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Abstract. We introduce Housekeep, a benchmark to evaluate common-
sense reasoning in the home for embodied AI. In Housekeep, an embodied
agent must tidy a house by rearranging misplaced objects without explicit
instructions specifying which objects need to be rearranged. Instead, the
agent must learn from and is evaluated against human preferences of
which objects belong where in a tidy house. Specifically, we collect a
dataset of where humans typically place objects in tidy and untidy houses
constituting 1799 objects, 268 object categories, 585 placements, and 105
rooms. Next, we propose a modular baseline approach for Housekeep that
integrates planning, exploration, and navigation. It leverages a fine-tuned
large language model (LLM) trained on an internet text corpus for effec-
tive planning. We find that our baseline planner generalizes to some extent
when rearranging objects in unknown environments. See our webpage for
code, data and more details: https://yashkant.github.io/housekeep/

1 Introduction

Imagine your house after a big party: there are dirty dishes on the dining table,
cups left on the couch, and maybe a board game lying on the coffee table.
Wouldn’t it be nice for a household robot to clean up the house without needing
explicit instructions specifying which objects are to be rearranged?

Building AI reasoning systems that can perform such housekeeping tasks
is an important scientific goal that has seen a lot of recent interest from the
embodied AI community. The community has recently tackled various problems
such as navigation [3, 7, 21, 33, 46, 69], interaction and manipulation [19, 64],
instruction following [4,62], and embodied question answering [17,22,71]. Each
of these tasks defines a goal, e.g. navigating to a given location, moving objects
to correct locations, or answering a question correctly. However, defining a goal
for tidying a messy house is more tedious – one will have to write down a rule for
where every object can or cannot be kept. Previous works in semantic reasoning
frameworks for physical and relational commonsense [1, 9, 10, 16, 38, 39] are often
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Fig. 1: In Housekeep, an agent is spawned in an untidy environment and tasked with
rearranging objects to suitable locations without explicit instructions. The agent explores
the scene and discovers misplaced objects, correctly placed objects, and receptacles
where objects belong. The agent rearranges a misplaced object (like a lunch box on the
floor in the kid’s room) to a better receptacle like the top cabinet in the kitchen.

limited to specific settings (e.g . evaluating multi-relational embeddings) without
instantiating these tasks in a physically plausible scenario, or by not capturing
the full context of a complete household (e.g . table-top organization). We believe
the time may be right to bridge the gap between the above two lines of research.

We introduce the Housekeep task to benchmark the ability of embodied AI
agents to use physical commonsense reasoning and infer rearrangement goals that
mimic human-preferred placements of objects in indoor environments. Figure 1
illustrates our task, where the Fetch robot is randomly spawned in an unknown
house that contains unseen objects. Without explicit instructions, the agent
must then discover objects placed in the house, classify the misplaced ones
(LEGO set and lunch bag in Figure 1), and finally rearrange them to one of
many suitable receptacles (matching color-coded square). We collect a dataset
of human preferences of object placements in tidy and untidy homes and use
this dataset for: a) generating semantically meaningful initializations of unclean
houses, and b) defining evaluation criteria for what constitutes a clean house. This
dataset contains rearrangement preferences for 1799 objects, in 585 placements,
in 105 rooms, constituting 1500+ hours of effort from 372 total annotators with
268 object categories curated from the Amazon-Berkeley [29], YCB objects [77],
Google Scanned Objects [53], and iGibson [61] datasets. Housekeep evaluates
how an agent is able to rearrange novel objects not seen during training.

Housekeep is a challenging task for several reasons. First, agents need to
reason about the correct placement of novel objects. Second, agents in Housekeep
must operate in unseen environments using only egocentric visual observations.
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In the absence of any goal specification, the agent must explore areas that get
cluttered frequently (e.g . coffee table, kitchen counter) for discovering potentially
misplaced objects, and also find their suitable receptacles. Finally, since the
environment is partially observable, the agent must continuously re-plan for when
and where to rearrange objects via commonsense reasoning. For instance, on
discovering a toy on the coffee table in the living room, the agent may choose to
not rearrange it immediately if it hasn’t discovered a more suitable receptacle
such as the closet in the kid’s room yet. The agent also has to reason about
multiple potentially correct receptacles for any given object. For example, a toy
could go in the closet in the master bedroom or in the kid’s room.

