Housekeep: Appendix

A Comparison to other existing benchmarks

In table [I} we summarize and compare our work against several works in robotics
which model human preferences for assistive robots.

B Data Statistics

In this section we provide details about category level breakdown of objects and
receptacles.

B.1 High-level Object and Receptacle Categories

Table [2] details the high-level categorization and frequencies of object and recep-
tacles. We also provide one example of every high-level category, and the original
source of the data. We gather 2194 object and receptacle models from multiple
sources after filtering objects that are not useful for the task.

Object Filtering Details. We used category-based filtering for ReplicaCAD,
and AB datasets (e.g. sofa, bikes, etc) to remove unhelpful objects. Then, we
removed objects if any of their dimensions exceeded 50 meters. We also used
some manual filtering in order to remove very small objects (e.g. keychains).

B.2 Low-level Object Categories

Table [3]lists the object categories in each of the train, val-unseen and test-unseen
splits. The train split has 8 high-level categories, val-unseen has 2 high-level
categories and test-unseen split has 9 high-level categories.
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Table 1: Comparison of Housekeep to other rearrangement benchmarks

Object Object

# Benchmark Goal X Scenes Rooms Annotators
categories models
1 Transport Challenge [22]] Geometric 50 112 15 90-120 -
2 Habitat 2.0 [I65] Geometric 41 92 1 111 -
3 Behavior [|64] Predicate 391 1217 15 100 -
4 VRR [[71] Episodic 118 118 - 120 -
5 Taniguchi et al. [66[ Episodic 55 55 1 4 -
6 Jiang et al. [32] Human Preferences 19 47 - 20 3-5
7 My House, My Rules [133] Human Preferences 12 12 2 - 75
8 Housekeep Human Preferences 268 1799 14 105 372

Table 2: High-level categories.: This table lists the high-level categories of objects
and receptacles and the number of object/receptacle models from each data source for
each high-level category

High-level category |[No. of object Example No. of models
categories YCB [183] R-CAD [i65] iGibson [162] AB [13@] GSO [54]] Total
Objects
packaged food 37 condiment 10 3 0 0 48 61
fruit 8 peach 8 Q Q 0 ] 8
cooking utensil 14 dispensing closure 3 3 0 4 14 24
sanitary 19 bath sheet 2 2 0 1 34 39
crockery 8 tumbler 8 10 Q 8 22 48
cutlery 6 plate 4 3 ] 0 9 16
tool 14 scissors 11 [4 0 0 12 23
stationery 11 invitation card 1 6 Q 5 22 34
sporting 8 dumbbell 6 ] ] 27 ] 33
toy 36 video game 13 %] 0 0 282 295
electronic accessory 24 hard drive [ 1 0 45 95 141
storage 18 waste basket ] 2 Q 22 33 57
furnishing 3 cushion 0 2 2 222 1 227
decoration 9 string lights Q 2 21 59 51 133
apparel 8 shoe ] 10 0 2 266 278
appliance 23 thermal laminator 0 7 23 215 23 268
kitchen accessory 8 lime squeezer [ 2 (] 0 8 10
medical 5 antidepressant ] Q 0 0 66 66
cosmetic 9 face moisturizer 0 0 0 0 38 38
Receptacles
furniture 17 sofa 0 0 320 0 0 320
appliance 13 fridge 0 0 64 0 0 64
storage 2 basket Q Q 11 0 ] 11
Total 268 + 32 - 66 53 441 610 1024 2194




Table 3: Object

High-level category
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categories in train, val-unseen and test-unseen splits
Object categories

train

apparel
appliance

cooking utensil

cutlery

decoration

medical

packaged food

sporting

cloth, gloves, handbag, hat, heavy duty gloves, helmet, shoe, umbrella
camera, clock, coffeemaker, electric heater, fitness tracker wristband,
flashlight, hair dryer, hair straightener, instant camera, lamp, laptop,
light bulb, milk frother, portable speaker, router, set-top box,
shredder, stand mixer, table lamp, tablet, thermal laminator, toaster
virtual reality viewer

blender jar, bundt pan, casserole dish, dispensing closure, dutch oven,
pan, pitcher base, pressure cooker, ramekin, saute pan, skillet, skillet
lid, spatula, teapot

fork, knife, knife block, plate, saucer, spoon

candle holder, lantern, picture frame, plant, plant container, plant
saucer, string lights, surface saver ring, vase
antidepressant, dietary supplement, laxative,

guide

butter dish, cake mix, cake pan, candy, candy bar, cereal, chocolate,
chocolate box, chocolate milk pods, chocolate powder, coffee beans,
coffee pods, condiment, cracker box, donut, fondant, fruit snack,
gelatin box, heavy master chef can, herring fillets, master chef can,
mustard bottle, peppermint, pepsi can pack, pet food supplement, potted
meat can, pudding box, salt shaker, snack cake, sparkling water, sugar
box, sugar sprinkles, tea can pack, tea pods, tomato soup can, water
bottle, xylitol sweetener

