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Abstract. We propose a domain adaptation method, MoDA, which
adapts a pretrained embodied agent to a new, noisy environment with-
out ground-truth supervision. Map-based memory provides important
contextual information for visual navigation, and exhibits unique spa-
tial structure mainly composed of flat walls and rectangular obstacles.
Our adaptation approach encourages the inherent regularities on the
estimated maps to guide the agent to overcome the prevalent domain
discrepancy in a novel environment. Specifically, we propose an efficient
learning curriculum to handle the visual and dynamics corruptions in
an online manner, self-supervised with pseudo clean maps generated by
style transfer networks. Because the map-based representation provides
spatial knowledge for the agent’s policy, our formulation can deploy the
pretrained policy networks from simulators in a new setting. We evaluate
MoDA in various practical scenarios and show that our proposed method
quickly enhances the agent’s performance in downstream tasks including
localization, mapping, exploration, and point-goal navigation.

Keywords: Domain Adaptation, Self-Supervised Learning, Image Trans-
lation, Embodied Agent, Visual Navigation

1 Introduction

The absence of ground-truth labels is a critical bottleneck for training embodied
agents in complex 3D world. A widely-used alternative is to train the agents
in interactive simulators [41, 44] which can load various 3D indoor scenes [7,
41, 44]. Yet, when the agent optimized for a simulator is deployed in the real
world, it fails to persist its performance due to the various unseen environmental
noises [31]. The domain gap between simulators and the real world may be
diminished by modeling the environmental noises [9,30], but it is not possible to
obtain the correct noise model for the countless combinations of practical set-ups.
Nonetheless, the visual agents collect an enormous amount of unlabelled data
from 3D scenes over spatial movement. If an agent can transfer its performance
utilizing such data, the adaptation scheme can serve as a generic solution for an
embodied agent to serve in diverse real environments.
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Fig. 1: MoDA suggests an integrated domain adaptation method for visual and
dynamics corruptions, which fine-tunes an agent in an efficient learning curricu-
lum. The agent collects a new map dataset to learn map style transfer networks
(green). The agent is then trained for the new visual domain with ego style
transfer loss and flip consistency loss (yellow). Lastly, the dynamics domain
adaptation transfers the agent with global style transfer loss and temporal con-
sistency loss (blue).

Many studies in embodied agents have shown how the map-based memory
aids an agent for robust visual navigation [10, 32, 48]. The agent aligns its ego-
centric visual observations to generate a top-down map representing the envi-
ronment’s layout. The allocentric understanding helps the agent to localize itself
and plan for various navigation tasks efficiently. Furthermore, the map provides
a domain-agnostic representation, disentangling the agent’s perceptual module
from its planning. In a scenario where the pretrained agent is transferred to a
new, noisy environment with various visual and dynamics corruptions, we sug-
gest a domain adaptation method which only fine-tunes the domain-agnostic
map memory, rather than the overall pipeline of the embodied agent.

To compensate for the absence of ground-truth in the real world, we propose a
self-supervised domain adaptation method, MoDA. The proposed method trans-
fers the pretrained agent to the new, noisy environment by learning style transfer
networks on maps. Our objective is to learn the structural regularities of indoor
scenes from the clean maps obtained from the noiseless simulator. We then trans-
fer the style onto the new maps generated amidst visual and dynamics noises.
Our self-supervision loss compares the generated maps with the style-transferred
maps. More specifically, our method suggests a learning curriculum as shown in
Fig. 1. First, the agent is deployed to collect the noisy maps and learns two style
transfer networks for egocentric and global maps. We then transfer the agent
for the visual corruptions through the ego style loss, followed by compensating
for the dynamics corruptions with the global style loss. To stabilize the train-
ing, we additionally encourage the flip consistency on RGB observations and
temporal consistency over the agent’s movement. MoDA provides an integrated
self-supervised solution for both visual and dynamics corruptions and enables
online adaptation in an environment where the ground-truth is unavailable.
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We analyze MoDA in various domain adaptation scenarios where the pre-
trained agent is transferred to the novel environments with both visual and
dynamics corruptions. We investigate multiple types of visual corruptions along
with the two main dynamics corruptions, which are the odometry sensor noise
and actuation noise. Our experiments show that the proposed adaptation method
effectively enhances the embodied agents’ performance in localization, mapping,
and the downstream navigation tasks. To summarize, our main contributions
are as follows: i) we propose a self-supervised domain adaptation method using
map style transfer, ii) we suggest an efficient curriculum to learn an adaptation
integrated for visual and dynamics corruptions, and iii) we demonstrate that the
proposed approach enhances the agent’s performance in localization, mapping,
and the final downstream visual navigation tasks in novel, unseen environments.

