasks. Nonethe-
less, the result shows that our proposed dynamics domain adaptation can be
easily combined with other visual domain adaptation methods to enhance a
visual navigation agent’s pose estimation performance.

Lastly, Lee et al. [7] suggests a self-supervised domain adaptation method
which encourages global map consistency loss on round trip trajectories to learn
dynamics corruptions. We thus let the agent explore for 50 steps, turn around
180°, and execute the previous action sequence in reverse to generate round trip
trajectories. The agent is fine-tuned for 160 trajectories, inefficiently learning
only during its backward path. The proposed method from [7] adapts the agent
in an offline manner and only suggests a dynamics domain adaptation method.
As suggested in [7], we use the Adam optimizer with the learning rate 5×10−5.
To conclude, we summarize the comparison between our model and the baselines
in Table 1.

3 Experiment Setup

Our pretrained agent is trained on the standard train split [8] of Gibson dataset [10].
We use the unseen scenes of Gibson and Matterport3D [1] to evaluate the sug-
gested domain adaptation method. For the generalization experiment setting,
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Table 1: We compare our agent adapted with MoDA with the implemented
baselines in terms of essential aspects in domain adaptation method

Visual Domain
Adaptation

Dynamics Domain
Adaptation

Online/ Offline Self-Supervision

DR ✓ ✓ -
PAD ✓ Online ✓
GMC ✓ Offline ✓
MoDA ✓ ✓ Online ✓

we transfer the pretrained agent to the scenes in adaptation split and evaluate
the transferred agent on the scenes in evaluation split. We evaluate on the new
unseen scenes to show that our agent is transferred to the unknown corruptions
rather than the scenes seen during adaptation. However, in the specialization
experiment, the pretrained agent is fine-tuned and evaluated on the same scenes
in adaptation split. This setup shows a more practical scenario as the embodied
agents may be continuously deployed in the same scenes.

We randomly assign the scenes into either adaptation or evaluation split. The
list of scenes for each split is shown in Table 2. The scenes in Gibson are tested
for the visual corruptions with speckle noise and low-lighting condition, while
the scenes in Matterport3D are used without modification to test the scene-scale
change. Note that all scenes additionally contain dynamics corruptions. In all
our experiments, we evaluate our agents on 50 trajectories. For mapping and
localization, the agent is evaluated on 50 trajectories with 500 step lengths. In
exploration and PointNav, the agent executes the given task for 1000 steps on
50 trajectories.

Table 2: List of scenes used for adaptation and evaluation split
Gibson Scenes with Speckle Noise or Low-Lighting Condition and Dynamics Corruptions

Adaptation Sisters, Ribera, Denmark, Mosquito, Elmira, Cantwell, Pablo

Evaluation Eastville, Edgemere, Eudora, Greigsville, Sands, Scioto, Swormville

Matterport3D Scenes with Large Scene Scale and Dynamics Corruptions

Adaptation

pRbA3pwrgk9, ZMojNkEp431, r1Q1Z4BcV1o, 5LpN3gDmAk7, VVfe2KiqLaN, mJXqzFtmKg4,
GdvgFV5R1Z5, 1pXnuDYAj8r, 17DRP5sb8fy, 82sE5b5pLXE, e9zR4mvMWw7, aayBHfsNo7d,
VLzqgDo317F, kEZ7cmS4wCh, PuKPg4mmafe, JmbYfDe2QKZ, 1LXtFkjw3qL, HxpKQynjfin,
sKLMLpTHeUy, D7G3Y4RVNrH, ULsKaCPVFJR, XcA2TqTSSAj, b8cTxDM8gDG, 5q7pvUzZiYa,
dhjEzFoUFzH, YmJkqBEsHnH, rPc6DW4iMge, sT4fr6TAbpF, Uxmj2M2itWa, PX4nDJXEHrG

Evaluation

29hnd4uzFmX, 2n8kARJN3HM, 759xd9YjKW5, 7y3sRwLe3Va, 8WUmhLawc2A, B6ByNegPMKs,
D7N2EKCX4Sj, E9uDoFAP3SH, EDJbREhghzL, JF19kD82Mey, JeFG25nYj2p, Pm6F8kyY3z2,
S9hNv5qa7GM, SN83YJsR3w2, V2XKFyX4ASd, VFuaQ6m2Qom, Vvot9Ly1tCj, VzqfbhrpDEA,
ac26ZMwG7aT, cV4RVeZvu5T, gTV8FGcVJC9, gZ6f7yhEvPG, i5noydFURQK, jh4fc5c5qoQ,
p5wJjkQkbXX, qoiz87JEwZ2, r47D5H71a5s, s8pcmisQ38h, uNb9QFRL6hY, ur6pFq6Qu1A,
vyrNrziPKCB
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4 Additional Baseline: SECANT

We additionally evaluated a baseline “SECANT [4]” which generalizes the pre-
trained agent with a representation learning method. Given an expert mapper
which is trained in a noiseless scenes, we train a student mapper with strong aug-
mentation methods from [4]. We also evaluate the agent which further adapts SE-
CANT with our dynamics adaptation method, referred as “SECANT+MoDA”
in Table 3. The mapping result demonstrates that our adaptation method out-
performs both SECANT and SECANT+MoDA, as similarly shown in Fig 1.
Furthermore, SECANT+MoDA baseline shows that our dynamics adaptation
method can easily provide an integrated solution for various powerful represen-
tation learning methods.

Gibson
Speckle Noise

Gibson
Low-Lighting

Matterport3D
Large Scene Scale

(a) (b) (c) (a) (b) (c) (a) (b) (c)

Pose
θ(◦) 2.61 3.74 15.02 2.87 2.41 15.78 2.34 3.00 14.42
x, y(m) 0.04 0.03 0.03 0.05 0.03 0.04 0.05 0.03 0.04

Map
(MSE)

ego 1.08 1.11 1.11 0.89 0.90 0.90 1.02 1.07 1.07
global 0.25 0.27 0.34 0.25 0.27 0.34 0.31 0.35 0.42

Explo
ration

area 28.63 29.50 27.73 31.56 32.99 30.31 63.68 61.66 52.16
ratio 0.82 0.84 0.79 0.91 0.93 0.87 0.54 0.51 0.45
collision 0.36 0.32 0.43 0.26 0.30 0.34 0.28 0.31 0.44

Point
Nav

success 0.56 0.40 0.16 0.56 0.56 0.16 0.22 0.18 0.02
SPL 0.47 0.33 0.13 0.45 0.46 0.14 0.18 0.14 0.02

Table 3: Generalization result of (a)MoDA (b)SECANT+MoDA and
(c)SECANT in the new environments with visual variations and dynamics cor-
ruptions.

5 Description on the Supplementary Video

We provide a video which shows our agent, trained with MoDA, exploring the
three scenarios suggested in experiments from the main paper. For each scenario,
we compare the exploration sequence of our agent and the pretrained agent. Both
agents begin exploring from the same initial position in the same scene for 500
steps. At each frame, we show a visually corrupted RGB observation seen by
the agent at each step. The predicted map is overlaid on the ground-truth map
to show its mapping performance. Lastly, the localization performance is shown
by the predicted trajectory drawn along with the ground-truth trajectory. The
result in the video proves that our agent is successfully transferred to the novel



MoDA 5

Gibson Speckle-Noise Gibson Low-Lighting MP3D Large Scene Scale

Fig. 1: Mapping (top) and Localization (bottom) result of SECANT+MoDA
comparable to Fig 5 of the main paper

environments with both visual and dynamics corruptions, outperforming the
pretrained agent deployed without any adaptation.
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