baseball, dumbbell, dumbbell rack,
racquetball, softball, tennis ball

medicine, weight loss

golf ball, mini soccer ball,

val-unseen

kitchen accessory

sanitary

can opener, chopping board, dish drainer, honey dipper, lime squeezer
spoon rest, sushi mat, utensil holder

bath sheet, bleach cleanser, diaper pack, dishtowel, dustpan and brush,
electric toothbrush, incontinence pads, parchment sheet, sanitary pads,
soap dish, soap dispenser, sponge, sponge dish, tampons, toothbrush
holder, toothbrush pack, towel, washcloth, wipe warmer

test-unseen

cosmetic

crockery
electronic accessory

fruit
furnishing
stationery

storage

tool

toy

beard color gel, beauty pack, face moisturizer, hair color, hair
conditioner, lipstick, mascara, skin care product, skin moisturizer
bowl, cup, dog bowl, drink coaster, mug, stacking cups, tray, tumbler
battery, electronic adapter, electronic cable, graphics card, hard
drive, hard drive case, headphones, ink cartridge, keyboard, laptop
cover, laptop stand, motherboard, mouse, mouse pad, movie dvd, multiport
hub, phone armband case, phone stand, remote control, software cd,
tablet holder, tablet stand, usb drive, wireless accessory

apple, banana, lemon, orange, peach, pear, plum, strawberry

cushion, neck rest, pillow
book, crayon, file sorter,
large marker, letter holder,
case

backpack, bookend, box, canister, carrying case, cube storage box, desk
caddy, easter basket, jar, jewelry box, laundry box, lunch bag, lunch
box, paper bag, shoe box, snack dispenser, storage bin, waste basket
adjustable wrench, anti slip tape, chain, clamp, duct tape, flat
screwdriver, hammer, magnifying glass, measuring tape, padlock,
phillips screwdriver, power drill, scissors, vinyl tape

action figure, android figure, balancing cactus, board game, card game,
clay, colored wood blocks, dog chew toy, dollhouse toy, fingerpaint,
foam brick, hand bell, jenga, lego duplo, nine hole peg test, nintendo
switch, peg and hammer toy, puzzle game, rubiks cube, sidewalk chalk,
sorting toy, stuffed toy, toy airplane, toy animal, toy basketball, toy
bowling set, toy construction set, toy fishing, toy food, toy furniture
set, toy instrument, toy kitchen set, toy tool kit, toy vehicle, video
game, whale whistle

folder, invitation card,
paint bottle set,

labeling tape,
paint maker, pencil
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C AMT Human Preferences Dataset

In this section, we provide more details on our AMT study interface and perform
some analysis on the collected data. Our interface consists of an instructions
section and is followed by the main task section. After completing the task,
the participants are allowed to submit feedback on the interface and the task.
The video at https://www.youtube.com/watch?v=BcHmSzoNBYw walks through our
AMT data collection interface.

C.1 Participant Instructions

Before beginning the study, each participant is required to read the instructions section.
We show the full set of instructions we used during data collection in Figure[I] In our
instructions, we describe the tasks that need to be performed to successfully complete
a HIT (Human Intelligence Task; an AMT term for a unique task instance). As part of
a single HIT, the participants are required to complete 10 sub-tasks. For each sub-task,
the participant is given an object, a room and a list of receptacles within the given
room. The participant is required to classify these receptacles as correct, misplaced
and implausible locations. For the receptacles put into the correct and misplaced
bins, the participant is also required to provide a relative ordering between receptacles.

The instructions section includes an interactive example that the participants can
use to practice before they work on the actual tasks. As a part of our instructions, we
provide multiple examples of valid responses. We ask the participants to assume the
object is in its “base” state (e.g. utensils being clean, packaged food being unopened)
before making their placement decisions.

C.2 Task Interface

We now describe the task interface in detail. We use the same examples that were used
to train the participants.

Task Start: For each sub-task we display an object, a room name and four columns.
We show all receptacles to be categorized in the first column, with empty correct
and misplaced columns (ranked), and an empty implausible column. The object and
receptacles are displayed as rotating animated GIF's. Figure [2| shows a screenshot of
our task interface at the start of the task. In this example, the receptacles within the
kitchen are to be classified as being the correct, misplaced and implausible locations for
the alt shaker.


https://www.youtube.com/watch?v=BcHmSzoNBYw
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You need to complete 10 tasks for your hit. For each task you are given:
1.An object (e.g, salt shaker)
2.Aroom (eg.kitchen),
3. Alist of receptacles to place objects on in the given room (e.g. counter, table, cabinet).
As part of the task, you will answer questions about where objects might be found before and after cleaning a house:
1. Before: What are common locations in this room for the object to be left in a messy house? For example, food is left on the table in the dining room, toys can be
scattered on the carpet in the living room.
2. : Where is the object likely to be placed/stored in this room in a clean house? For example, a bowl should be placed in the cabinet of a kitchen.
3 : What are unlikely or impossible locations for the object to be found in any house? For example, you won't find an apple in the bathtub.