2 Related Work

In this section, we describe existing approaches for our main task, visual navi-
gation and simulation-to-reality adaptation (Sim2Real), along with methods for
image translation which is the key technique of our work.

Visual Navigation The objective of visual navigation is to devise vision-based
mapping and planning policies for solving a designated task. Classical approaches
generate a map of the environment using SLAM techniques [5,18,19], and apply
planning algorithms [26, 35, 46] using the generated map. On the other hand,
recent learning-based approaches often train agents end-to-end with integrated
mapping and planning [9–11, 39]. These agents have shown competitive perfor-
mance in a wide variety of tasks such as embodied QA [15] and goal-oriented
navigation [10,39].

Maintaining a dedicated spatial memory unit is a key to such learning-based
navigation agents. The spatial structure of the surrounding environment is of-
ten implicitly encoded with LSTM or GRU [14, 27], or using graph structures
that embed keyframes as graph nodes [11, 13, 16, 40]. Nevertheless, map-based
memories that depict spatial information on occupancy grid maps [8–10,39] effi-
ciently aid embodied agents for tasks requiring long-range tracking and spatially-
grounded planning. We mainly retain our focus on map-based spatial memory
and propose a self-supervised task formulated on grid maps for effective domain
adaptation.

Sim2Real Simulators enable training an embodied agent with ground-truth poses
or labels. While recent simulators [41, 44] can realistically model the world to
a certain degree, there are non-idealities in agent and object dynamics. More
importantly, domain gap is inevitable when deploying an agent trained in simu-
lation to real-world environments. As a result, agents trained on simulators often
fail to generalize in real-word settings [31]. To alleviate Sim2Real gap, domain
randomization [12,45] proposes to train the agent in various dynamics and visual
simulations, which in turn allows the agent to observe a wide range of domains
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before actual deployment. Furthermore, representation learning techniques are
used to improve the generalization performance in the context of embodied agent
studies [17,20,25,42,43]. Alternatively, Hansen et al. [24] proposes to adapt the
policy during real-world deployment, using self-supervised objectives such as in-
verse dynamics and rotation prediction. Recently, Lee et al. [36] introduced a
self-supervised domain adaptation algorithm that is formulated upon occupancy
maps, which showed performance enhancement in various deployment scenar-
ios. However, Lee et al. [36] requires multiple agent round trips for successful
adaptation, which limits the practical usage of the algorithm.

We compare MoDA against existing approaches for adapting agents to Sim2Real
deployment and demonstrate that MoDA can perform effective adaptation with-
out mandating fixed agent trajectories such as round trips.

Image-to-Image Translation The goal of image-to-image translation is to transfer
an image from a source domain into the style of target domain but to maintain
its key contents. Early approaches such as Pix2Pix [29] propose to use generative
adversarial networks (GANs) [22] for paired image-to-image translation. Cycle-
GAN [50] aims to solve a more challenging problem of unpaired translation,
where only a group of source and target domain images are provided for train-
ing. To accommodate for the lack of paired data, CycleGAN [50] proposes a novel
cycle consistency loss that learns a forward and backward mapping simultane-
ously, leading to realistic image transfer. We leverage CycleGAN for transforming
occupancy grid maps to the target domain, which allows for effective map gener-
ation under new, unseen environments. While recent advances in image-to-image
translation enable high-resolution or multi-modal synthesis [28, 47, 51], we find
that CycleGAN [50] is sufficient for transferring between occupancy grid maps
that is not as diverse as real-world images.

