Supplementary Material for
Domain Randomization-Enhanced Depth
Simulation and Restoration for Perceiving and
Grasping Specular and Transparent Objects

In the supplementary material, we present the additional sections for this
paper, including domain randomization details, network implementation details,
additional experiments and results, and additional dataset details.

1 Domain Randomization Details

In this work, we propose the Domain Randomization-Enhanced Depth Simu-
lation (DREDS) approach, leveraging domain randomization and depth sensor
simulation to generate photorealistic RGB images and simulated depths with
realistic sensor noises. Specifically, during the simulated data generation, we
perform domain randomization in the following aspects:

Scene and Object Setting. We focus on hand-scale objects and a table-top
setting. We set the scene into the following two types: 1) Category-aware scenes
that mainly utilize ShapeNetCore [1] objects from 7 object categories — camera,
car, airplane, bowl, bottle, can, and mug. We also have some distractor objects
from categories of phone, guitar, cap, etc. In total, we leverage 1536 objects for
training and 265 objects for evaluation. In our simulated scenes, we load a ran-
dom number of objects ranging from 6 to 10 with random scales and categories
and let them fall freely under gravity onto a ground plane to create random
but physically plausible spatial arrangements of objects and prepare cluttered
scenes. 2) Category-agnostic scenes. To evaluate the generalization ability to
category-novel objects and the performance of grasping, we adopt 60 objects
from GraspNet-1Billion [6]. We follow their original poses and arrangements but
transfer random types of material as described in the next section.

Material Modeling and Assignment. Few of the existing depth sensor
simulators consider modeling a variety of randomized real-world materials, espe-
cially specular and transparent materials. In this work, we adopt a bidirectional
scattering distribution function (BSDF) [1], a unified representation covering the
most common materials. BSDF defines how the light is scattered on a surface
to determine the material of each point on the object.

Specifically, we use Disney principled BSDF [2,3] fpgs(¢) for diffuse and
specular material modeling, where ¢ is the set of scalar parameters or nested
functions, including the base color, subsurface, metallic, specular, roughness,
anisotropic, etc. We use a mix of BSDF fr(v) to represent transparent materials,
containing glass BSDF, transparent BSDF, and translucent BSDF to adjust
transparency, as well as refraction BSDF to add refraction, and glossy BSDF to
add reflection on the surface, etc, where 1 means the parameter set from each
BSDF function like surface color, index of refraction (IOR), and roughness.

Based on the above BSDF models, we collect an asset of materials with
different categories that cover common objects in life, including 1) 27 specular



materials including metal, porcelain, clean plastic, paint, etc., 2) 4 transparent
materials, 3) 36 diffuse materials including rubber, leather, wood, fabric, coarse
plastic, paper, clay, etc. We randomize the parameters of the BSDF function for
each material within a range, generating a large-scale material collection with
wide variations.

We assign one type of material to each object in the scene randomly. For those
objects with default colors or texture maps, we mix their colors or textures with
the base color of the assigned material in a randomized ratio. It means that we
can easily transfer an existing synthetic object dataset to a dataset with a large
amount of specular and transparent objects.

Camera Setting. We follow RealSense D415 to set up the projector’s pa-
rameters (e.g., the IR pattern image, baseline distance) and other cameras’ in-
trinsic parameters. Camera locations and poses are randomized within a range,
so that the objects in each scene can be captured from arbitrary directions.

Lighting and Background Setting. We collect 74 HDRI environment
maps for training, and 23 for testing, including indoor and outdoor scenes, as
well as natural and artificial lighting. An arbitrarily chosen environment map
with random intensities is used to simulate realistic ambient illumination. For
the background, we pick 81 common indoor materials for training and 23 for
evaluation, including wood, marble, tiles, concrete, etc. A random selection of
these materials is applied to the ground plane to increase variations of the scene.