To answer these questions:
1. Drag the items (receptacles) from the left-most column and place them under one of the following three columns (Before, s ) depending on
where you feel they best fit.
2. Also rank the selected receptacles in the Before and columns in best at the top, to worst at the bottom order.
3.For completing the task, all items need to be moved to one of the last three columns (Before, / . ).

Now, please feel free to play around with the above interactable example (Example 1) and try placing the items under appropriate columns.
A sample response: Now we discuss how a possible response to the task in Example 1 could look like.

* The correct placements for the salt shaker could be the kitchen counter and top cabinet.

* Also, it makes more sense to place the salt shaker on the kitchen counter compared to placing it infon the bottom cabinet.So we will place counter higher than
bottom cabinet under the column.

« Also, itis likely that the salt shaker is misplaced on the kitchen table.

 Finally the salt shaker will never be placed/misplaced in the sink.

We request you to rank the items to the best of your ability, but we do understand that your preferences might vary. We are collecting data to capture the diversity in
preferences.

It is ok to have empty columns. In a few cases, it may be possible that it doesn't make sense to move any items in a particular column. Consider the following
example:

Example 2: You are given fork as the object and bathroom as the room.

Itis highly unlikely that the fork will be i inany of the within the bathroom. So, in this case, you would place all the items under the
column. So, Before and columns would remain empty.

You need to make the following assumptions:

* The object is in a clean/fresh state. For example, if the object given to you is a plate.

object: clean plate, room: kitchen
‘You must assume that the plate is clean and so, it is less likely to go in a kitchen sink. Similarly, assume that spoons are clean and fruits are fresh.
« Objects can be placed both infon a receptacle. For example, given a cabinet as the receptacle, objects can be placed both inside it and above it.
[ w”a

/

Other instructions:
* After completing the task, click on ‘Next' to move to the next task. You will be shown the next task with a different object, room and list of receptacles.
* You WILL NOT BE able to change your responses for a previous task after you hit 'Next". So, please ensure that the receptacles are correctly
assigned and ranked before moving on to the next task.
* Atthe end, you will be asked to share your feedback. Enter your feedback and hit 'Submit' to complete your hit!

Fig. 1: AMT Instructions page describing the task with illustrative examples.



object: salt shaker, room: kitchen

Please categorize all receptacles in this

column After (Ranked) Before (Ranked) Implausible (Unranked)

Fig.2: AMT starting interface for categorizing and ranking receptacles in the kitchen
for a salt shaker.

71

sink

counter

bottom cabinet

table

i

column After (Ranked)

r g

Before (Ranked) Implausible (Unranked)

Fig.3: AMT Example 1: A sample response for salt shaker on receptacles in the kitchen
provided as an example to the users.

object: clean fork, room: bathroom
Itis highly unlikely that the fork will b i in any of th pt jthin the bathroom. So, in this case, you would place all the items under the Implausible column. So, Before and After columns would remain
empty.
Please categorize all receptacles in this column

Before (Ranked) After (Ranked)

Fig.4: AMT Example 2: A sample response for clean fork on receptacles in the bathroom.

Implausible (Unranked)

Sample Response #1: Figure [3] shows a sample response for the task in Figure[2]
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Sample Response #2: Now consider the example in Figure [d] Here the given object
is fork and the given room is bathroom. Since any receptacle within the bathroom is
unlikely to be a correct/misplaced location for fork, all receptacles are placed under the
Implausible column.

C.3 Dataset statistics

We collect 10 annotations for each object-room pair. We consider that a room-receptacle
(e.g. kitchen-sink) is selected as being a correct/misplaced location for a given object
(e.g. sponge) if at least 6 annotators place the receptacle (e.g. sink) under the cor-
rect/misplaced column when shown the given object-room pair (e.g. sponge-kitchen).
Figure shows a histogram of objects across different numbers of room-receptacles
selected as correct or misplaced. We see that fewer room-receptacles are selected as cor-
rect placement of objects while most receptacles are selected as incorrect. Additionally,
for most objects (~70%), annotators selected fewer than 20 receptacles across all rooms
as correct. On the other hand, annotators tend to select 10-50 receptacles across all
rooms as incorrect placements for most objects. This is also confirmed by Figure [5b} It
shows the distribution of the number of room-receptacles selected as being the correct
and misplaced locations. More receptacles are selected as locations where objects are
misplaced compared to receptacles where objects are correctly placed.
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D Housekeep

D.1 Episode Generation

Algorithm [1| provides the logic used to generate an episode in Housekeep. We start with
an empty scene S furnished with receptacles, AMT data D, objects repository 0. Next,
we filter objects by keeping only the ones that have at least one correct receptacle in the
scene, and remove the others. After initializing an incorrectly placed object, we ensure
that the agent is able to rearrange and place it on at least one of the correct receptacles.
On the other hand, after initializing a correctly placed object, we just ensure that the
agent is able to navigate to within grasping distance of it.