3 Method

Given a pretrained agent from a noiseless simulator, MoDA transfers the agent
to unseen, noisy environments with visual and dynamics corruptions. We first
describe the overall pipeline of visual navigation with map-based memory in
Sec. 3.1. Then Sec. 3.2 describes our map-to-map style transfer network which
serves as the self-supervision signal. Lastly, Sec. 3.3 provides the learning cur-
riculum of our online domain adaptation.

3.1 Visual Navigation with Spatial Map Memory

MoDA builds on conventional map-based navigation agents, where the action
policy is planned based on map representation as shown in Fig. 2. The global
map is estimated from the mapping and localization models. At each step, the
RGB observation ot is given as an input to the mapping model fM which predicts
the egocentric map mt:

fM (ot) = mt. (1)
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Fig. 2: The structure of map-based navigation agent decouples the mapping and
localization models from the policy with the intermediate map memory (left).
We suggests a domain adaptation method which transfers an agent to a shifted
domain with visual and dynamics corruptions (right). Given the corrupted sen-
sory inputs, ot and st, our method only fine-tunes the agent’s mapping fM and
localization fL models with the self-supervision loss, encouraging the generated
ego-map mt and global map Mt to be similar to the style-transferred maps.

Given the odometry sensor measurement st, the localization model fL predicts
the 2D pose, pt = (x, y, ϕ), where (x, y) indicates the 2D coordinate and ϕ
denotes the 1D orientation. The localization model fL is represented as

fL(pt−1, st, {mt−1,mt}) = pt. (2)

Note that the predicted egocentric maps from the previous and current timesteps
{mt−1,mt} are given to obtain the pose prediction ∆pt = pt − pt−1. Then the
egocentric maps from the mapping model are transformed by the estimated poses
from the localization model and accumulated as a global map Mt:

Mt−1 ⊕ Tpt(mt) = Mt, (3)

where ⊕ represents the fusion of 2D grid maps. The representation of trans-
formation is simplified in Fig. 2. Then the policy module πψ plans an action
at = (ux, uy, uϕ) ∈ A. The policy is derived from the sensory inputs ot, st, the
agent’s current pose pt and the global map Mt,

πψ(ot, st, pt,Mt) = at. (4)

Nonetheless, many studies have shown that the policy is most dependent on the
map-based memory Mt, which is useful for long-range or complex navigation,
rather than the sensory inputs providing partial observability [4, 23,48].

The agent performs various tasks including mapping and localization using
the policy module trained in an ideal environment with ground-truth poses and
maps. However, in realistic environments, the overall architecture is disturbed
by two main types of corruption: visual and dynamics corruptions. The visual
corruptions on RGB observations make it difficult to predict egocentric maps
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while the dynamics corruptions on odometry readings and actuation degrade
the pose estimation. As the modular pipeline of map-based agents decouples
the policy from mapping and localization models with the intermediate spatial
memory, MoDA only fine-tunes the perceptual models, namely localization and
mapping, to learn the perturbations in measurements and generate a domain-
agnostic map for the subsequent policy.

Visual Corruptions Visual corruptions affect the RGB observation, which is
the input of the mapping model shown in Fig. 2. As a result, the egocentric
perception of the embodied agent suffers from the domain discrepancy. While
our adaptation does not assume any particular form of visual corruption, we test
our adaptation in scenarios that properly represent the wide varieties of possible
visual variations in the real world [12]. The tested scenarios are described in
Sec. 4.