2 Network Implementation Details

We implement the proposed SwinDRNet and downstream algorithms in Py-
Torch. We train SwinDRNet for 20 epochs (nearly 146,000 iterations) with batch
size 32, using AdamW [7] optimizer with 51 = 0.9, B3 = 0.999, a learning rate
of le-4, a weight decay of 0.01, as well as a learning scheduler with a linear
warmup of 500 iterations and a linear learning rate decay. SwinDRNet takes
RGB and raw depth images that are resized to 224*224 as the input, and out-
puts the restored depth image with the same size for downstream tasks. Note
that for SGPA [5], the baseline method of category-level pose estimation, as its
performance depends on the number of points of the input point cloud, i.e., the
resolution of the depth, the original RGBD images are firstly resized to 224*448,
and then sampled at an interval of 1 along the direction of the row to obtain two
224*224 inputs, as well as two 224*224 outputs from the network. We finally
interpolate these two outputs in the same sampling way above, to obtain the
224*448 depth as the input to SGPA.

3 Additional Experiments and Results

3.1 Depth Restoration

Qualitative Comparison to State-of-the-art Methods. Figure 1 shows
the qualitative comparison of STD dataset, demonstrating that our method can
predict a more accurate depth on the area with missing or incorrect values while
preserving the depth value of the correct area of the raw depth map.
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Fig. 1. Qualitative comparison to state-of-the-art methods. For a fair compar-
ison, all the methods are trained on the train split of DREDS-CatKnown. Red boxes
highlight the specular or transparent objects.

Cross-Sensor Evaluation. In this work, depth sensor simulation and real-
world data capture are both based on Intel RealSense D415. To investigate the
robustness of the proposed SwinDRNet on other types of depth sensors, we
evaluate the performance on data of two scenes from STD-CatKnown dataset,
captured by Intel RealSense D435. Table 1 shows a comparison of the results
evaluated on D415 and D435 data after training on DREDS-CatKnown dataset.
We observe that SwinDRNet has similar performance on data from these two
different depth sensors in each scene, which verifies the good cross-sensor gener-
alization ability of SwinDRNet.

Table 1. Quantitative results for cross-sensor evaluation. The performance of
SwinDRNet is evaluated on RGB-D data captured by Intel RealSense D415 and D435
in each of the two scenes.

Scenes Sensors RMSE| RELJ MAE] 51.05 T d1.10 T d1.25 T
D415 |0.017/0.017 0.015/0.016 0.009/0.010 94.62/94.30 98.34/98.60  99.94/99.95
D435 [0.021/0.023 0.022/0.025 0.013/0.015 89.30/86.23 97.95/97.85 99.95/99.98
D415 |0.013/0.018 0.011/0.014 0.008/0.011 97.93/96.02 99.47/98.94 100.00/100.00
D435 |0.016/0.024 0.015/0.024 0.010/0.017 95.25/89.29 99.16/97.69 100.00/100.00

3.2 Category-level Pose Estimation

Qualitative Comparison to Baseline Methods. Figure 2 shows the quali-
tative results of different experiments on DREDS and STD datasets. We can see
that the qualities of our predictions are generally better than others. The figure
also shows that NOCS [9], SGPA [5] and our method all perform better with
the help of restoration depth, especially for specular and transparent objects
like the mug, bottle and bowl, which indicates that depth restoration does help
category-level pose estimation task.

Quantitative Comparison to Restored Depth Inputs. We further eval-
uate the influence of different restored depths for category-level pose estimation,



which is presented in Table 2. The proposed SwinDRNet+NOCSHead network
receives the restored depth from SwinDRNet and the competing depth restora-
tion methods for pose fitting. Quantitative results under all metrics demonstrate
the superiority of SwinDRNet over other baseline methods in boosting the per-
formance of category-level pose estimation.

Table 2. Quantitative results for category-level pose estimation using differ-
ent restored depths from SwinDRNet and the competing baseline methods.
The left of ’/> shows the results evaluated on all objects, and the right of ’/’ shows the
results evaluated on specular and transparent objects.