Algorithm 1: Dataset Generation

1 import modules: episode E; human-data D; objects 0, scene S

2 input variables: misplaced objects n,,; correct objects n.

3 def build_episode(E, D, 0, S, Ny, Ne):

4 | # initialize and load modules

5 | E.init_empty(), D.load(), S.load(), 0.load()

6 | # keep only objects that have at least one correct receptacle in the scene
7 | objs = S.filter_objects(0,D)

8 # insert misplaced objects

9 | while len(E.objs) < n,,:

10 # sample object to misplace

11 obj = S.sample_misplaced_object()

12 # get corresponding correct and misplace receptacles

13 correct_recs, misplace_recs = S.get_recs(obj)

14 # place object for rearrangement, ensure it is solvable
15 if E.place(obj, misplace_recs) and E.check_solvable(obj):
16 LE.register(obj)

17 | # insert correctly placed objects
18 | while len(E.objs) < n,,*n.:

19 # sample object to place correctly

20 obj = S.sample_placed_object()

21 # get correct receptacles only

22 correct_recs, - = S.get_recs(obj)

23 # place object on correct receptacle, ensure it is graspable
24 if E.place(obj, correct_recs) and E.check_graspable(obj):
25 | E.register(obj)

D.2 Episode statistics

We analyze the generated train, val and test episodes. The val and test episodes include
high-level categories already seen in train episodes as well as a few novel high-level
categories (Figure @ Each episode in the train, val and test splits has 3 — 5 misplaced
objects. Our val and test episodes have slightly higher percentages of episodes with
4 or 5 misplaced objects compared to train episodes (Figure . A large fraction of
the misplaced objects in our episodes start in a bathroom, bedroom, kitchen or living
room. A large number of goal receptacles for the misplaced objects are located in the
kitchen This is expected since a large number of misplaced objects in a household
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Fig. 6: Episode Statistics. Analysis on misplaced objects in episodes and their start

and goal positions

usually are food or cooking-related (see Figure@, and kitchens usually have a large

number of receptacles.

Object-Receptacle Distances: Next, we visualize the distribution of geodesic dis-
tances from object to correct receptacles across all misplaced objects in all episodes.
The median distance in our test episodes is 5.36m (Figure and the median distance
to the closest correct receptacle (out of the 3-5 mispalced) in the test episodes is 0.62m

(Figure [7b).
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Fig. 7: Distribution of geodesic distance from start receptacle to (a) every goal (b)
closest goal.

D.3 Formal definitions of metrics

In Section [3.4] we informally described our evaluation metrics for Housekeep. Here, we
formally define the metrics for which more rigorous explanations are required.

For a given scene, R and O are the set of all receptacles and objects respectively.
Given an object o € O, let cor, Mo, respectively be the ratio of annotators who placed
receptacle 7 € R in correct and misplaced bins respectively. We call an object correctly
placed if cor > 0.5, and misplaced if mor > 0.5, where both cannot be simultaneously
true. We use:

e O,, for the set of objects which were initially misplaced in the episode.

e O, for the set of objects which were interacted with by the agent during the episode.

e O (0; UOy,) for the set of objects initially misplaced or interacted with by the
agent during the episode.

Finally, we define the final placement of the object o at the end of the episode via a
mapping function @ : O — R. The receptacle on which an object o € O is placed at
the end of the episode is given by &(o0)

Given the relative change in placement of objects between the start and end states
of the episode (S1 vs St), we can formally write the rearrangement metrics as:

1. Episode Success (ES): Strict binary (all or none) metric that is one if and only if
all objects are correctly placed, ES= [],co 1[co,a(0) > 0.5].

2. Object Success (0S): Fraction of the objects which were initially misplaced or
interacted with by the agent placed correctly at end of the episode,
0S= ZOGO,,”‘, ]l[Co,@(o) > 05}/‘Om1|

3. Soft Object Success (S0S): The ratio of reviewers that agree that every object
interacted with or initially misplaced is placed correctly averaged across all rearranged
objects, S0S= " o  Co,#(0)/|Omil- This metric is more lenient because it will be a
non-zero number even if just one annotator thought the mapping (o, ¢(0)) is correct.