We propose a modular baseline and demonstrate that embodied (physical)
commonsense extracted from large language models (LLMs) [11, 40] or tradi-
tional GloVe [49] vectors serves as an effective planner. Specifically, we find that
finetuning these embeddings on a subset of human preferences generalizes well,
and helps to reason about correct rearrangements for novel objects never seen
during training. We integrate this planning module into a hierarchical policy
that coordinates navigation, exploration, and planning as a baseline approach to
Housekeep. Our hierarchical approach with the aid of few perfect sensors achieves
an object success rate of 0.23 for unseen (versus 0.30 on seen objects). We also
qualitatively analyze different failure cases of our baseline.

2 Related Work

Embodied AI Tasks. In recent times, we have seen a proliferation of Embodied
AI tasks. Benchmarks on indoor navigation use point-goal specification [24,60],
object-goal [7, 69], room navigation [46], and language-guided navigation [4,66].
Some interactive tasks study the agent’s ability to follow natural language instruc-
tion such as ALFRED [62] and TEACh [48] while others focus on rearranging
objects following a geometric goal or predicate based specification [21,63,64,70]. [6]
provides a summary of rearrangement tasks. All these tasks require an explicit
goal specification lifting the burden of learning semantic compatibility of objects
and their locations in the house from the agent. In contrast, in this work, we
argue that agents shouldn’t require an explicit goal specification to perform
household tasks such as tidying up the house. Instead, it should use its common
sense knowledge to infer the human-preferred goal state.

Capturing Human Preferences. Several works (summarized in Appendix
A) in robotics model human preferences for assistive robots. Some [31] looked at
furniture rearrangement based on surrounding human activities (e.g . standing by
the kitchen shelf) while others [1,32] looked at table-top or a shelf rearrangement
conditioned on a user. We differ from these works because we are interested in
tidying up entire houses instead of a particular shelf or a table-top. In addition,
the agent needs to operate with partial observations, and generalize to unseen
environments and object types. [65] comes closest to our work. They learn a
spatial model of object placements in a tidy environment. Our benchmark has a
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larger scale (1799 objects spanning 268 categories vs ≤ 55 object instances; 100+
room configurations vs 1 scene in [65]). Our benchmark also tests generalization
to unseen objects, utilizing a dataset of human preferences instead of learning
from a small set of tidy house instances. Dealing with unseen objects is important
for real applications since humans can bring new objects into the home.

Commonsense Reasoning. Prior work in Natural Language Processing
has studied the problem of imbuing commonsense knowledge in AI systems,
from social common-sense knowledge [10, 35, 56, 58, 59, 73] to understand the
likely intents, goals, and social dynamics of people, abductive commonsense
reasoning [8], next event prediction [74,75], to temporal common sense knowledge
about temporal order, duration, and frequency of events [2,23,44,76]. Most similar
to our work is the study of physical commonsense knowledge [9] about object
affordances, interaction, and properties (such as flexibility, curvature, porousness).
However, these benchmarks are static in nature (as a dataset of textual or visual
prompts). Our task, on the other hand, is instantiated in an embodied interactive
environment and more realistic – the environment is partially observed, and
the agent has to explore unseen regions, discover misplaced objects and use
common-sense reasoning to infer compatibility between objects and receptacles.

Application of Large Language Models. With the introduction of Trans-
former [67] style architectures, we have seen a diverse range of applications of
large language models (LLMs) pre-trained on web-scale textual data. They have
not only performed well on natural language processing tasks [40, 67], but the
implicit knowledge learned by these models have shown to be effective for other
unrelated tasks [42]. LLMs has had a lot of success in vision-and-language tasks
like Visual Question Answering (VQA) [41, 68] and image captioning [27, 37],
external knowledge-based question answering [11,54] and construction [10]. They
have also been shown to improve performance on Embodied AI tasks like vision-
and-language navigation [43, 45], instruction following [25], and planning for
embodied tasks [28,36]. In our work, we explore if language models can display
common-sense knowledge of how humans prefer to tidy up their homes.

3 Housekeep: Task and Dataset

Here, we define the Housekeep task and its instantiation in the Habitat [60, 64].