Dynamics Corruptions Dynamics corruptions degrade the accuracy of the agent’s
pose estimated by the localization model, as shown in Fig. 2. The two main
sources of dynamics corruptions are the actuation and odometry sensor noises.
The actuation noise interrupts an agent from reaching the target location pro-
vided by the control commands. After an action, the agent’s ground-truth move-
ment ∆pt = ∆(xt, yt, ϕt) is defined as

∆(xt, yt, ϕt) = (ux, uy, uϕ) + ϵact, (5)

where (ux, uy, uϕ) and ϵact indicate the intended action control and the actuation
noise, respectively. Additionally, the odometry sensor noise ϵsen disturbs the
agent from accurately perceiving its own movement. The final pose reading with
the odometry sensor noise ϵsen is erroneously measured as

st = ∆(xt, yt, ϕt) + ϵsen. (6)

The actuation and odometry sensor noises are expected in all realistic settings
and many studies present realistic models for both types of dynamics corrup-
tions [12,21,33,41].

3.2 Unpaired Map-to-map Translation Network

The main objective of our self-supervised domain adaptation is to translate maps
observed from the new, noisy domain such that it recovers the noiseless structure
in the absence of paired data. The neural network learns to capture the structural
regularities of indoor scenes from the collection of ground-truth maps Dgt and
translate the learned characteristics into the collection of noisy maps Dnoisy.
The set of ground-truth maps Dgt is collected from a noiseless simulator. When
the pretrained agent is deployed in a new environment, it collects another set
of map data Dnoisy which is generated amidst visual and dynamics corruptions.
We adopt the unpaired image-to-image translation network suggested in [50] on
our maps. Since the formulation does not require one-to-one correspondences
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Fig. 3: Given the set of ground-truth maps Dgt(grey) obtained from the noiseless
simulator, the set of noisy mapsDnoisy(green) is collected by the pretrained agent
deployed in a novel environment amidst visual and dynamics corruptions. We
then learn two map-to-map translation networks for the egocentric map Sego

(yellow) and global map Sglobal (blue) to translate the maps in Dnoisy into the
style of the maps in Dgt

between the two sets, our domain adaptation is completely self-supervised and
successfully reasons about the stylistic difference between the two collections.

More specifically, we learn two map-to-map translation networks for the ego-
centric map Sego and the global map Sglobal as shown in Fig. 3. The egocentric
maps observe magnified views of the environment, and the style transfer net-
work Sego can help the agent to learn the detailed visual structure of the indoor
scene to train the mapping model fM against visual corruptions. The global
style transfer network Sglobal, on the other hand, enforces a globally coherent
structure over long-horizon navigation. The self-supervised loss on global maps
restricts the localization model fL from making erroneous predictions due to
dynamics corruptions.

The success of the style transfer loss is tightly coupled with the clear struc-
tural regularities within the desired set of map data, which are represented as
simple gray-scale images. We use different representations that contain more in-
formation in respective scenarios; the network learns over the explored area for
egocentric maps, whereas the obstacle maps are used for global maps. While the
two different representations are easily converted from one to the other given the
pose of the agent, the obstacle maps are much more sparse than the explored
area. Because the ego-maps cover smaller region, the obstacle maps cannot pro-
duce meaningful prior, consisting only about 6% of nonzero values on average
within the images. On the other hand, the large overlapping regions in explored
areas can be challenging in noisy global maps, whereas obstacle maps exhibit
clearly distinguished structure.

3.3 Curriculum Learning for Domain Adaptation

We design a sequential curriculum using the hierarchical structure of map-based
models as shown in Fig. 1. Once the agent collects the map data during its
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initial deployment up to time Tc, it then learns the two style transfer networks
for the new environment. In the next step, our self-supervised adaptation method
fine-tunes the perceptual module to robustly handle unknown corruptions. The
style transfer loss on the egocentric maps provides signals to adapt the mapping
model fM against visual corruptions. Additionally, we enforce flip consistency
on the RGB observations. Next, the global style transfer loss fine-tunes the
localization model fL up to time Td against dynamics corruptions, in addition
to the temporal consistency in the global map. The transferred agent then stably
performs various navigation tasks in the new, noisy environment.