4. Rearrange Quality (RQ): The normalized ranking in (0, 1] (via mean reciprocal
rank [15]) of the receptacle on which an object is placed, ranked among all correct re-
ceptacles of an object, if the object was correctly placed, 0 otherwise, averaged across
all initially misplaced or interacted objects. RQ= " o L[coa(o) > 0.5]mrre, 4, -
Intuitively, RQ will score higher those rearrangements that have a high overall rank
in the human preferences dataset.
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To formally define Pick and Place Efficiency (PPE), one of our exploration metrics,
we need a few extra definitions.

We define N : O; — {1,2,---} to be a function mapping an object o € O;
to the number of times it was picked or placed by the agent. We similarly define
Noin : O; — {0, 2} to be the minimum number of picks and places to place an object
0 € O; in a correct receptacle: it is 2 when o € O,, and 0 otherwise.

Pick and Place Efficiency (PPE): The minimum number of interactions needed
to rearrange an object divided by the number of interactions the agent actually took
to rearrange it if the object was placed in the correct receptacle by the agent at the
end of the episode, and 0 if the object was in the incorrect receptacle at the end of the
episode, averaged across all objects the agent interacted with. PPE = ZoEOi 1lco,p(0) >

0.5] g2l /10|

Nimin (0))

E Agent

We expand on low-level modules used in the agent for navigation and pick-place. We
also summarize the planning algorithm in Algorithm [2]

Algorithm 2: Planner

1 import modules: rank L; explore E; map M; navigate N; rearrange R; pick-place
P

2 variables: exploration steps n.; max steps n

3 def plan(t=0):

4 | while t < n: # stop when t=n at any line

5 # nothing to rearrange

6 if not R.rearrangements():

7 # explore for n. steps

8 for 1i in range(n.):

9 # take an exploration step

10 obs = E.act(M, N)

11 # update map and rearrange modules

12 M.update(obs); R.update(obs)

13 t=1t+ne

14 R.rescore(L) # update scores using L
15 else
16 # rearrange until finished
17 for r in R.rearrangements():

18 # object and correct receptacle

19 obj,rec = r.obj,r.rec
20 # nav & pick obj, then nav & place on rec
21 if N.nav(obj) & P.pick(obj) & N.nav(rec) & P.place(obj, rec):
22 LM.update(obs); R.update(obs)
23 t = t+n, # update steps
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E.1 Navigation

Navigation (N): Indoor navigation between two points (aka PointNav) is a well-studied
problem both in embodied AI [73,77,81] and classical robotics [14}/74.76]. Our navigation
module takes as input the allocentric map and a goal position (object, receptacle, or
frontier), and executes a sequence of low-level base control actions to reach the goal.

E.2 Pick-Place

Raycast for Pick-Place. When invoked, this action casts a ray 1.5m in front of the
agent. If the agent is not currently holding an object and this ray intersects with a
graspable object, then the object is now “held” by the agent. If the agent is already
holding an object and the ray intersects with a receptacle, then the object is placed on
that receptacle. Rather than place the object at the point selected on the receptacle,
the object is automatically placed on the receptacle.

Pick-Place (P): Our hierarchical baseline picks and places objects via the instance ID
of an object or receptacle currently in the view of the agent. The agent then orients itself
to face the desired instance ID via look up/down and turn left/right actions. Once the
desired instance ID is within the agent’s view, the agent calls the ray-cast interaction
action. The Pick-Place module fails if the agent is unable to view the object/receptacle
of interest or navigate to a place within interaction distance. However, we ensure all
episodes are solvable by an oracle agent, so this does not occur in the episodes on which
we run our hierarchical baseline. The Pick-Place module can also fail to place an object
on a receptacle if sufficient space is not available on the receptacle.

F Approach

F.1 ZS-MLM Prompts

We provide the prompts we try for the ZS-MLM baseline (described in for ranking
receptacles and rooms in ORR and OR tasks respectively. The prompts are evaluated
based on their ability to assign higher scores for the correct placements of objects in
the populated iGibson scenes. The best performing prompts are shown in bold.

For ORR task:

— “In <room>, store <object> <spatial-preposition> [mask]”
— “in <room>, put <object> <spatial-preposition> [mask]”
— “In <room>, usually you put <object> <spatial-preposition> [mask]”

For OR task:

— “The room where you find <object> is called [mask]”
— “The room where <object> is found is called [mask]”
— “In a house, the room where <object> is found is called [mask]”
— “In a house, the room where you find <object> is called [mask]”
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household, the room where you find <object> is called [mask]”

— “In a

— “In a household,

— “In a household,

— “In a household,

— “In a household, often, you
— “In a household,

— “In a household,

[mask]”

usually, the room where you find <object> is called [mask]”
usually, you can find <object> in the room called [mask]”

usually, you can find in a room called [mask]”

can find <object> in the room called [mask]”

likely, you can find in the room called [mask]”

it is likely that you can find <object> in the room called

— “Within a household, the room where you find <object> is called [mask]”

