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Abstract. Reinforcement Learning (RL) can be considered as a se-
quence modeling task: given a sequence of past state-action-reward ex-
periences, an agent predicts a sequence of next actions. In this work,
we propose State-Action-Reward Transformer (St ARformer) for visual
RL, which explicitly models short-term state-action-reward representa-
tions (StAR-representations), essentially introducing a Markovian-like
inductive bias to improve long-term modeling. Our approach first ex-
tracts StAR-representations by self-attending image state patches, ac-
tion, and reward tokens within a short temporal window. These are then
combined with pure image state representations — extracted as con-
volutional features, to perform self-attention over the whole sequence.
Our experiments show that StARformer outperforms the state-of-the-art
Transformer-based method on image-based Atari and DeepMind Control
Suite benchmarks, in both offline-RL and imitation learning settings.
St ARformer is also more compliant with longer sequences of inputs. Our
code is available at https://github.com/elicassion/StARformer!|
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1 Introduction

Reinforcement Learning (RL) naturally operates sequentially: an agent observes
a state from the environment, takes an action, observes the next state, and
receives a reward from the environment. In the past, RL problems have been
usually modeled as Markov Decision Processes (MDP). It enables us to take an
action solely based on the current state, which is assumed to represent the whole
history. With this scheme, sequences are broken into single steps so that algo-
rithms like TD-learning [58] can be mathematically derived via Bellman Equa-
tion to solve RL problems. Recent advances such as [9126] formulate (offline-)RL
differently— as a sequence modeling task, and Transformer [64] architectures
have been adopted as generative trajectory models to solve it, i.e., given past
experiences of an agent composed of a sequence of state-action-reward triplets,
a model iteratively generates an output sequence of action predictions.

This new scheme softens the MDP assumption, where an action is predicted
considering multiple steps in history. To implement this, methods such as [9J26]
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Fig. 1: Mllustration of RL as sequence modeling using Transformer: (a) A straight-
forward approach and, (b) Our proposed improvement. The intuition is to explic-
itly model local features (green boundary) to help long-term sequence modeling.
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Flg 2: Attention maps between action Flg 3: MDP view of an RL process.

token and pixel state patches in our  QOnly the connected pairs (directed
method. In the second attention map arrows) are causally-related, whereas
from the left, weights in the paddle re- others are independent of each other.
gion are directed towards right (high- Green boundary highlights our moti-
lighted in red), corresponding to the vation: explicitly considering a single
semantic meaning of “right” action. transition helps long-term modeling.

process the input sequence plainly through self-attention (with a causal attention
mask) using Transformers [64]. This way, a given state, action, or reward token
may attend to any of the (previous) tokens in the sequence, which allows the
model to capture long-term relations. Moreover, each image state is usually
encoded with convolutional networks (CNNs) as-a-whole prior to self-attention.

However, if we consider states, actions, and rewards within adjacent time-
steps, they generally have strong connections due to potential causal relations.
For instance, states in the recent past have a stronger effect on the next action,
compared to states in the distant past. Similarly, the immediate-future state
and the corresponding reward are direct results of the current action. In an ex-
treme case— MDP, the relations are far more strong and restricted (see Fig. (3]).
In the above scenarios, a Transformer attending to all tokens naively may suf-
fer from excess information (making the learning-process harder) or dilute the
truly-essential relation priors. This is especially critical when input sequences are
quite large, either in spatial [68] or temporal [26] dimension, and when Trans-
former models become heavy, i.e., contain a large number of layers [62]. Learning
Markovian-like dependencies between tokens from scratch is hard and may waste
computations [26], as the rest of the dependencies are possibly weaker. Moreover,
tokenizing image states as-a-whole based on CNNs further prohibits Transformer
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models from capturing detailed spatial relations. Such loss of information can
be critical especially in RL tasks with fine-grained regions-of-interest.