Visual Domain Adaptation According to the learning curriculum, we first adapt
the mapping model for unknown visual changes in the new environments. The
style transfer network for the egocentric map Sego converts the predicted ego-
centric map mt into noiseless style. The ego style transfer loss minimizes the
discrepancy between the two maps:

Lego
st =

Tv∑
t=Tc+1

∥mt − Sego(mt)∥2, (7)

with Tv indicating the ending time of visual domain adaptation. In addition,
we fine-tune the feature extractor F of the mapping model fM along with a
consistency loss to stabilize the training. The flip consistency loss Lfc assumes
that the feature extractor should make consistent predictions over the flipped
observations [3, 37]. Specifically, when a horizontally flipped RGB observation,
flip(ot), and a non-flipped original observation, ot, are given as inputs, the es-
timated egocentric maps should be equal but flipped. We, therefore, define our
flip consistency loss as

Lfc =
Tv∑

t=Tc+1

∥flip(F (ot))− F (flip(ot))∥2, (8)

Together the visual domain adaptation transfers the mapping model of the pre-
trained agent with the visual domain loss

LV = λego
st Lego

st + λfcLfc. (9)

The values for hyper-parameters are provided in the supplementary material.

Dynamics Domain Adaptation In the next stage, we adapt the localization model
fL to the dynamics corruptions that are present in the new environment. The
agent generates a global map over its trajectory and encodes the predicted pose
information onto the map. Thus, by learning the structural priors from the style
transfer network, the agent can inversely learn to estimate more accurate pose.
Given the estimated and style-transferred global maps, the global style transfer
loss, Lglobal

st is formulated as

Lglobal
st =

Td∑
t=Tv+1

∥Mt − Sglobal(Mt)∥2. (10)
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Fig. 4: Visualization of RGB observations with visual corruptions: speckle noise,
low-lighting and large scene scale

where Td denotes the ending time of dynamics domain adaptation. Moreover,
we encourage the agent to generate consistent global maps over time. As the
pose error accumulates over time, the global map generated in the earlier step
encodes more accurate pose information over the global map generated in the
later step. The temporal consistency loss Ltc compares the generated global map
to the map from the previous time-step, and it is defined as

Ltc =
Td∑

t=Tv+1

∥Mt −Mt−1∥2. (11)

Therefore, the full objective of dynamics domain adaptation becomes

LD = λglobal
st Lglobal

st + λtcLtc, (12)

completing the final stage of suggested learning curriculum.

4 Experiments

We show the validity of MoDA using the navigation agent from Active Neural
SLAM [9] which is widely adapted for other navigation models [10,39]. Nonethe-
less, MoDA is applicable to various navigation agents with map-like memory. We
use the Habitat simulator [41]. The pretrained agent is trained on the standard
train split [41] of Gibson dataset [49] with ground-truth supervision. We split
the unseen scenes of Gibson and Matterport3D [7] for adaptation and evalua-
tion. The scenes for each split are listed in the supplementary material. MoDA
is implemented using Pytorch [38] and accelerated with an RTX 2080 GPU.

Visual and Dynamics Corruptions We evaluate the proposed method in three
environments where visual and dynamics corruptions are present. Each environ-
ment is distinguished by the three visual variations: speckle noise, low-lighting,
and scene scale change. Specifically, our experiments transfer the pretrained
agent in three types of variation visualized in Fig. 4. First, we apply image qual-
ity degradation, which may be caused by the physical condition of the mounted
camera. We generate low-quality RGB observations with additive speckle noises.
The second type of perturbation is the low-lighting condition to reflect the com-
mon light variations in the real world. We show if our agent can be transferred
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to low-lighting scenes by adjusting the contrast and brightness of the input
RGB image. Lastly, we evaluate if our pretrained agent from Gibson scenes can
generalize to different scene scale by transferring the agent to the scenes in Mat-
terport3D. While the Gibson scenes consist of scans collected from offices, the
scenes in Matterport3D generally consist of large-scale homes. As the dynamics
corruptions are seen in all realistic environments, we add the odometry sensor
and actuation noise models to all three scenarios. In our experiment, we use the
noise parameters generated from the actual physical deployment of LoCobot [1]
in previous work [9,31] and draw from a Gaussian Mixture Model at each step.