3.1 Task Specification

Definition: Recall, in Housekeep an embodied agent is required to clean up the
house by rearranging misplaced objects to their correct location within a limited
number of time steps. The agent is spawned randomly in an unseen environment
and has to explore the environment to find misplaced objects and put them in
their correct locations (receptacles).
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Scenes and Rooms: We use 14 interactive and realistic iGibson scenes [61].
These scenes span 17 room types (e.g . living room, garage) and contain multiple
rooms with an average of 7.5 rooms per scene. We remove one scene from the
original iGibson dataset (benevolence 0 int) because it’s unfurnished.

Receptacles: We define receptacles as flat horizontal surfaces in a household
(furniture, appliances) where objects can be found – misplaced or correctly placed.
We remove assets that are neither objects nor receptacles (e.g . windows, paintings,
etc) and end up with 395 unique receptacles spread over 32 categories. An iGibson
scene can contain between 19-78 receptacles. Notice that a valid object-receptacle
placement requires the additional context of what room the receptacle is situated
in. For example, a counter in the kitchen is a suitable receptacle to place a fruit
basket, however, a counter in the bathroom may not be. Hence, we care about the
diversity in combinations of room-receptacle occurrences for Housekeep. Overall,
there are 128 distinct room-receptacles in the iGibson scenes.

Objects: We collect objects from four popular asset repositories – Amazon
Berkeley Objects [29], Google Scanned Objects [53], ReplicaCAD [64], and YCB
Objects [12]. We filter out objects with large dimensions (e.g . ladders, televisions),
and objects that do not usually move in a household (e.g . garbage cans). After
filtering, we have 1799 unique objects spread across 268 categories. We further
categorize these objects into 19 high-level semantic categories such as stationery,
food, electronics, toys, etc. More details about the filtering, semantic classes, and
high/low-level object categories are in the Appendix B.

Agent: We simulate a Fetch robot [55], which has a wheeled base with a
7-DoF arm manipulator, parallel-jaw gripper, and an RGBD camera (90◦ FoV,
128×128 pixels) on the robot’s head. The robot moves its base and head through
five discrete actions – move forward by 0.25m, rotate base right or left by 10◦,
rotate head camera up or down (pitch) by 10◦. The robot interacts with objects
through a “magic pointer abstraction” [6] where at any step the robot can select
a discrete “interact” action. We provide more details in Appendix E.2.

3.2 Human Preferences Dataset: Where Do Objects Belong?

The central challenge of Housekeep is understanding how humans prefer to put
everyday household objects in an organized and disorganized house. We want
to capture where objects are typically found in an unorganized house (before
tidying the house), and in a tidy house where objects are kept in their correct
position (after the person has tidied the house). To this end, we run a study
on Amazon MTurk [15,57] with 372 participants. Each participant is shown an
object (e.g . salt-shaker), a room (e.g . kitchen) for context, and asked to classify
all the receptacles present in the room into the following categories:

• misplaced: subset of receptacles where object is found before housekeeping.
• correct: subset of receptacles where object is found after housekeeping.
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(a) Object Category Agreement (b) High-Level Category Agreement

Fig. 2: Analysis of agreement between reviewer ratings in the Housekeep human rear-
rangement preferences dataset.

• implausible: subset of receptacles where object is unlikely to be found either
in a clean or an untidy house.

We also ask each participant to rank receptacles classified under misplaced and
correct. For example, given a can of food, someone may prefer placing it in
kitchen cabinets while others will rank pantry over the kitchen cabinet.

For each object-room pair (268× 17), we collect 10 human annotations. We
collect human annotations through multiple batches of smaller annotation tasks.
In a single annotation task, we ask participants to classify-then-rank receptacles
for 10 randomly sampled object-room pairs. On average a participant took 21
minutes to complete one annotation task. Overall, participants spent 1633 hours
doing our study. Appendix C provides more details about the instructions page,
user interface, training videos, and FAQs provided in the beginning of the task.