— “Within a household, often times you can find <object> in the room called

[mask]”

— “In
— “In
— “In
— “In
— “In

— uIn

a house, the room where

house, the room where

house, the room where

house, the room where

a
a
a house, the room where
a
a

house, the room where

<object> is kept is called [mask]”

you keep <object> is called [mask]”
<object> is stored is called [mask]”
you store <object> is called [mask]”
<object> is placed is called [mask]”

you place <object> is called [mask]”

F.2 LLM Ranking Module Hyperparameters

In Table[d] we provide the hyperparameters that we use to train the OR and ORR modules
using the contrastive matching (CM) strategy. Each method trained using CM is trained
on a single GPU for 1000 epochs and we choose the training checkpoint that gives
the best mAP score (evaluated as in Section on the validation set. In the case of
RoBERTa+CM, we use the pretrained roberta-base model and average the last-layer hidden
state at all positions (including the CLS token) to obtain the text embeddings.

Table 4: Hyperparameter choices for training the CM modules

N B S N N N e

Hyperparameter Value
Embedding size 768 (RoBERTa) / 300 (GloVe)
MLP hidden dimension 512

MLP out dimension 512

MLP hidden layers 2

Batch size 64

Optimizer Adam

Learning rate 0.01

Weight decay 0.2
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Table 5: Evaluation of exploration strategy on val split. RND: Random, FWR: Forward-
Right, FRT: Frontier

# Strategy 0s 1 MC 1 oc 1 PDE 1
1 RND 0.12 £ 0.01 43 +1 0.40 +£0.02 0.22 + 0.02
2 FWR 0.11 £ 001 38 +1 0.34 +£0.02 0.20 + 0.02

3 FRT 0.26 £ 0.01 8 +2 0.76 £0.02 0.33 £ 0.02

Table 6: Evaluation of rearrangement ordering on val split. DIS: DIScovery order, SCG:
Score Gain, A-0: Agent-Object distance, 0-R: Object-Receptacle distance

# Order 0s 1 PDE 1

DIS 0.27 +£0.01 0.35 &+ 0.02
SCG  0.26 + 0.01 0.34 &+ 0.02
A-0  0.25 £ 0.01 0.32 +0.02
0-R  0.25 +0.01 0.32 £ 0.02

N O N

G Additional Experiments

G.1 Exploration Strategies

In Section [4] we discussed the Explore module that used frontier exploration (FRT).
We evaluate 2 additional simple exploration strategies for a total of the following 3
strategies:

e frontier: Using the egocentric map we iteratively visit unexplored frontiers, fron-
tiers are defined as the edges between known and unknown space. We keep our
implementation details same as those used in [53].

e random: Executes a random action in the navigator.

e forward-right: Executes the forward action until a collision occurs, then turns right.

As we expect, from Table[f] we see that FRT outperforms RND and FWD in 0S, exploration
and efficiency metrics.

G.2 Planner Ablations

Rearrangement Ordering: In Section [d] when discussing the Rearrange submodule,
we mentioned 3 key decisions in the submodule. One of them was the order in which
misplaced objects are rearranged. In this section, we evaluate the following 4 ordering
schemes:

e score-diff: We sort rearrangements in decreasing order of score difference between
the current receptacle and best one.
e obj-dist: We sort rearrangements by the geodesic distance from agent to the object.
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Table 7: Evaluation of oracle ranking for ORR and OR tasks on test-unseen split. ORC:
Oracle, LM-0R: LLM for OR task, LM-ORR: LLM for ORR task, LM: LLM for both OR and
ORR tasks

# Strategy 0s 1 MC 1 oc 1 PDE 1

ORC 0.65 +0.01 74+1 0.74 £0.01 0.89 +0.01

]
2 LM-OR  0.63 £ 0.01 75 +1 0.76 £0.01 0.85 + 0.01
3 LM-ORR 0.32 +£0.01 74 +1 0.74 +£0.01 0.45 + 0.01
4 LM 0.23 £001 73+1 0.74 £0.01 0.35 +£0.01

e rearrange-dist: We sort rearrangements by the geodesic distance required to execute
the rearrangment.
e disc-time: We sort rearrangements by the time of discovery object.

In Table @, we see that the DIS rearrangement ordering performs slightly better
than the other orderings. We choose this ordering to run our main experiments.

Exploration Steps: One of the challenges in Housekeep is balancing the exploration-
exploitation trade-off; the agent must explore to find misplaced objects or suitable
receptacles, but also must exploit its existing knowledge of where objects belong. The
exploration module in our hierarchical baseline has an adjustable parameter n. that
controls the number of steps at the beginning of the episode used for exploration. This
parameter thus controls how long the agent spends exploring versus rearranging objects
according to a plan.