Baselines We extensively compare our agent, referred as “MoDA” to various
baselines. “No adaptation (NA)” reflects the performance degradation of the
un-adapted, pretrained model due to the domain gap. “Domain Randomiza-
tion (DR)” adapts the pretrained model with ground-truth supervision in a
randomized domain with various combinations of visual and dynamics corrup-
tions. “Policy Adaptation during Deployment (PAD)” proposed by Hansen et
al. [24] performs visual domain adaptation using an auxiliary task, namely ro-
tation prediction. As the original method mainly targets visual adaptation, we
further extend PAD for dynamics corruption by additionally training with our
dynamics adaptation method. Lastly, “Global Map Consistency (GMC)” from
Lee et al. [36] imposes global map consistency loss on round trip trajectories to
adapt to dynamics corruptions. Further details of baseline implementation are
explained in the supplementary material.

Tasks and Evaluation Metric We report the transferred agent’s localization and
mapping performance in the new, noisy environment. For fair comparison, we
evaluate each adaptation method on an identical set of trajectories obtained
from the un-adapted agent in each environment. Following [6, 34], localization
is evaluated with the median translation (x, y) and rotation (ϕ) error. Mapping
performance is evaluated with the mean squared error (MSE) of the generated
occupancy grid maps compared to the ground-truth.

We also demonstrate our adapted agent’s performance in downstream nav-
igation tasks. Following Chaplot et al. [9], we report exploration performance
using the explored area and explored area ratio after letting the agent to explore
for a fixed number of steps. In addition, we report the collision ratio, which is the
percentage of collisions from the agent’s total steps. We include the collision ratio
to distinguish simple random policy, which often results in undesirable collisions
coupled with sliding along the walls, and eventually explore large areas. We fur-
ther evaluate our agent on point-goal navigation(PointNav) as suggested in [2].
Here, we report the success rate and Success weighted by Path Length(SPL) [2].

We investigate MoDA in two settings, generalization and specialization, follow-
ing [8]. In our main experiment, generalization adapts the agent in a set of un-
seen scenes with unknown noises (Sec. 4.1). The trained agent is then evaluated
in a different set of novel scenes but with the same visual and dynamics corrup-
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Table 1: Generalization performance in the three new environments with speckle
noise, low-lighting, and scene scale change. All three scenes contain dynamic
corruptions not present in the original training setup of the pretrained agent

(a) Gibson Scenes Containing Speckle Noise and Dynamics Corruptions

Pose Map(MSE) Exploration PointNav

x, y(m) θ(◦) ego global area ratio collision success SPL

NA 0.16 15.02 1.11 0.32 28.45 0.82 0.40 0.12 0.10
DR 0.13 8.74 1.14 0.27 29.35 0.88 0.43 0.20 0.13
PAD 0.04 1.08 1.35 0.32 22.83 0.66 0.51 0.08 0.07
GMC 0.06 5.10 1.11 0.28 29.73 0.85 0.35 0.36 0.29
MoDA 0.04 2.61 1.08 0.25 28.63 0.82 0.36 0.56 0.47

(b) Gibson Scenes under Low-Lighting and Dynamics Corruptions

Pose Map(MSE) Exploration PointNav

x, y(m) θ(◦) ego global area ratio collision success SPL

NA 0.18 15.78 0.90 0.32 30.31 0.87 0.34 0.22 0.17
DR 0.14 7.60 0.96 0.26 29.95 0.88 0.41 0.20 0.14
PAD 0.05 2.17 1.02 0.27 26.88 0.78 0.37 0.22 0.18
GMC 0.06 5.39 0.90 0.28 32.45 0.91 0.32 0.46 0.37
MoDA 0.05 2.87 0.89 0.25 31.56 0.91 0.26 0.56 0.45