Agreement analysis. We evaluate the quality of our human annotations, using
the Fleiss’ kappa (FK) metric [20], which is widely used to assess the reliability of
agreement between raters when classifying items. Recall that we collect 10 anno-
tations to classify receptacles for each object-room pair into correct, misplaced,
or incompatible bins. In Figure 2a, we report FK agreement per object across
all room-receptacle pairs (269 × 128) after keeping 8/10 annotations with the
highest inter-human agreement. We use the agreement ranges proposed by [34] to
interpret the FK scores. We also show agreement when combining the misplaced
and implausible categories. Figure 2a demonstrates about 90% of our collected
data has fair to moderate agreement between annotators. Figure 2b shows the
mean agreement for high-level semantic categories. The agreement is higher
for sporting, tool, and stationery categories because they go to specific places
(office desks, garage, etc). The agreement is low for objects like fruits, medicines,
packaged foods because people differ in where they like to keep these objects
(packaged food can go in cabinets, shelves, kitchen counters, refrigerators). Over-
all, these results indicate that our data defines a high-quality source of ground
truth rearrangement preferences agreed upon by the majority of annotators.
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3.3 Episodes

Each Housekeep episode is created by instantiating 7-10 objects within a scene,
out of which 3-5 objects are misplaced and the remaining are placed correctly.
Next, we concretely define the notions of correct and misplaced objects. For a
given scene, let R be the set of receptacles available, and O be the set of all the
objects which could be instantiated on these. Given an object o ∈ O, let cor, mor

respectively be the ratio of annotators who placed receptacle r ∈ R in correct
and misplaced bins respectively. We call an object correctly placed if cor > 0.5,
and misplaced if mor > 0.5, where both cannot be simultaneously true.

Splits: We create three non-overlapping sets of objects – seen (fork, gloves,
etc.), val-unseen (chopping board, dishtowel, etc.), and test-unseen (banana,
scissors, etc.). seen, val-unseen and test-unseen contains 8, 2 and 9 high-level
object categories respectively. Note that only 40% of all objects are provided for
training, making Housekeep a strong benchmark to test generalization to unseen
objects.

We also split the 14 scenes into train, val and test with 8:2:4 scenes each
respectively. We provide five different splits to test agents on a wide array of
commonsense reasoning and rearrangement capabilities.

• train: 9K episodes with seen objects and train scenes
• val-seen: 200 episodes with seen objects and val scenes
• val-unseen: 200 episodes with unseen objects and val scenes
• test-seen: 800 episodes with seen objects and test scenes
• test-unseen: 800 episodes with unseen objects and test scenes

More details on episode statistics, and generation are in Appendix D.

3.4 Evaluation

We evaluate agents in three different dimensions of rearrangement quality, effi-
ciency, and exploration. All metrics are reported per episode and then aggregated
across multiple episodes to report averages and standard errors. While we only
describe these metrics informally here, a more nuanced discussion with formal
definitions for these can be found in Appendix D.3.

Metrics for Rearrangement. These metrics evaluate the relative change in
the placement of objects between start and end states of the episode.

• Episode Success (ES): Strict binary (all or none) metric that is one if and
only if all objects (irrespective of whether initially misplaced or correctly
placed) in the episode are correctly placed at the end of the episode.

• Object Success (OS): Fraction of the objects placed correctly.
• Soft Object Success (SOS): The ratio of reviewers that agree that an object
is placed correctly.
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• Rearrange Quality (RQ): A normalized value in [0, 1] (via mean reciprocal
rank [14]) is given to each object-receptacle based on the ranking collected
from human preferences, 0 is given if misplaced.

Metrics OS, SOS and RQ are averaged across objects that are initially misplaced
or ever picked up by the agent during the episode.

Exploration and Efficiency Metrics: We also study how well the agent
explores an unseen environment as well as efficiency at rearranging objects.

• Map Coverage (MC): The % of the navigable map area explored.
• Misplaced Objects Coverage (MOC): The fraction of misplaced objects
discovered. Agent discovers an object when it appears in FoV at any point.

• Pick and Place Efficiency (PPE): The minimum number of picks and places
required to solve the episode divided by the number of picks and places made
by agent in the episode.