To alleviate such issues, we propose to explicitly model single-step transitions,
introducing a Markovian-like inductive bias and relieving the capacity to be used
for long sequence modeling. We introduce State-Action-Reward Transformer
(StARformer) for visual RL, which consists of two interleaving components:
a Step Transformer and a Sequence Transformer. The Step Transformer learns
local representations (i.e., StAR-representations) by self-attending state-action-
reward tokens within a window of single time-step. Here, image states are en-
coded as ViT-like [I8] patches, retaining fine-grained spatial information. The
Sequence Transformer then combines StAR-representations with pure image
state representations (extracted as convolutional features) from the whole se-
quence to make action predictions. Our experiments validate the benefits of
StARformer over prior work in both offline-RL and imitation learning settings,
while also being more compliant with longer input sequences

Our contributions are as follows: we (1) propose to model single-step tran-
sitions in RL explicitly, relieving model capacity to better focus on long-term
relations, (2) present a method to combine ViT-like image patches with action
and reward token to retain fine-grained spatial information, and (3) introduce an
architecture to fuse StAR-representations over a long-sequence with our inter-
leaving Step and Sequence Transformer layers. In particular, this allows modeling
sequences of state-action feature representations at multiple different levels.

2 Related Work

2.1 Reinforcement Learning to Sequence Modeling

Reinforcement Learning (RL) is usually modeled as a Markov Decision Process
(MDP). Based on this, single-step value-estimation methods have been derived
from the Bellman equation, including Q-learning [66] and Temporal Difference
(TD) learning [E358I60I30], along with their extensions [43I7TI24].

More recent directions [926] formulate RL a different way — as a sequence
modeling task, i.e., given a sequence of recent experiences including state-actions-
reward triplets, a model predicts a sequence of next actions. This approach can
be trained in a supervised learning manner, being more compliant with offline
RL [36] and imitation learning settings [25l61156]. Zheng et al. [72] adapt this
formulation to online settings. Furuta et al. [20] extend DT [J] to match given
hindsight information. Reed et al. [52] train a single agent that performs a wide
range of RL and language tasks. Sequence modeling can be also viewed as solving
RL by learning trajectory representations. Other than methods learning visual
representations only [TIITO6IB5IB34I3855], our approach combines visual and
trajectory representations together, thanks to the power of Transformer.

2.2 Transformers

Transformer architectures [64] have been first introduced in language process-
ing tasks [I7J50/51], to model interactions between a sequence of word embed-
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dings, or more generally, unit representations or tokens. Recently, Transform-
ers have been adopted in vision tasks with the key idea of breaking down im-
ages/videos into tokens [IRIBITOM5I237I28], often outperforming convolutional
networks (CNNs) in practice. Inspired by designs from both Transformers and
CNNs, combining the two [I5/42] shows further improvements. Transformers also
found to be useful in handling sensory information [59] and doing one-shot imi-
tation learning [I6]. Chen et al.[9] explore how GPT [51] can be applied to RL
under the sequence modeling setting.

Sequence modeling in visual RL is similar to learning from videos in terms
of input data, which are composed of sequences of observed images (i.e. states).
One challenge of applying Transformers to videos is the large number of input
tokens and quadratic computation. These problems have been investigated in
multiple directions, including attention approximation [T2J65/29], separable at-
tention in different dimensions [B7], reducing the number of tokens using local
windows [40/4T], adaptively generating a small amount of tokens [54] or using a
CNN-stem to come up with a small amount of high-level tokens [67/46/14].

St ARformer shares a similar concept to performing spatial and temporal at-
tention separately as in [Blf7]. In contrast to such methods designed to reduce
attention computation, our primary target is introducing inductive bias: model-
ing short-term and long-term contexts separately. Our method also operates on
different sets of tokens, in short-term (s-a-r tokens) and in long-term (learned
intermediate StAR-representation), which deviates from previous methods.

3 Preliminary

3.1 Transformer

Transformer [64] architectures have shown diverse applications in language [17]
and vision tasks [I8/5]. Given a sequence of input tokens X = {x1,xza,...,2,},
where z; € R?, a Transformer layer maps it to an output sequence of tokens
Z ={21,22, ..., 2n}, where z; € R%. A Transformer model is obtained by stacking
multiple such layers. We denote the mapping for each layer (1) as F(-): Z' =
F(Z'=1). We use F(-) to represent a Transformer layer in the remaining sections.