Methods| IoU25 IoU50 ToUT5 5°2cm 5°5cm 10°2cm  10°5cm 10°10cm

DREDS-CatKnown (Sim)

NLSPN [ 94.7/98.1 84.6/90.3 65.9/71.2 39.4/39.4 40.3/40.4 65.2/67.8 67.6/70.4 67.6/70.4
LIDF |94.4/97.9 83.3/89.5 59.3/66.4 33.7/37.4 36.3/39.8 57.9/63.7 64.3/69.8 64.6/70.0
Ours |94.7/98.2 84.8/90.8 68.0/74.0 49.1/51.5 50.1/52.9 69.8/73.9 72.4/77.0 72.5/77.1
STD-CatKnown (Real)

NLSPN | 92.3/99.5 87.7/94.8 73.5/73.5 45.2/31.5 46.2/33.3 72.5/57.1 75.1/60.9 75.1/60.9
LIDF |92.3/99.1 87.2/93.4 67.0/68.5 34.6/35.4 37.1/40.2 64.7/60.8 70.4/69.0 70.5/69.2
Ours |92.4/99.7 88.0/95.0 75.9/78.8 52.9/40.0 53.8/41.3 77.1/66.3 79.1/68.7 79.1/68.7

3.3 Robotic Grasping

The illustration of a real robot experiment for specular and transparent object
grasping is shown in Figure 3. We carry out the table-clearing using the Franka
Emika Panda robot arm with the parallel-jaw gripper, and RealSense D415 depth
sensor for RGBD images capture.

3.4 Ablation Study

To analyze the components of the proposed SwinDRNet, as well as domain
randomization and the scale of the proposed DREDS dataset, we conduct the
ablation studies with different configurations.

Analysis of the Modules of SwinDRNet. We first evaluate the effect
of different modules of SwinDRNet with three configurations: 1) Take the con-
catenated RGBD images as input without the RGB-D fusion and confidence
interpolation module. 2) Have no confidence module compared with SwinDR-
Net. 3) The complete SwinDRNet. As shown in Table 3, the performance of
depth restoration improves when using these two modules. Note that the net-
work with and without the confidence interpolation module obtain the similar
depth restoration performance. However, in Table 4, we observe that SwinDRNet
with this module achieves higher performance on object pose estimation, because
the module keeps the correct geometric features from the original depth input
which benefits the downstream task. The results above indicate the effectiveness
of the RGB-D fusion and confidence interpolation module of SwinDRNet.

Analysis of Material Randomization. We analyze the effect of material
randomization on depth restoration. We create a dataset of the same size as
the fully randomized DREDS-CatKnown dataset. The original materials from
ShapeNetCore [4] are directly applied to the objects without any transfer or ran-
domization of specular, transparent, diffuse materials. Table 5 shows the results
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Fig. 2. Qualitative results of pose estimations on DREDS and STD datasets.
The ground truths are shown in green while the estimations are shown in red. only
means using raw depth in the whole experiment, Refined means using restored depth
for training and inference in SGPA and for pose fitting in NOCS and our method.
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Fig. 3. The setting of real robot experiment for specular and transparent
object grasping.



of depth restoration, evaluating on specular and transparent objects. Without
material randomization, the performance drops significantly, since the network
cannot consider real-world data as the variation of the synthetic training data
without seeing sufficient material variation, which demonstrates the significance
of material randomization.

Analysis of the Scale of Training Data. In Table 6, we show the perfor-
mance dependence on the dataset scale. Compared to the full scale, the depth
restoration performance of SwinDRNet trained on the half scale also degraded,
demonstrating the necessity of the scale of the DREDS dataset for the method.

Table 3. Ablation studies for the effect of different modules on depth
restoration. v'denotes prediction with the module.

Fusion Confidence| RMSE] RELJ MAEJ] d1.05 T d1.10 T 01.25 T

STD-CatKnown

0.019/0.027 0.019/0.032 0.0123/0.021 91.09/79.20 98.92/97.73 99.95/99.91

v 0.014/0.017 0.013/0.017 0.009/0.012 96.33/94.18 99.36/99.01 99.92/99.91

v v 0.015/0.018 0.013/0.016 0.008/0.011 96.66,/94.97 99.03/98.79 99.92/99.85

Table 4. The effect of confidence for category-level pose estimation.