4 Methods

In this section, we describe our hierarchical baseline for the Housekeep benchmark.
Our baseline breaks the multi-stage rearrangement into three natural components:
a) exploration and mapping, b) planning, and c) navigation and rearrangement.
The planning module communicates with all the other modules and determines
what the agent does (explore or rearrange). Before we dive into the details of
our baseline, we discuss some additional sensors that our baseline has access to.
Additional Sensors: In the Housekeep specification the agent operates from an
RGBD sensor. However, to scope the problem and focus on the planning and
commonsense reasoning we allow access to the following:

• semantic and instance sensor: Provides two pixel-wise masks aligned with
egocentric RGB observations. The semantic segmentation mask maps every
pixel to an object or receptacle category (e.g . bowl, cabinet). The instance
mask maps every pixel to a unique instance ID, which helps to disambiguate
between instances of the same object/receptacle category.

• relationship sensor: Given instance IDs of an object and a receptacle in the
egocentric view, the relationship sensor predicts a binary value if the object is
on top of the receptacle or not.

• receptacle-room map: Receptacles are static within a scene, so we also assume
access to a mapping that provides us with the room name for any receptacle
discovered (e.g . an oven maps to the kitchen).

In the future, these sensors can be easily swapped with their learned counterparts.
[13,30] demonstrate it is possible to learn a segmentation sensor for indoor scenes,
and [5] shows it is possible to learn to infer relationships between 3D objects.
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4.1 Mapping and Exploration

Mapping: At the start of an episode, this module initializes an empty top-down
allocentric map. As the agent navigates through the environment, it continuously
updates the map at each step using egocentric observations and camera projection
matrix. We further use the RGBD-aligned pixel-wise instance and semantic masks
to localize objects and receptacles and update our allocentric map with them.
Finally, the mapping module also keeps track of the room and relationship
information of discovered objects and receptacles via the relationship sensor and
known receptacle-room map.

Exploration: To discover misplaced objects as well as suitable receptacles to
place them on, our exploration module aims to maximize the area on the map
it has seen. This module only requires the hyperparameter ne — the number of
exploration steps — as input and executes low-level actions via the navigation
module. We use frontier-based exploration [72] (FRT) for our main experiments,
which iteratively visits unexplored frontiers, which are the edges between visited
and unvisited space. We keep our implementation details same as those in [52].

4.2 Planning

Our planner communicates with all the modules to build a high-level rearrange-
ment plan that the agent follows. It consists of:

Rearrange submodule: Stores a list of locations of discovered objects and
receptacles. From this list, it produces a list of object-receptacle pairs indicating
the order of rearrangements to perform. There are 3 key decisions the rearrange
submodule needs to make to create this list: 1) what objects are misplaced, 2)
what order to arrange misplaced objects, and 3) what receptacle to place each
misplaced object on. It makes these decisions via a Ranker submodule which
ranks potential object-receptacle pairings by modeling the joint distribution
P(receptacle, room|object). To solve (3), for a given object the agent picks the
receptacle in the room with the highest joint probability. We model the joint
distribution of the receptacle and room because the context of a receptacle will
change based on the room. For example, a plate belongs on the counter in the
kitchen, but not a counter in the bathroom. Section 4.3 describes how we compute
P(receptacle, room|object), and also how we solve (1). To solve (2), we evaluate
4 heuristic orderings which are described in Appendix G.2.

Planner submodule: At any given step, the planner decides to explore only if
there are no more pending rearrangements. The agent explores for a fixed number
of steps (ne). Intuitively, higher values of ne will encourage the agent to explore
the environment at the beginning of the episode whereas lower values of ne will
encourage the agent to rearrange as soon as a better receptacle is found. While
exploring, the planner ensures that map and rearrange modules are synchronized
at each step. At the end of the exploration phase, the planner uses the rank (L)
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module to update compatibility scores by considering newly discovered objects
and receptacles. We provide the planner pseudocode in Algorithm 2.

Navigation and Pick-Place: Please see Appendix E for details.

4.3 Extracting Embodied Commonsense from LLMs

One of the main goals of Housekeep is to equip the agent with commonsense
knowledge to reason about the compatibility of an object with different recepta-
cles present across different rooms. Large Language Models (LLMs) trained on
unstructured web-corpora have been shown to work well for several embodied AI
tasks like navigation [25,26,28,36,43]. We study whether we can use LLMs to
extract physical (embodied) common sense about how humans prefer to rearrange
objects to tidy a house. For this, we build a ranking module (L) which takes as in-
put a list of objects and a list of receptacles in rooms and then outputs a sequence
of desired rearrangements based on which object receptacle pairings are most
likely. We select the rearrangements that maximize P(receptacle, room|object).
We decompose computing this probability into a product of two probabilities:

• Object Room [OR] -- P(room|object) : Generate compatibility scores for
rooms for a given object.

