
Resolving Copycat Problems via Residual Action Prediction 19

Appendices

A Proof of Theorem 1

Iϕ(mt; at|at−1) is the parametrized conditional mutual information between mt

and at on the condition of at−1. The first equality holds since at = rt + at−1.
Then, the second equality can be obtained by using definitions of mutual infor-
mation to expand Iϕ(mt; rt|at−1). Note that the conditional entropy H(rt|at−1)
is not related to our optimizing variables ϕ since it doesn’t contain mt. Further-
more, according to the total probability formula, we can expand Hϕ(mt, rt|at−1)
to eliminateHϕ(mt|at−1) and derive the third equality. The final inequality holds
since the conditions {mt, at−1} is a superset of the conditions {mt}.

Iϕ(mt; at|at−1)

= Iϕ(mt; rt|at−1)

= Hϕ(mt|at−1) +H(rt|at−1)−Hϕ(mt, rt|at−1)

= H(rt|at−1)−Hϕ(rt|mt, at−1)

≥ H(rt|at−1)−Hϕ(rt|mt)

B Implementation Details of Experiments in CARLA

B.1 Architectural details & Loss functions

We use the backbone of conditional imitation learning framework CILRS [9] and
set all the input speed vin to zero to create a POMDP [42].

The input ot and ôt of all models is a three-dimensional tensor with the size
of 30×288×80. We stack the observed images (3×288×80 RGB images) along
the first dimension in chronological order and set the total number of channels
of all input tensors to 30 for fairness. ot contains only the current frame and ôt
has a relatively long observation history. However, both ot and ôt have less than
10 images, so we set the remaining channels to all zeros.

We use ImageNet-pretrained ResNet34 [15] as the perception backbone for
all methods to obtain latent representation. To accommodate 30-channel input,
we repeat the first-layer convolution kernel 10 times in the first dimension and
normalize the pretrained weight to 1/10 of the original.

The details of BCOH are shown in Fig. 5. Resnet34 casts the input ôt into a
512-dimensional compact representation. This representation is fed into a 3-layer
MLP to obtain the estimated ego-velocity vt (a scalar). Besides, the representa-
tion is concatenated with the output of 2-layer MLP with all-zero input. Then
the concatenated feature is fed into a 1-layer MLP which reduces its dimension
to 512. This fusion 512-dimensional vector is then fed into the corresponding
3-layer MLP conditioned on the current time-step command ct, which finally
outputs the current action at (a 2-dimensional vector). BCOH uses the speed

20 Chia-Chi et al.

Fig. 5. CILRS architecture: The model is used as the BCOH.

regularization [9] to address the causal confusions to some extent. Thus, the loss
function for BCOH is defined as follows,

LBCOH = αL(at, a
gt
t) + (1− α)L(vt, v

gt
t), (4)

where agtt and vgtt are the ground truths of the current action at and the speed
vt respectively, α denotes the weighting to the loss of at, and L is an L1 loss
function.

Fig. 6. Our architecture: blue blocks are the memory extraction module; orange blocks
are the policy module. Each module is a variant of the CIRLS architecture.

The details of our model are shown in Fig.6. The memory module and the
policy module in our model share a similar architecture with BCOH’s described
above. However, the memory module removes the MLP for all-zero input vin,
and the input for the policy module is ot. The basic training objectives of policy
module πθ and memory extraction module Mϕ are at and at−at−1 respectively.
Similar to BCOH, each module of our model uses speed regularization. Therefore,

Resolving Copycat Problems via Residual Action Prediction 21

the loss functions we designed for each module are:

LMϕ
= αL(at − at−1, a

gt
t − agtt−1) + (1− α)L(vt, v

gt
t),

Lπθ
= αL(at, a

gt
t) + (1− α)L(vt, v

gt
t),

Loverall = LMϕ
+ Lπθ

(5)

where agtt−1 is the ground truth of the previous action at−1 and other symbols
are the same with those in Eq.(4).

B.2 Architectural details of baselines in Ablation Studies

Fig. 7. Memory only details

Fig. 7 shows the details of Memory only. We fixed the parameters of a
well-trained memory extracted module and try to use this module’s output or
intermediate feature to predict the current action at. TheMemory only: resid-
ual controller adds the predicted residue output directly into last-step action
at−1 to obtain the prediction of at. The Memory only: learned controller
uses the extracted feature (the output of ResNet-34) as the input to regress at−1

via a 3-layer MLP.

22 Chia-Chi et al.

Fig. 8. Memory module objective details

Fig. 8 shows the details of Memory module objective. We train the model
with different objectives (at or at−1) for the memory extraction module, and the
remaining setup is the same with the our proposed model.

B.3 Other Details

For all implemented methods, we apply the same hyper-parameters shown in
Table 6, including total training iterations, batch size, α, loss function, optimizer
setup, and other configurations about the learning rate (LR) scheduling.