Self-attention [39M48TTI64] is the core component of Transformers, which
models pairwise relations between tokens. As introduced in [64], an input token
representation X is linearly mapped into query, key and value representations,
ie., {Q, K,V} € R"*4 respectively, to compute self-attention as follows:

T

Attention(Q, K, V') = softmax( QK

Nz

Vision Transformer (ViT) [18] extends the same idea of self-attention to the

image domain. Given an input image s € REXW*C 3 set of n non-overlapping

local patches P = {p;} € R"*%XC is extracted, flattened and linearly mapped

to a sequence of tokens {z;} € R%. We extend ViT [I8] so that action, reward,

and state patches can jointly attend, where we find semantic meanings could be
learned within action-patch attention in RL tasks (Fig. [1)).

V. 1)
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Fig.4: (a) Structure summary of original DT [9], where the Transformer Layer
acts similar as our Sequence Transformer. (b) StARformer consists of Step Trans-
former and Sequence Transformer, to separately model a single-step and the se-
quence as-a-whole, respectively. Two types of layers are connected at each level
via learned StAR-representations. In terms of state embedding methods, DT uses
only convolution, while StARformer uses ViT-like [I§] embeddings (patches) in
Step Transformer and convolution in Sequence Transformer separately.

3.2 RL as Sequence Modeling

We consider a Markov Decision Process (MDP), described by tuple (S, A, P,R),
where s € S represents the state, a € A, the action, r € R, the reward, and P,
the transition dynamics given by P(s’|s,a). In MDP, a trajectory (7) is defined
as the past experience of an agent, which is a sequence composed of states,
actions, and rewards in the following temporal order:

T = {Sla aiy, Ty, S2, a2, 2, ..., St, A, Tt}. (2)

Sequence modeling for RL is making action predictions from past experience [9126]:

Pr(a;) = p(a¢| s1:¢5 ar:e—1, r1:6-1)- (3)

Recent work [9I26] try to adopt an existing Transformer architecture [51] for
RL with the formulation as above. In [926], states (s), actions (a), and rewards
(r) are considered as input tokens (see Fig. [Th), while using a causal mask to
ensure an autoregressive output sequence generation (i.e. following Eq. , where
a token can access any of its preceding tokens through self-attention.

In contrast, our formulation attends tokens with (potentially) strong causal
relations explicitly, while attending to long-term relations as well. To do this, in
this work, we break a trajectory into small groups of state-action-reward tuples
(i.e., s,a,r). It learns local relations within the tokens of each group through self-
attention (see Fig. , and Fig. , followed by long-term sequence modeling.

4 StARformer

4.1 Overview

StARformer consists of two basic components: Step Transformer and Sequence
Transformer, together with interleaving connections (see Fig. ) Step Trans-
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former learns StAR-representations from strongly-connected local tokens ezplic-
itly, which are then fed into the Sequence Transformer along with pure state
representations to model the whole input trajectory. At the output of the final
Sequence Transformer layer, we make action predictions via a prediction head.
In the following subsections, we will introduce the two Transformer components,
and their corresponding token embeddings in detail.

4.2 Step Transformer

Grouping State-Action-Reward: Our intuition of
grouping is to model strong local relations explicitly.
To do so, we first segment a trajectory (7) into a set of
groups, where each group consists of previous action
(at—1), reward (ry—1) and current state (s;) (Fig. [5). 1 Aggregate
Each element within a group has a strong causal re- 1 111

lation with the others.

To the next To Seq. Layer
Step Layer

StAR-Rep. gt

Patch-wise State Token Embeddings: In Step Trans-
former, we tokenize each input image state by divid-
ing it into a set of non-overlapping spatial patches
zs, along its spatial dimensions, following ViT [I§]
(Fig. [f)). Our motivation for using patch embeddings o8

Patches

is to create fine-grained state embeddings. This al-
lows the Step Transformer to model the relations of
actions and rewards with local-regions of state (Fig.