Confidence|IoU25 IoU50 IoU75 5°2cm 5°5cm 10°2cm 10°5cm 10°10cm
STD-CatKnownl

92.4 88.0 75.6 51.0 51.9 76.0 78.2 78.3

v 92.4 88.0 75.9 52.9 53.8 77.1 79.1 79.1

Table 5. Quantitative results for material randomization on depth restora-
tion task. The left of '/’ shows the results evaluated on all objects, and the right of ’/’
evaluated on specular and transparent objects. Note that only one result is reported
on STD-CatNovel, because all the objects are specular or transparent.

Model RMSE] RELJ MAE] d1.05 T d1.10 T 01.25 T
STD-CatKnow (Real)

Fixed material 0.024/0.038 0.024/0.045 0.015/0.029 86.20/65.63 96.12/90.94 99.87/99.72
Full randomization|0.015/0.018 0.013/0.016 0.008/0.011 96.66/94.97 99.03/98.79 99.92/99.85
STD-CatNovel (Real)

Fixed material 0.038 0.051 0.027 67.52 84.86 98.51
Full randomization 0.025 0.033 0.017 81.55 93.10 99.84

4 Additional Dataset Details

4.1 DREDS Dataset

We present the DREDS-CatKnown dataset, where the category-level objects are
from ShapeNetCore [4], and the DREDS-CatNovel dataset, where we transfer
random materials to the objects of GraspNet-1Billion [(]. Figure 4 shows the
examples and annotations of DREDS dataset. For each virtual scene, we provide
the RGB image, stereo IR images, simulated depth, ground truth depth, NOCS
map, surface normal, instance mask, etc.



Table 6. Ablation study on the scale of training data. SwinDRNet is trained
on DREDS-CatKnown and evaluated on the specular and transparent objects of STD.

Scale| RMSE| REL| MAE| 61.05 T 61.10 T 1.25 T
STD-CatKnow (Real)

Half| 0.021 0.020 0.014 92.71 98.54 99.83
Full | 0.018 0.016 0.011 94.97 98.79 99.84
STD-CatNovel (Real)

Half | 0.028 0.037 0.020 80.37 91.16 99.79
Full | 0.025 0.033 0.017 81.55 93.10 99.84
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Fig.4. Paired RGB and simulated depth examples and annotations of
DREDS-CatKnown and DREDS-CatNovel datasets.



4.2 STD Dataset

Example of CAD Models. We obtain CAD models of 42 category-level objects
and 8 category-novel objects using the 3D reconstruction algorithm. For most of
the objects, especially specular and transparent objects, we spray the dye and
decorate objects with ink to enhance the reconstruction performance. 50 CAD
models are shown in Figure 5.
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Fig.5. CAD models of the STD object set. The 1st to 7th rows show 42 objects
in 7 categories, and the last row shows 8 objects in novel categories.

Data Annotation. It is quite time-consuming to annotate such a large
amount of real data. We propose to annotate the 6D poses of the objects in the
first frame of each scene. Then the annotated 6D poses are propagated to the
subsequent frames according to the camera poses with respect to the first frame.
We calculate the camera poses using COLMAP [8]. In our annotation, we develop
a program with GUI, enabling the user to move the CAD model, switching back
and forth between the 2D image and 3D point cloud space to determine its pose,
which facilitates labeling specular and transparent objects whose point clouds
are severely missing or incorrect. After the 6D pose annotation, we can easily
render other annotations like the ground truth depth, instance mask, etc. Figure
6 shows the examples and annotations of DREDS dataset.



Examples of STD-CatKnown dataset
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Fig. 6. Examples and annotations of STD-CatKnown and STD-CatNovel
datasets. The ground truth depth maps are labeled only in the area of the 42 objects
in 7 categories and the 8 objects in novel categories. Moreover, the NOCS maps are
not annotated in STD-CatNovel dataset because there does not define the normalized

object coordinate space for novel categories.
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