• Object Room Receptacle [ORR] -- P(receptacle|object, room): Generate
compatibility scores for receptacles within a given room and for a given object.

Both of these are learned from the human rearrangement preferences dataset.
From the compatibility scores in the ORR task, we first determine which objects
in our list of objects are misplaced and which are correctly placed. To do this, we
compute a hyperparameter sL — the score threshold — from our val episodes
using a grid search. Receptacles whose scores are above sL for a given object-room
pair are marked as correct, while those whose scores are below sL are marked as
incorrect. We then treat this as a classification task and pick sL that maximizes
the F1 score on the val episodes.

Next, to determine the ranking of receptacles for a given misplaced object,
we use the probabilities from both the OR and ORR tasks. For a given object,
we first rank the rooms in descending order of P(room|object). Then, for each
object-room pair in the ranked room list, we rank the correct receptacles in the
room in descending order of P(receptacle|object, room). Finally, we place the
incorrect receptacles at the end of our list.

To learn the probability scores in the OR and ORR tasks, we start by extracting
word embeddings from a pretrained RoBERTa LLM [40] of all objects, receptacles.
We experiment with various contextual prompts [50,51] for extracting embeddings
of paired room-receptacle (e.g . “<receptacle> of <room>”) and object-room
(e.g . “<object> in <room>”) combinations. Next, we implemented the following
2 methods of using these embeddings to get the final compatibility scores:

Zero-Shot Ranking via MLM (ZS-MLM). Masked Language Modeling (MLM)
is used extensively for pretraining LLMs [18, 40], which involves predicting a
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masked word (i.e. [mask]) given the surrounding context words. This objective
can be extended for zero-shot ranking using various contextual prompts. We use
a frozen LLM to compute log-likelihood scores of prompts and use these scores to
rank rooms and receptacles for the OR and ORR tasks. For ORR, we use the prompt
“in <room>, usually you put <object> <spatial-preposition> [mask]” to
rank receptacles given an object, a room, and a spatial preposition (e.g . in or
on). For OR, we use the prompt “in a household, it is likely that you can
find <object> in the room called [mask]”.

Finetuning by Contrastive Matching (CM). Apart from using prompts in a
zero-shot manner, we also train a 3-layered MLP on top of language embeddings
generated by the LLM used in ZS-MLM and compute pairwise cosine similarity
between any two embeddings. Embeddings are trained using objects from seen
split. We train separate models for ORR and OR. For ORR, we match an object-room
pair to the receptacle with the best average rank across annotators. We use
contrastive loss [47] to promote similarity between an object-room pair and the
matching receptacle. For OR, we match an object with all rooms that have at
least one correct receptacle for it. In this case, we use the binary cross entropy
(BCE) loss to handle multiple rooms per object.

We compare these ranking approaches with other baselines in Section 5.1. We
provide training details of our ranking module in Appendix F.

5 Experiments

We first test whether LLMs can capture the embodied commonsense reasoning
needed for planning in Housekeep. Then we deploy our modular agent equipped
with this LLM-based planner to benchmark its ability to generalize to unseen
environments cluttered with novel objects from seen (i.e. test-seen) and unseen
(i.e. test-unseen) categories. Finally, we perform a thorough qualitative analysis
of its failure modes and highlight directions for further improvements.

5.1 Language Models Capture Embodied Commonsense

Methods. We evaluate CM and ZS-MLM using RoBERTa [40] as our base LLM.
We also compare these with GloVe-based [49] embeddings, and a baseline that
randomly ranks rooms (for OR task) and receptacles (for ORR task).