(c) MatterPort3D Scenes with Large Scene Scale and Dynamics Corruptions

Pose Map(MSE) Exploration PointNav

x, y(m) θ(◦) ego global area ratio collision success SPL

NA 0.17 14.42 1.07 0.39 52.16 0.45 0.44 0.04 0.02
DR 0.14 9.17 1.10 0.35 59.22 0.50 0.43 0.08 0.06
PAD 0.05 3.12 1.26 0.41 41.66 0.35 0.49 0.02 0.02
GMC 0.10 6.05 1.07 0.40 54.73 0.47 0.36 0.10 0.08
MoDA 0.05 2.34 1.02 0.31 63.68 0.54 0.28 0.22 0.18

tions. For specialization, the agent is fine-tuned and evaluated in the same set of
unseen scenes, but it starts from a different initial pose for evaluation (Sec. 4.2).

4.1 Task Adaptation to Noisy Environments: Generalization

In generalization, we test whether the adaptation method properly transfers the
agent to the existing visual and dynamics corruptions, and avoids over-fitting the
agents to the particular scenes. We compare our agent transferred to the three
new environments with MoDA, as shown in Table 1. MoDA shows significant
performance improvements in all three environments. By effectively fine-tuning
pretrained agents using style-transfer in the map domain, MoDA improves lo-
calization and mapping, further enhancing the downstream task performance
in pointNav and exploration. We additionally report the collision ratio to in-
vestigate our agent’s stability in exploration. Compared to the baselines, agent
trained by MoDA distinctively reports the low number of collision ratio during its
exploration steps. While NA and DR agents also show competitive exploration
performance, they also exhibit high collision ratios, which indicate instability.
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Table 2: Specialization result in the three new environments with speckle noise,
low-lighting, and scene scale change. All scenes contain dynamics corruptions

Gibson Speckle Noise Gibson Low-Lighting Matterport3D Large Scene Scale
Pose Map(MSE) PointNav Pose Map(MSE) PointNav Pose Map(MSE) PointNav

x, y(m) θ(◦) ego global success SPL x, y(m) θ(◦) ego global success SPL x, y(m) θ(◦) ego global success SPL

NA 0.17 15.25 1.10 0.30 0.18 0.16 0.17 14.44 0.87 0.29 0.18 0.17 0.16 15.04 1.09 0.38 0.04 0.03
DR 0.13 9.17 1.14 0.28 0.20 0.16 0.14 9.11 0.92 0.27 0.22 0.17 0.13 9.54 1.11 0.34 0.02 0.01
PAD 0.03 1.09 1.33 0.31 0.06 0.05 0.04 2.88 1.01 0.26 0.32 0.28 0.05 3.21 1.25 0.40 0.06 0.05
GMC 0.06 5.66 1.09 0.28 0.44 0.38 0.07 7.82 0.87 0.28 0.42 0.37 0.09 6.51 1.09 0.38 0.12 0.08
MoDA 0.04 2.54 1.08 0.25 0.56 0.47 0.06 3.24 0.85 0.25 0.54 0.47 0.04 2.21 1.03 0.31 0.22 0.17

Further, while GMC shows competitive performance against MoDA, it mandates
the agent to navigate in round trip trajectories for adaptation. MoDA performs
successful adaptation without such constraints, thus more practical than GMC.
As a result, our agent’s performance across all evaluation metrics confirms the
effectiveness of MoDA which successfully adapts to a new, shifted domain with
visual and dynamics corruptions.

In Fig. 5, we show the visualization of the estimated pose trajectory and
reconstructed global maps generated by the agents observing the same sequence
of RGB observations and odometry sensor readings. Our model better aligns
with the ground-truth compared to the baselines. MoDA compensates for both
visual and dynamics corruptions online without using ground-truth data.

4.2 Task Adaptation to Noisy Environments: Specialization

The specialization setting reflects the practical scenario where the agent is con-
tinuously deployed in the same scenes. In Table 2, we compare our agent’s perfor-
mance to baselines in localization, mapping, and PointNav. As in generalization,
we evaluate the models in three different environments where the dynamics cor-
ruptions and one of each visual corruptions are present.