At—17t-15¢

S-A-R Embedding
and Step Transformer

Such local correspondences provide more information
compared to highly-abstracted convolutional features
in this single-step modeling, which is empirically val-
idated in our ablation studies (Sec. [6.4).

Fig. 5: Overview of Step
Transformer.  Output
tokens are (1) sent to
the next Step Trans-

former layer and (2)
Action and Reward Token Embeddings: We embed the agoregated to produce

action and reward tokens with a linear layer as in [9].  §tAR-representation.

S-A-R embeddings: Altogether, we get a collection of state, action, and reward
embeddings as the input to the initial Step Transformer layer which is given
by: Z) = {2a,_ys Zres Zsty Zs2, .-, zsp}. We have T groups of such token
representations per trajectory, which are simultaneously processed by the Step
Transformer with shared parameters.

Step Transformer Layer: We adopt the conventional Transformer design from
[64] (Sec. as our Step Transformer layer. Each group of tokens from the
previous layer Zéfl is transformed to Z! by a Step Transformer layer with the
mapping F.. : Z} = FL  (Z!71).

tep” step
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Fig.6: (a) Pure state embeddings are learned from shared convolutional layers.
(b) Sequence Transformer takes StAR-representation and the pure state tokens
and generate output tokens.

StA R-representation: At the output of each Step Transformer layer [, we further
obtain a State-Action-Reward-representation (StAR-representation) g/ € R” by
aggregating output tokens Z! € R"*¢ (see green flows in Fig. ):

gl = FC(iZ]) + e, 0
Here [-] represents concatenation of the tokens within each group and ef™P°™! ¢
RP, the temporal positional embeddings for each timestep. Finally, the output
StAR-representation g! is fed into the corresponding Sequence Transformer layer
for long-term sequence modeling.

4.3 Sequence Transformer

Our Sequence Transformer models long-term sequences by looking at the learned
StAR-representations and the pure state tokens (introduced below) over the
whole trajectory (See Fig.[6). Notice that, as illustrated in Fig. [4] (b), this hap-
pens with multiple intermediate StAR representations, allowing the Sequence
Transformer to capture detailed information.

Pure State Token Embeddings: In addition to the patch-wise token embeddings
in Step Transformer, we embed the input image state s; as-a-whole, to create
pure state tokens hY. Each such token represents a single state representation, de-
scribing the state globally in space. We do this by processing each state through
a CNN encoder, since the convolutional layers mix features spatially:

h§ = Conv(s) + e, (5)

where e!P"* ¢ RD represents the temporal positional embeddings exactly the

same as we add to g; for each timestep. The convolutional encoder is from [44].

Sequence Transformer Layer: Similar to Step Transformer, we use the conven-
tional Transformer layer design from [64] for our Sequence Transformer. The
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input to the Sequence Transformer layer [ consists of representations from two
sources: (1) the learned StAR-representations g! € RP from the corresponding
Step Transformer layer, and (2) hi_l € RP from the outputs of the previous
Sequence Transformer layer. Here, as mentioned above, we set h? to be the pure
state representation. The two types of token representations are merged to form
a single sequence, preserving their temporal order (as elaborated below):

Vi ={gl, Bi7Y gh BN oL, g R (6)

We place ¢! before hi_l— which originates from s;— because gl contains infor-
mation of the previous action a;_1, which comes prior to s; in the trajectory. We
also apply a causal mask in the Sequence Transformer to ensure that the tokens
at time ¢ cannot attend any future tokens (i.e., > t).

Here, Sequence Transformer takes StAR-representations generated from each
intermediate Step Transformer layer, rather than taking the final St AR-represent-
ations after all Step Transformer layers. In this way, the model gains an ability
to look at StAR-representations at multiple abstraction levels. In Section [6.4
we empirically validate the benefit of this layer-wise fusion.

Sequence Transformer computes an intermediate set of output tokens as in:
Y = Floquence(Yih)- We then select the tokens at even indices of Y, (where
indexing starts from 1) to be the pure state tokens hl := y(l)ut;2i7 which are then
fed into the next Sequence Transformer layer.