Table 1: We report mAP scores on train,
and unseen objects splits of val and test
for both OR and ORR matching tasks. The
finetuning with CM objective is performed
using objects only from train split

ORR OR

# Method train val-u test-u train val-u test-u

1 RoBERTa+CM 0.81 0.79 0.81 1.0 0.65 0.65
2 GloVe+CM 0.88 0.76 0.76 1.0 0.65 0.66
3 ZS-MLM 0.43 0.46 0.42 0.51 0.54 0.52
4 Random 0.47 0.47 0.46 0.58 0.52 0.59

Evaluation. We evaluate mean av-
erage precision (mAP) across ob-
jects to compare the ranked list
of rooms/receptacles obtained from
our ranking module to the list of
rooms/receptacles deemed correct by
the human annotators. Recall from sec-
tion 3.3, for a given object, a receptacle
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Table 2: Results using our modular baseline on Housekeep test-seen and test-unseen
splits. OR: Oracle, LM: LLM-based ranking, FT: Frontier exploration. GLV: GloVe

Modules Rearrange Soft-Score Explore Efficiency

# Rank Explore ES ↑ OS ↑ SOS ↑ RQ ↑ MC ↑ OC ↑ PPE ↑

t-
se
en

1 OR OR 1.00 ± 0.00 1.00 ± 0.00 0.65 ± 0.00 0.63 ± 0.00 – 1.00 ± 0.00 1.00 ± 0.00

2 OR FTR 0.35 ± 0.02 0.64 ± 0.01 0.49 ± 0.01 0.41 ± 0.01 73 ± 1 0.73 ± 0.01 1.00 ± 0.00

3 LM OR 0.04 ± 0.01 0.44 ± 0.01 0.46 ± 0.00 0.30 ± 0.01 – 1.00 ± 0.00 0.57 ± 0.01

4 LM FTR 0.01 ± 0.00 0.30 ± 0.01 0.39 ± 0.00 0.19 ± 0.01 77 ± 1 0.76 ± 0.01 0.41 ± 0.01

5 GLV FTR 0.01 ± 0.00 0.29 ± 0.01 0.36 ± 0.00 0.19 ± 0.01 71 ± 1 0.73 ± 0.01 0.39 ± 0.01

t-
un
se
en

6 OR OR 1.00 ± 0.00 1.00 ± 0.00 0.64 ± 0.00 0.61 ± 0.00 – 1.00 ± 0.00 1.00 ± 0.00

7 OR FTR 0.35 ± 0.02 0.65 ± 0.01 0.49 ± 0.01 0.40 ± 0.01 74 ± 1 0.74 ± 0.01 1.00 ± 0.00

8 LM OR 0.02 ± 0.00 0.32 ± 0.01 0.42 ± 0.00 0.20 ± 0.01 – 1.00 ± 0.00 0.42 ± 0.01

9 LM FTR 0.01 ± 0.00 0.23 ± 0.01 0.36 ± 0.00 0.14 ± 0.01 73 ± 1 0.74 ± 0.01 0.35 ± 0.01

10 GLV FTR 0.00 ± 0.00 0.23 ± 0.01 0.34 ± 0.00 0.15 ± 0.01 72 ± 1 0.74 ± 0.01 0.26 ± 0.01

is considered correct when at least 6 annotators vote for it, and a room is consid-
ered correct if it has at least one correct receptacle within it. Higher AP score
indicates correct items are likely to ranked higher than the incorrect items.

Results. Table 1 shows that RoBERTa+CM outperforms ZS-MLM by a large mar-
gin even when fintuned on a relatively small-sized training set (∼40% of total
data, see Section 3.4). We find good transfer of results from val to test splits
by RoBERTa+CM method on both tasks demonstrating the better generalization
capabilities of LLMs. On the other hand, GloVe+CM does not seem to transfer
well for the ORR task. Also, ZS-MLM performs worse than the Random baseline. We
found that predictions of ZS-MLM baseline are biased towards certain receptacles
(e.g. chair, and carpet are in top-4 most frequent choices). This bias is frequently
not aligned with human preferences. We hypothesize this is likely an artifact of
the original training data. Finally, notice that Random baseline performs relatively
well on room-matching (OR) task, which is expected since there are ample of
rooms with at least one correct receptacle for any given object.

5.2 Main Results for Housekeep

We use RoBERTa+CM as scoring function in Ranker module to continuously rerank
(thus replan) discovered rooms and receptacles while exploring Housekeep episodes.

Oracle Modules. We show oracle agent’s performance, by swappping Ranker
and Explore modules with their oracle (perfect) counterparts. Oracle ranker uses
the ground truth human preferences to rank the objects and receptacles found.
Oracle exploration gives a complete map of the environment, i.e. agent knows all
objects, receptacles and their respective locations.