Table 6. Hyper-parameters of experiments

Configuration Value

Total training iterations 100k
Batch size 160
α 0.95
Loss function L1

Optimizer Adam
Betas (0.9, 0.999)
Eps 1e-08
Weight decay 0

Initial LR 2e-4
LR decay threshold 5000
LR decay rate 0.1
LR lower bound 1e-7

LR scheduling: LR starts with an initial learning rate (initial LR) and decays
when the best loss is unable to go down further for a preset number of iterations

Resolving Copycat Problems via Residual Action Prediction 23

(LR decay threshold). Then, each decay learning rate is multiplied by a decay
rate (LR decay rate) until it is lower than the set minimum learning rate (LR
lower bound). As a result, the LR adjusts adaptively and will not vanish in the
whole training process.

Data Augmentation: We apply noise injection [19] and multi-camera data
augmentation [4, 13] on our training dataset to alleviate the distribution shift.
Both of them are commonly used in the autonomous driving.

Random seeds: We retrained the proposed framework 3 times with different
random initialization and test our agent on 25 routes for 4 kinds of weather with
3 different seeds. It makes sure we obtain a statistically significant better result.

B.4 Failure mode in CARLA NoCrash

Table 7. Failure mode on training conditions.

Traffic Regular Dense

Method #COLLISION #TIMEOUT #COLLISION #TIMEOUT

BCSO 53.0± 7.9 10.2± 3.1 76.4± 3.5 11.1± 2.9
BCOH 11.1± 3.1 21.9± 12.7 30.2± 7.9 36.1± 14.5
OURS 6.8± 1.3 15.2± 0.2 25.0± 5.4 23.3± 7.6

DAGGER 14.8± 2.9 15.9± 8.5 35.0± 3.6 23.0± 7.1
HD 18.3± 5.2 12.2± 4.4 45.3± 3.5 20.3± 5.6
FCA 14.7± 3.3 27.3± 8.8 34.4± 8.1 35.3± 9.6
Keyframe 13.8± 2.7 11.9± 5.8 33.9± 6.6 24.8± 7.9

Table 8. Failure mode on new weather

Traffic Regular Dense

Method #COLLISION #TIMEOUT #COLLISION #TIMEOUT

BCSO 31.7± 5.8 8.7± 3.1 42.3± 0.9 6.3± 1.2
BCOH 7.0± 1.4 16.0± 6.4 18.3± 4.6 16.3± 6.8
OURS 5.7± 1.5 3.7± 4.7 18.0± 2.6 6.3± 3.2

DAGGER 12.0± 1.4 10.7± 1.7 22.7± 2.6 13.3± 7.1
HD 11.0± 2.8 11.3± 7.6 21.0± 3.6 12.3± 6.2
FCA 9.0± 2.2 22.3± 13.9 18.7± 9.6 23.0± 12.3
Keyframe 7.3± 1.2 9.3± 6.2 22.7± 2.9 11.7± 6.6

24 Chia-Chi et al.

Table 9. Failure mode on on new town

Traffic Regular Dense

Method #COLLISION #TIMEOUT #COLLISION #TIMEOUT

BCSO 52.0± 2.2 30.3± 0.9 73.0± 1.6 22.3± 1.7
BCOH 33.0± 7.5 42.0± 13.6 43.3± 11.1 52.0± 13.4
OURS 32.7± 6.7 28.0± 4.6 50.3± 4.7 30.7± 3.1

DAGGER 31.3± 4.2 36.0± 7.5 52.3± 3.7 36.7± 6.6
HD 30.7± 4.2 37.7± 1.7 55.3± 6.3 34.0± 6.5
FCA 31.3± 9.1 48.3± 10.3 49.0± 8.6 43.3± 10.5
Keyframe 34.3± 1.2 31.7± 4.1 48.3± 3.9 38.0± 6.7

There are two kinds of failure modes in CARLA NoCrash: collision and timeout.
The collision means the driving agent falls the episode due to collision with
other objects such as vehicles, pedestrians, and guardrails; The timeout means it
exceeded the time limit of the episode. Failure mode results in CARLA NoCrash
are shown in Tab. 7, Tab. 8, and Tab. 9. We note that our method is not always
the lowest for the timeout failure rate, and that is because other methods might
have a much higher collision rate. For example, BCSO is consistently the best
in #TIMEOUT metric because most of its episodes end with collisions. Severe
copycat problems with BCOH also lead to a high timeout failure rate.

B.5 Other Experiments

Reactions to traffic lights Traffic lights are essential facilities for driving,
and it decides whether the vehicle can pass the intersections safely. However, a
traffic light occupies only a few pixels of the entire picture, and if it changes, it’s
hard for the imitation learner to concentrate on this slight but important change.
Moreover, suppose the imitation learner suffers from copycat problems and has
shortcuts. In that case, it will ignore the semantic information of the observation
and miss the instructions of traffic lights, which may cause more vehicle collisions
or traffic jams. To evaluate how much attention our framework pays to traffic
lights, we count the percentage of each imitator passing the intersection while
the traffic light is green in CARLA Nocrash Dense.