Action Prediction: The output of the last Sequence Transformer layer is used to
make action predictions, based on a linear head: a; = ¢(hl).

4.4 Training and Inference

StARformer is a drop-in replacement of DT [9], as training and inference pro-
cedures remain the same. StARformer can easily operate on step-wise reward
without a performance drop (detailed discussed in . In contrast, it is criti-
cal to design a Return-to-go (RTG, target return) carefully in DT, which needs
more trials and tuning to find the best value.

5 Experimental Setup

5.1 Settings

We consider offline RL [36] and imitation learning (behavior cloning) in our ex-
periments. In offline RL, we have a fixed memory buffer of sub-optimal trajectory
rollouts. Offline RL is generally more challenging compared to conventional RL
due to the shifted distribution problem [36].

In our Imitation learning setting, the agent is not exposed to reward signals
and online-collected data from the environment. This is an even harder prob-
lem due to provided trajectories being sub-optimal, compared to traditional
imitation learning that could collect new data and do Inverse Reinforcement
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Atari Environments DMC Environments

Assault Boxing Breakout Pong Qbert Seaquest Cheetah Reacher Walker

Fig. 7: Environments used: Atari is with a discrete action space, and DMC is with
a continuous action space. We use gray-scale input similar to prior work [43l9].

Learning [47/1]. We simply remove the rewards in the dataset used in offline RL
to come up with this setting. Both DT [J] and proposed method can operate
without reward, by simply removing T reward tokens in DT [9] (T is trajectory
length), or removing the reward token in Step Transformer in our model.

5.2 Environments and Datasets

We consider image-based Atari [6] (discrete action space) and DeepMind Control
Suite (DMC) [63] (continuous action space) to evaluate our model in different
types of tasks, listed in Fig. [7] with image examples. We pick 6 games in Atari:
Assault, Boxing, Breakout, Pong, Qbert, and Seaquest. Similar to [9] we use 1%
(500k steps) of the DQN replay buffer dataset [2] to perform a thorough and
fair comparison. We select 3 continuous control tasks in DMC [63]: Cheetah-
run, Reacher-easy, and Walker-walk. In DMC, we collect a replay buffer (i.e.
sub-optimal trajectories) generated by training a SAC [2I] agent from scratch
for 500k steps for each task. Note that these continuous control tasks are with
image inputs, which previous work [9] does not cover (originally using Gym [§]).

We report the absolute value of episodic returns (i.e., cumulative rewards).
Results are averaged across 7 random seeds in Atari and 10 seeds in DMC, each
seed is evaluated by 10 randomly initialized episodes.

5.3 Baselines

We select Decision-Transformer (DT) [9], a SOTA Transformer-based sequence
modeling method for RL. We notice there is also Trajectory-Transformer

[26], which however, is not designed for image inputs. We use most of the same
hyper-parameters as in DT [9] for Atari environments without extra tuning (de-
tails in Supplementary Table 4 and 5). As for DMC environments, since they
are not covered by DT [9], we carefully tune the baseline first and then use the
same set of hyper-parameters in our method. We also compare with SOTA non-
Transformer offline-RL methods including CQL [33], QR-DQN [13], REM [3],
and BEAR [31]. For imitation (behavior cloning), we only compare with DT [9]
and straightforward behaviour cloning with ViT (referred to as BC-ViT).
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Offline RL Imitation Learning
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Fig. 8: Relative performance of episodic returns. The results are averaged across
all environments and random seeds (same in later experiments), and normalized
w.r.t. the performance of StAR. Please refer Table 1 in supplementary for details.
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Fig.9: Change in performance with the length of input sequence, T €
{10, 20, 30}, in Atari and DMC (averaged across tasks), under offline-RL. Please
refer to Fig.1 in supplementary for per-task result.