We find that fewer exploration steps is more effective. If the agent spends too long
exploring, then it will not have enough time to rearrange objects before the end of the
episode. e.g. when n. = 512, our Object Coverage (0C) is 80%, which is 4 points ahead
of the next best n.. However, its Object Success (0S) is the worst among the variants of
ne we evaluated. We found the best number of exploration steps to be n. = 16, achieving
higher performance in terms of object success (0S) than all n. < 16 and n. > 16.

G.3 Ranker Ablations

In Section [£:3] we discuss the OR and ORR tasks that are components of the ranking
task. To study the importance of each task in the embodied setting, we decompose
the Oracle Ranker in Table E which has an episode success (ES) of 35%, and find that
using the language model only for object room matching (LM-OR) drops ES only by 7%,
whereas using language model only for object-room receptacle matching (LM-ORR) drops
ES by 32%. This shows that ORR matching is more important for overall success.

H More Qualitative Analysis

LLM-based Ranker, Compounding Errors. Compared to oracle ranker (Table 3,
Row 1) language model (Table 3, Row 3) impacts object success (0S) by -56%, and



36

100

801

60 1

404

Success Rate (%)

201

1 2 3 4 5
# Rearranagements

Fig. 8: Episode Success (ES@K) vs. number of rearrangements (K) using non-oracle
baseline. As K increases, errors compound, and ES drops.

episode success (ES) by -96%. The dramatic drop in ES is expected as Housekeep is a
multi-step problem with compounding errors between rearrangements. That means,
with average 4 rearrangements necessary per episode and with 0S at 46%, ES will be
0.46* ~ 0.045 as seen. We analyze this in Figure [8| showing that ES@K drops with each
successive rearrangement attempt made.

H.1 Agent states and scene layouts

Figure@and Figurecontain similar plots to the ones in Figurethat were discussed in
Section [5.3] In particular, we notice that the layout of scene Beechwood_1 is significantly
more complex than that of Benevolence_1, which is the cause of the difference between
their object discovery plots as discussed in Section [5.3

I Egocentric rearrangement video

We attach an egocentric video (https://www.youtube.com/watch?v=XccBpQNGN1Q)
of the agent successfully rearranging all misplaced objects in an episode. The 3 overlays
on the left are, from top to bottom: the depth sensor, instance ID mask with semantic
information, and the allocentric top-down occupancy map used by the Mapping module
(see Section []). We also include text logs at the bottom left, showing the object
the agent is currently holding, the position and name of the object/receptacle it is
navigating towards, the action taken at each step, and whether it is exploring, navigating
(rearranging) or picking/placing.

The scene contains 4 misplaced objects: an Easter basket in the utility room table,
an electronic adapter and a padlock on the dryer, and a toy vehicle on the sofa. The
agent explores until 0:15. It then rearranges the Easter basket, the adapter and the
padlock by moving them to a shelf. It completes this rearrangement phase at 1:41, after
which it goes back to exploring until 2:07. It then moves the toy vehicle object to a
nearby shelf, after which it explores for the remainder of the episode.


https://www.youtube.com/watch?v=XccBpQNGN1Q
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Test scene: Beechwood_1

Agent State Object Discovery

250 500 750 1000
# Steps

Test scene: Benevolence_1

Agent State Object Discovery
- st

<0 250 500 750 1000

1000

# Steps # Steps
Agent state % of misplaced objects discovered
——
explore rearrange pick/drop 0 20 40 60 80 100

Fig. 9: Left column: visually depicting agent’s progress on 75 randomly-sampled episodes
from two test scenes, beechwood_1 and benevolence_1. Right column: corresponding test
scene layouts.

J Ranking module analysis

For the main results in the paper (Table|l|and Table , we used RoBERTa+CM as the
scoring function. In this section, we analyze the design choices and the performance of
our current ranking module.

J.1 Ablations

In Table[8] we analyze the effect of using different features as the language model text
embedding. Our results in the paper use features that are globally averaged over all
token positions of the language model (Avg-all). We perform experiments using the
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Test scene: |hlen_0

Agent State Object Discovery
n

250 500 750 1000 500 750 1000
# Steps # Steps

Test scene: Merom_0

Agent State Object Discovery
e Ty

0 250 500 750 1000 0 250 500 750 1000
# Steps # Steps

Agent state % of misplaced objects discovered

explore rearrange pick/drop 0 20 40 60 80 100
Fig. 10: Left column: visually depicting agent’s progress on 75 randomly-sampled
episodes from two test scenes, ihlen_@ and merom_@. Right column: corresponding test
scene layouts.

Table 8: Comparison of features. ORR and OR results on using different features as
text embeddings

ORR OR
# Features train val-u test-u train val-u test-u
1 CLS 0.80 0.79 0.79 0.72 0.61 0.66

2 Avg-all-exclude-CLS 0.82 0.79 0.80 1.0 0.61 0.66
3 Avg-all 0.81 079 081 1.0 0.65 0.65
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features at CLS token (CLS) and using features averaged at all positions except CLS
token (Avg-all-exclude-CLS). While the Avg-all-exclude-CLS features perform close
to Avg-all features, using CLS features results in poor performance on seen categories
for OR task.