Table 10. Percentage of obeying traffic lights

Method BCOH Keyframe OURS

Green light(%)(↑) 30.6 42.1 66.3

Resolving Copycat Problems via Residual Action Prediction 25

Fig. 9. Attention maps generated by Grad-CAM [35]

Table 10 shows the percentage of obeying traffic lights for all methods, and
Fig. 9 displays some visualization results about the observation with the traffic
light in the validation set. Our method is the most compliant with traffic lights
which helps our method achieve high #SUCCESS. The visualization results also
show our method focuses more on the correct causal clue of the traffic light while
BCOH and Keyframe concentrate on spurious road features.

Minimize any previous action’s impact The model we propose only re-
moves the information about last-step action at−1. However, the whole sequence
can somehow have an impact on the shortcut learning of the predicted action
at. In order to minimize any previous action’s impact, we have done an interest-
ing ablation by adding more objectives for the memory module. Intuitively, we
define m residual prediction branches for memory module, and the ith branch’s
objective is at − at−i. We tested it on CARLA NoCrash Dense Benchmark. The
success rate of one branch is 52.0%. After increasing to 2 branches it slightly
increases to 52.6%; while further going to 4 branches degrade to 50.7%. This sug-
gests that having more branches can be beneficial, but having too many branches
will not help.

The influence of two-streams architecture To address the concern about
the potential unfairness brought by the larger capacity of the two-stream net-
work, we provide two extra ablations by running BCOH and KeyFrame with the
two-stream architecture. We choose BCOH and KeyFrame since their perfor-
mance is strong as shown in Table 2. More specifically, we keep the two-stream
architecture the same but replace the inputs to both streams as the observa-

26 Chia-Chi et al.

tions with histories. We supervise the policy stream with the corresponding loss
function of BCOH and KeyFrame. The results are shown in Table 11. Much
lower #SUCCESS and higher #TIMEOUT of two-streams baselines indicate
that two-streams architecture alone, without our method, suffers from severe
copycat problems. We hypothesized that two stream architecture has even lower
performance than their one stream counterparts because more parameters make
it more vulnerable to the copycat problem.

Table 11. Results of two-stream architecture on CARLA Nocrash Dense benchmark

Metrics #SUCCESS #TIMEOUT

Two-streams BCOH 23.7± 3.1 48.7± 2.1
Two-streams Keyframe 38.7± 2.5 33.0± 7.5

BCOH 34.1± 7.5 36.1± 14.5
Keyframe 41.9± 6.2 24.8± 7.9
OURS 52.0± 2.3 23.3± 7.6

C Implementation Details of Experiments in
MuJoCo-Image

Fig. 10. Our MuJoCo model: blue blocks are the memory extraction module; orange
blocks are the policy module. dim(A) denotes the dimension of any action a ∈ A.

Fig. 10 shows our model we used in MuJoCo. Both memory extraction module
and policy module apply ResNet18 as their perception backbone to obtain a
300-dimensional feature and utilize this extracted feature to predict the defined
objective via a one-layer MLP. The overall loss function is defined as follows

Loverall = L(at − at−1, a
gt
t − agtt−1) + L(at, a

gt
t), (6)

Resolving Copycat Problems via Residual Action Prediction 27

where all the symbols are the same with those in Eq.(5).

We apply the hyper-parameters shown in Table 12, including total training
iterations, batch size, α, loss function, optimizer setup, and other configurations
about the learning rate (LR) scheduling, which has been explained in Sec.B.3.

Table 12. Hyper-parameters of experiments in MuJoCo-Image

Configuration Value

Total training iterations 120k
Batch size 128
Loss function L2

Optimizer Adam
Betas (0.9, 0.999)
Eps 1e-08
Weight decay 0.03

Initial LR 0.1
LR decay threshold 40k
LR decay rate 0.1
Early Stop True

Other MuJoCo Environments Following the original setting, we fur-
ther conduct experiments in three more MuJoCo environments, including Ant,
Reacher, and Humanoid. The demonstration trajectories are collected by TRPO
experts. There are 1k samples for Ant, 5k samples for Reacher, and 200k samples
for Humanoid, according to the task complexities. As shown in Table 13, our
method outperforms the baselines in all these new MuJoCo Environments. We
compare to BCOH and KeyFrame since they are the two stronger baselines as
shown in Table 3.

Table 13. The average reward

Environment Ant Reacher Humanoid

BCOH 746± 96 −81± 8 258± 3
Keyframe 790± 85 −71± 5 294± 53
OURS 860± 68 −62± 7 372± 20