6 Results

6.1 Improving Sequence Modeling for RL

We first compare our StARformer (StAR) with the state-of-the-art Transformer-
based RL method in Atari and image-based DMC environments, under both
offline RL and imitation learning settings. We select the Decision-Transformer
proposed in [9], (referred as DT) as our baseline. Here, we keep T = 30 for all en-
vironments, which is the number of time-steps (length) of each input trajectory.
We also compare our method to CQL [33], a SOTA non-Transformer offline-RL
method. Fig. [§|shows that our method outperforms baselines, in both offline RL
and imitation learning settings, suggesting that our method can better model
reinforcement sequences with images.

6.2 Scaling-up to Longer Sequences

In this experiment, we evaluate how StARformer and DT perform with different
input sequence lengths, specifically T' = {10, 20,30}, under offline-RL setting.
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Fig. 10: Visualization of attention maps in our Step Transformer, extracted for
Breakout game. Attention weights are computed between the action token and
state patch tokens. We highlight the ball (orange circle) in the input for conve-
nience. Please find out more visualizations in our supplementary material.

In Fig. [9 we see that StARformer gains performance with longer trajectories,
whereas DT [J] saturates as early as T = 10. This validates our claim that
considering short-term and long-term relations separately (and then fusing) help
models to scale-up to longer sequences. Instead of learning Markovian pattern
attentions [26] implicitly, we model it explicitly in our Step Transformer. This
acts as an inductive bias, relieving the capacity of Sequence Transformer to
better focus on long-term relations. In contrast, DT takes off-the-shelf language
model GPT [51], in which Markov property is not considered.

6.3 Visualization

We show attention maps between action and state patches in Step Transformer at
several timesteps extracted from a trajectory in Breakout (see Fig. . In this
game, the agent should move the paddle to bounce the ball back from the bottom,
after the ball falls down while breaking the bricks on the top. In the presented
attention maps, the regions with a high attention score (highlighted) mainly
overlap with the locations of the ball, paddle, and potential target bricks. We find
the attention maps in head #1 to be particularly interesting. Here, the focused
regions corresponding to the paddle show a directional pattern, corresponding
to the semantic meaning of actions “moving the paddle right”, “left” or “stay”.
This validates that Step Transformer captures essential spatial relations between
actions and state patches, which is important for decision making. Moreover, in
head #2, we observe that the focused regions correspond to the locations of the
ball, except when the ball is out of the boundary, too-close to the paddle or
indistinguishable within bricks. Overall, these attention maps suggest how our
model can show a basic understanding of the Breakout game.
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Fig.11: (Top): Embedding methods used in original DT, StARformer (StAR),
and their variants. We label ViT (patches) as P, convolution as C, and None
(not using the corresponding embedding) as “__”. (Bottom): (a-e¢) Performance
comparisons between variants. Per-task results are in Supplementary Table 2.

6.4 Ablations

StARformer has three design differences compared to baseline DT [9]: it (1)
learns StAR-representation from single-step transitions (grouping), (2) uses both
ViT-like [I8] patch embeddings and convolutions for state representation, and
(3) merges these two types of embeddings in Step Transformer layer-wise.

StAR-representation and State Representations: We first discuss designs
of StAR-representation and state representation methods ((1) and (2) mentioned
above) jointly, as they can be unified into variants shown in Fig. We vary state
embedding methods used to learn s; in Step Transformer and h; in Sequence
Transformer. Namely, we consider: (1) ViT features (patch embeddings, labeled
as P), (2) Convolutional features (labeled as C), or (3) None (not having the
corresponding embedding, labeled as “__” ). The original StARformer can be
represented by P+C (patch embeddings for s; and convolutional embeddings
for hy ). Other variants include: P+P, P+__, C+P, C+C, and C+__. We
note variant C+__ could be viewed as DT + grouping, where we simply adapt
DT to our framework, and learn St AR-representation from convolutional features
only. We also implement a variant of DT using ViT for state embedding (noted
as DT w/ ViT), to match our method in terms of having a similar embedding
method and capacity (13M parameters vs. 14M parameters in ours).