Upper Bounds. In Table 2, we show results on both test-seen and test-unseen
splits. Rows 1, 6 with oracle ranking and exploration denote the upper bounds
achievable across all metrics. Note that Soft Object Success (SOS) and Rear-

~
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Fig. 3: Visually depicting agent’s progress on 75 randomly-sampled episodes from two
test scenes, beechwood 1 and benevolence 1. Plots (i) and (iv) depict Agent’s state, (ii)
and (v) show % of objects discovered, (iii) and (vi) show % object success, and x-axis is
the timestep. All 3 plots of same scenes are aligned, i.e. show same episodes on y-axis.

rangement Quality (RQ) are not perfect since human agreement across correct
receptacles is not 100%.

Frontier Exploration, Full baseline. Using Frontier exploration (rows 1,2),
OS drops by 47%. This drop in performance signifies the importance of task-
driven exploration needed for Housekeep to find misplaced objects or correct
receptacles quickly. Finally, we evaluate the fully non-oracle baseline (row 4)
which achieves a 30% object success rate. From rows 4 and 9, we see that OS
drops by 7%, but SOS drops only by 3% across seen vs unseen objects, which
demonstrates some level of generalization capability to unseen environments. We
also evaluate our baseline agent with a GloVe-based ranker (rows 5, 10) and
observe similar OS performance to the LLM ranker.

We put additional experiments analyzing the effect of exploration steps (ne),
exploration strategies in Appendix G, and qualitative results in Appendix H.

5.3 Qualitative Analysis

Figure 3 visually depicts the baseline agent’s progress across episodes on two
test scenes. Agent State plots show the module currently being executed : explore
(blue), rearrange (orange), or pick/place (red). Object Discovery plots show
the percentage of misplaced objects discovered until any given time step. Object
Success plots show the object success at any given time step. Dark to light shade
corresponds to an increasing number of misplaced objects found/increasing object
success. Each row corresponds to one episode, and the x-axis denotes time step.
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Agent cannot classify discovered objects as misplaced. For beechwood 1,
row 2a in (i) and rows below it show that in approximately a quarter of the
episodes, the agent only explores and never rearranges. The corresponding row
2b in (ii) tells us that all the misplaced objects were discovered by ≈ 700 time
steps. From row 2a and 2b, we can conclude that the ranking module fails to
identify objects as misplaced even after discovering them.

Agent rearranges incorrect objects. Next, looking at orange regions in row
1a, we know that the agent rearranges several objects. However, the corresponding
row 1b in (ii) is fully black, indicating that the agent discovered 0% of misplaced
objects. This means that the reasoning module misidentifies correctly placed
objects as misplaced and asks the agent to rearrange them. Moreover, the
exploration module fails to locate misplaced objects.

Scene layouts affect object discovery. Our agent explores differently in
different scene layouts. In Figure 3, the agent discovers misplaced objects much
more quickly in benevolence 1 than in beechwood 1, and correctly rearranges a
higher fraction of them. Rows 3a and 3b show this trend – all objects are discovered
within the first 200 steps of the episode in stark contrast to beechwood 1 episodes.
Row 4c even shows an episode with 100% object success. This is explained by
the fact that benevolence 1 is a smaller home with just one partitioning wall (4
rooms) versus beechwood 1 (8 rooms), making exploration and object discovery
easier. We provide top-down maps of both scenes in Appendix H.1.

6 Conclusion

We presented the Housekeep benchmark to evaluate commonsense reasoning
in the home for embodied AI. We collected a dataset of human preferences of
where objects go in tidy and untidy houses, and used it to generate episodes and
evaluate agent performance. Then we proposed a modular baseline that plans
using commonsense reasoning extracted from a large language model. Housekeep
is a challenging task, and the overall episode success rate remains low despite the
use of additional sensors (e.g . segmentation, relationship) needed for planning
and commonsense reasoning. Two areas of improvement are exploration module
and reasoning module. A learned exploration module can visit areas that get
cluttered more frequently, and optimize object coverage instead of map coverage.
Improving the reasoning module’s recall and precision at identifying misplaced
objects can increase performance on our task. Finally, replacing additional sensors
related with their learned counterparts will make baselines more realistic.
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