Table 9: Comparison of language models. ORR and OR results with different language
models

ORR OR
# Method # LLM params. train val-u test-u train val-u test-u
1 RoBERTa-base+CM 125M 0.81 079 0.81 1.0 0.65 0.65
2 GPT2+CM 117TM 0.84 079 0.83 092 0.62 0.64
3 T5-base+CM 220M 0.85 082 0.84 095 0.69 0.68

Next, we replace the embeddings from RoBERTa-base model with embeddings
from GPT-2 and T5-base language models. Note that we use Avg-all features for all
language models. We find that using T5-base model results in superior performance on
both OR and ORR tasks (Table E[) The T5-base model has nearly double the number of
parameters in RoBERTa-base model. We compare to Th-base model because the next
smaller model, T5-small has 60 million parameters (half the number of parameters in
RoBERTa-base).

J.2 High-level category-wise performance

We now analyze the performance of our RoBERTa+CM scoring function across different
high-level categories. We compute mAP scores for OR and ORR tasks (as in Section |5.1))
and average them per high-level object category. While the scoring function performs
perfectly (mAP=1) on seen categories for the OR task, the OR task performance drops
for unseen high-level categories categories (Figure . In contrast, the mAP score is
close to 0.8 for most seen and unseen high-level categories (Figure . The test-unseen
high-level categories of fruit, furnishing and cosmetic have low mAP scores for both OR
and ORR tasks.

J.3 Generalization to unseen categories

In Table 2] we observed that the Object Success on unseen categories when using the
language model-based ranking function is comparable Object Success on seen categories.
We now provide qualitative examples showing the performance of our OR and ORR scoring
functions on unseen categories.

Figure shows the ranked list of rooms obtained for each object category using
our OR ranking function. We also indicate if the room is a valid room for the given
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Fig. 12: ORR performance of RoBERTa + CM across different high-level categories

(a) Category: scissors (b) Category: large (c) Category: banana

# Ranked list  Valid? marker # Ranked list Valid?
1 kitchen v # Ranked list  Valid? 1 kitchen v
2 clloset v 1 closet v/ 2 ga_rla_uge X
3 p ayroom X 2 kitchen v/ 3 utility room X
4 utility room v 3 garage v 4 closet X
5 dining room v 4 utility room v 5 dining room X
6 bedroom v 5 corridor v/ 6 bedroom X
7 home office v 6 bedroom v 7 childs room v
8 ga_rag‘e v 7 dining room v 8 pantry room X
9 childs room ; 8 childs room v 9 home office v
10 lp))an}tlry room 9 playroom v/ 10 ls.to.rage room X
11 l.aF room v 10 television room v/ 11 1v11}1g room X
}g tl\imgfoom ; 11 storage room v }g :)alt 11:(‘)40m ;
elevision room 12 home office v elevision room
14 IObb')é ; 13 living room v 14 c?rrldor X
15 corridor 14 pantry room x 15 playroom X
16 storage room v 15 bathroom v 16 lobby X
17 exercise room X 16 lobby v/ 17 exercise room X
17 exercise room X

Fig. 13: OR performance for unseen categories
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(a) Category: scissors (b) Category: large (c) Category: banana

Room: living room marker Room: kitchen
# Ranked list Valid?  Room: corridor # Ranked list Valid?
1 bottom cabinet v # Ranked list Valid? 1 shelf v
2 shelf X 1 shelf v/ 2 top cabinet‘ X
3 chest v 9 chest v 3 bottom cabinet X
4 console table X 3 washer X 4 chest X
5 table X 4 console table x 5 Co.unter 4
6 coffee table X 6 fridge X
5 table X
7 stool X 6 dryer x 7 oven ) X
8 loudspeaker X 7 chair X 8 coffee machine X
9 office chair X 9 sink X
8 carpet X
10 sofa X 10 stove X
11 chair X 11 table X
12 speaker system X 12 cooktop X
13 sofa chair X 13 carpet X
14 carpet X 14 dishwasher X
15 chair X
16 microwave X

Fig. 14: ORR performance for unseen categories

object. Recall that a room is considered valid if it contains at least one receptacle that
is deemed correct by at least 6/10 annotators. While the ranked lists for scissors (a
tool) and large marker (stationery) have the valid rooms on top, a few valid rooms are
further down in the list for banana (fruit category).

Figure [14] shows the ranked list of receptacles with the room for the given object-
room pair. These ranked lists are obtained using the ORR ranking function. We indicate
if the receptacle is a valid receptacle next to the receptacle’s name. For the shown
examples, most of the valid receptacles are on top of the ranked lists.
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