When comparing StARformer with original DT and DT w/ ViT (Fig. [11}(a)),
we see a performance drop in DT when used with ViT, which suggests that re-
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Fig. 12: Variants of our model w/ different connections. Two variants, (b) StAR
Fusion and (c) StAR Stack are shown in comparison to our original (a) StAR
model. (d) Experiments (offline-RL) show original structure, which is a layer-wise
fusion, works best. Please refer to Supplementary Table 3 for per-task results.

placing convolutional features with ViT-like features naively would not benefit
the model, despite the increased capacity (similar to ours). StARformer, however,
does not benefit only from the larger capacity, but also from its better struc-
tural design, as verified in following experiments (see Fig. [L1(c)(d)(e)). From
Fig. b), we see that C+__ which only uses convolutional features at Step
Transformer, performs worse compared to DT. This is because convolutional
features are highly abstracted, which makes them not well-suited for single-step
transition (i.e., fine-grained) modeling.

When comparing P+C with C+C (Fig. [LI|(c)), the lower performance of
C+C suggests that patches embeddings are better suited to model single transi-
tions in Step Transformer. In Fig. (d), we compare P+C with P+P and P+__.
We find convolution features work best in Sequence Transformer, validating that
they provide abstract global information which is useful for long range modeling
(coarse), in contrast to patch embeddings. The observations from above compar-
isons of StARformer variants suggest that our method benefits from fusing patch
and convolutional features. We further evaluate this by comparing P+C and
C+P (Fig.|11[e)), where P4+C performs better, confirming this fusion method
of “fine-grained (patches) to high-level (conv)” best matches with our sequence
modeling scheme of “single-transition followed-by long-range-context”.

Step-to-Sequence Layer-wise Connections: In our model, we model whole
trajectory using representations from two sources: StAR-representations g from
Step Transformer , and pure state representation h from previous layer of Se-
quence Transformer. We combine g and h in a layer-wise manner (i.e., at each
corresponding layer). We investigate two other variants: (1) g is fused with h}
by summation (referred as StAR Fusion, see Fig. [12b)), and (2) the Sequence
Transformer is “stacked” on-top of the Step Transformer (referred as StAR
Stack, see Fig.[12|c)). Results of these configurations are shown in Fig.[12{d) and
StAR works the best. We see that attending to all tokens is better than token
summation at Sequence Transformer. Also, having StAR-representations from
different abstraction levels is beneficial compared to having one.
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Performance across Reward Settings (Atari)

Relative Performance

StAR-RTG StAR-Reward StAR-None DT-RTG DT-Reward DT-None

Fig. 13: Performance in different reward settings: return-to-go (RTG), stepwise
reward, or no reward at-all (labeled as ‘None’) settings.

Reward setting: Return-to-go, stepwise reward, or no reward at-all?
We investigate how different reward settings affect sequence modeling, specifi-
cally, return-to-go (RTG) [9], stepwise reward, and no reward at-all. Decision-
Transformer [9] originally uses RTG Ry, which is defined as the sum of future
step-wise rewards: R, = Z:‘,lj:t ry, widely used in [27/449J57I32I37UT9]. Stepwise
reward 7; is the immediate reward generated by an environment in each step,
which is generally used in most RL algorithms [4324]. StARformer uses r; by
default, guided by the motivation of modeling single-step transitions. No reward
at-all corresponds to imitation (behavior cloning).

Results are shown in Fig. StARformer and DT behaves differently when
reward settings are varied. Both methods show performance gains with reward.
Also, StARformer performs similarly regardless of RTG or stepwise reward,
whereas DT relies more on RTG, and StARformer-None can still outperform
DT-RTG, even without reward. These observations tell sequence modeling can
even work on state-action-only trajectories when the model has enough capac-
ity. Such observation is consistent with Dreamerv2 [22], where no-reward setting
performs as well as having reward due to the strong dynamics model.

7 Conclusion

In this work, we introduce StARformer, which models strong local relations
explicitly (Step Transformer) to help improve the long-term sequence modeling
(Sequence Transformer) in Visual RL. Our extensive empirical results show how
the learned StAR-representations help our model to outperform the baseline.
We further demonstrate that our method successfully models trajectories, with
an emphasis on long sequences.
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