MoDA successfully adapts in the specialization scenario by showing coherent
performance in localization, mapping, and PointNav. In localization, our model
outperforms the baselines except for PAD. Although PAD exhibits the lowest
pose estimation error in localization metric when evaluated on logged trajecto-
ries, it fails to outperform our model in mapping or PointNav. GMC shows the
performance enhancement in all metrics over the other baselines, yet underper-
forms compared to our model. While adapted and deployed in the same scenes,
our agent stably adapts to the visual corruption as shown from the ego-map pre-
diction result in all three environments. We also observe that our agent estimates
distinctively accurate poses, leading to generating an accurate global map. The
performance improvement in mapping and localization, which is tightly coupled
to the corruptions added to the observation, aids our agent to generate a more
accurate intermediate spatial map. Then, the enhanced domain-agnostic repre-
sentation further leads our model to outperform the baselines for the PointNav
task. Therefore we conclude that MoDA provides a powerful, integrated adap-
tion method for closing the domain gap from visual and dynamics corruptions
present in a realistic environment.
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Table 3: Ablation study on various loss functions employed in MoDA
Pose Map(MSE) PointNav

x, y(m) θ(◦) ego global success SPL

NA 0.16 15.02 1.11 0.32 0.12 0.10
NA + Lfc 0.16 15.01 1.12 0.32 0.20 0.16
NA + Lfc + Lego

st 0.16 14.98 1.08 0.31 0.20 0.17
NA + Lfc + Lego

st + Ltc 0.04 3.16 1.08 0.25 0.42 0.34

NA + Lfc + Lego
st + Ltc + Lglobal

st 0.04 2.61 1.08 0.25 0.56 0.47

4.3 Ablation study

In this section, we verify the effectiveness of each loss function in visual and
dynamics domain adaptation. In Table 3, we report the adaptation result of the
agent transferred to the environment with speckle noise visual corruption and dy-
namics corruptions. The overall experiment setup is the same as generalization.
Beginning from the pretrained agent, referred as “NA”, we gradually add the
four losses mentioned in Sec. 3.3. We first train the pretrained agent only with the
flip consistency loss Lfc, which improves the agent’s performance in localization
and PointNav, but not in mapping. However, the model trained with both flip
consistency loss Lfc and ego style transfer loss Lego

st results in the performance
enhancement in all evaluation metrics. This ablated model with Lfc and Lego

st

indicates that style transfer loss is more effective in adapting the agent during
the visual domain adaptation stage. The adaptation for visual perturbations,
which targets at predicting more accurate egocentric maps, also leads to the
improvement in the subsequent evaluation tasks, localization, global map pre-
diction and PointNav performance. The visually adapted agent is then trained
with the temporal consistency loss Ltc. The addition of Ltc effectively trans-
fers the agent for the dynamics corruptions. Nonetheless, our full model, jointly
trained with the global style transfer loss Lglobal

st , exhibits the best performance
in all metrics compared to all versions of ablated model.

5 Conclusion

In conclusion, we propose MoDA, a self-supervised domain adaptation method
which provides an integrated solution to adapt the pretrained embodied agents to
visual and dynamics corruptions. By transferring the noisy maps into clean-style
maps, the agent can successfully adapt to the new environment with additional
assistance with consistency loss. Our evaluation in generalization and specializa-
tion proves that MoDA is a powerful and practical domain adaptation method,
showing its applicability in the noisy real world in the absence of ground-truth.
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Gibson Scenes Containing Speckle Noise and Dynamics Corruptions

Gibson Scenes under Low-Lighting and Dynamics Corruptions

Matterport3D Scenes with Large Scene Scale and Dynamics Corruptions

NA DR PAD GMC MoDA

NA DR PAD GMC MoDA

NA DR PAD GMC MoDA

Fig. 5: Qualitative result of mapping (top) and localization (bottom) obtained
from agents observing the identical sequence of RGB observations and odometry
sensor readings. The reconstructed maps (blue) are aligned on the ground-truth
maps (grey), and the estimated pose trajectories (blue line) are compared to the
ground-truth trajectories (red line)
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