
Supplementary for “TIDEE: Tidying Up Novel
Rooms using Visuo-Semantic Commonsense

Priors”

Gabriel Sarch1∗, Zhaoyuan Fang1, Adam W. Harley1, Paul Schydlo1,
Michael J. Tarr1, Saurabh Gupta2, and Katerina Fragkiadaki1

1 Carnegie Mellon University
2 University of Illinois at Urbana-Champaign

∗Correspondence to gsarch@andrew.cmu.edu

1 Overview

Section 2 contains more details of the methods described in the main paper.
Section 3 provides additional details on the experiments. Section 4 provides
additional evaluation of the networks.

2 Implementation details

2.1 Virtual environment and action space

We use the following actions: move forward, rotate right, rotate left, look up,
look down, pick up, put down. We rotate in the yaw direction by 90 degrees,
and rotate in the pitch direction by 30 degrees. We do not constrain our agent
to grid locations. The RGB and depth sensors are at a resolution of 480x480,
a field of view of 90 degrees, and lie at a height of 0.9015 meters. The agent’s
coordinates are parameterized by a single (x, y, z) coordinate triplet with x and
z corresponding to movement in the horizontal plane and y reserved for the
vertical direction. Picking up objects occurs by specifying an (x,y) coordinate
in the agent’s egocentric frame. If by ray-tracing, the point intersects an object
that is pickupable and within 1.5 meters of the agent, then the pickup action
succeeds. Placing objects occurs by specifying an (x,y) coordinate in the agent’s
egocentric frame to place the object. If by ray-tracing, the point intersects an
object that is a receptacle class, has enough free space in the radius of the target
location, and within 1.5 meters of the agent, then the place action succeeds if
the agent is holding an object. Since some objects require their state to be open
for placement to successfully occur (e.g. Fridge), the agent will also try to open
the receptacle if placement initially fails.

2.2 Pseudo code for TIDEE

We present pseudo code for the TIDEE algorithm in Algorithm 1. We denote
FMM to mean Fast Marching Method [6], g to denote the point goal in the 2D

mailto:gsarch@andrew.cmu.edu


2 Sarch et al.

overhead map M2D, r to denote a receptacle, and fps to denote farthest point
sampling. If TIDEE does not find one of the predicted receptacles from the
rGCN network, TIDEE will attempt to retrieve a general receptacle class from
its memory of detected objects, navigate there, and attempt to place it. If after
m placement attempts the object is still not placed successfully (for example if
TIDEE gets stuck while navigating), TIDEE will drop the object at its current
location and resume the out-of-place search.

Algorithm 1 TIDEE algorithm

while unexplored area > A do ▷ Mapping the scene
if g reached then

Sample new g in unexplored area
end if
Execute movement with FMM to g
Update M2D, M3D,MO

end while
Sample new g in reachable area ▷ out-of-place detection
while not oop found after sampling k goals do

if g reached then
Sample new g in reachable area

end if
Execute movement with FMM to g
Update M2D, M3D,MO

Run dDETR+BERT-OOP

if oop found then
navigate to oop, Execute PickupObject
r ← Run rGCN ▷ Infer plausible context
if r ∈MO then

navigate to r with FMM, Execute PutObject
else

m ← Run fsearch ▷ Localize context
for g ∈ fps(m) do

navigate to g with FMM
if r detected then

navigate to r with FMM
Execute PutObject

end if
end for

end if
end if

end while

2.3 Semantic mapping and planning

TIDEE maintains two spatial visual maps of its environment that it updates at
each time step from the input RGB-D stream: i) a 2D overhead occupancy map



TIDEE: Tidying Up with Commonsense Priors 3

M2D
t ∈ RH×W and, ii) a 3D occupancy and semantics map M3D

t ∈ RH×W×D×K ,
where K is the number of semantic object categories, we use K = 116. The
M2D maps are used for exploration and navigation in the environment. The
M3D maps are used for inferring locations of potential receptacles conditioned
on their semantic categories, as described in Section 3.4 of the main paper.

At every time step t, we unproject the input depth maps using intrinsic and
extrinsic information of the camera to obtain a 3D occupancy map registered
to the coordinate frame of the agent, similar to earlier navigation agents [1].
The 2D overhead maps M2D

t of obstacles and free space are computed by pro-
jecting the 3D occupancy along the height direction at two height levels and
summing. For each input RGB image, we run a state-of-the-art d-DETR de-
tector [9] (pretrained on COCO [4] then finetuned on AI2THOR) to localize
each of K semantic object categories. Similarly, we use the depth input to map
detected 2D object bounding boxes into a 3D centroids dilated with Gaussian
filtering and add them into the 3D semantic map, we have one channel per se-
mantic class—similar to [2], but in 3D as opposed to a 2D overhead map. We did
not use 3D object detectors directly because we found that 2D object detectors
are more reliable than 3D ones simply because of the tremendous pretraining
in large-scale 2D object detection datasets, such as MS-COCO [4]. Finally, 3D
maps M3D result from the concatenation of the 3D occupancy maps with the
3D semantic maps. Alongside the 3D semantic map M3D, we maintain an ob-
ject memory MO as a list of object detection 3D centroids and their predicted
semantic labels MO = {[(X,Y, Z)i, ℓi ∈ {1...K}], i = 1..K}, where K is the
number of objects detected thus far. The object centroids are expressed with re-
spect to the coordinate system of the agent, and, similar to the semantic maps,
updated over time using egomotion.

Exploration and path planning TIDEE explores the scene using a classical map-
ping method. We take the initial position of the agent to be the center coordinate
in the map. We rotate the agent in-place and use the observations to instantiate
an initial map. Second, the agent incrementally completes the maps by ran-
domly sampling an unexplored, traversible location based on the 2D occupancy
map built so far, and then navigates to the sampled location, accumulating the
new information into the maps at each time step. The number of observations
collected at each point in the 2D occupancy map is thresholded to determine
whether a given map location is explored or not. Unexplored positions are sam-
pled until the environment has been fully explored, meaning that the number of
unexplored points is fewer than a predefined threshold.

To navigate to a goal location, we compute the geodesic distance to the goal
from all map locations using a fast-marching method [6] given the top-down
occupancy map M2D and the goal location in the map. We then simulate action
sequences and greedily take the action sequence which results in the largest
reduction in geodesic distance.



4 Sarch et al.

2.4 2D-to-3D unprojection

For the i-th view, a 2D pixel coordinate (u, v) with depth z is unprojected
and transformed to its coordinate (X,Y, Z)T in the reference frame:

(X,Y, Z, 1) = G−1
i

(
z
u− cx
fx

, z
v − cy
fy

, z, 1

)T

(1)

where (fx, fy) and (cx, cy) are the focal lengths and center of the pinhole camera
model and Gi ∈ SE(3) is the camera pose for view i relative to the reference
view. This module unprojects each depth image Ii ∈ RH×W×3 into a pointcloud
in the reference frame Pi ∈ RMi×3 with Mi being the number of pixels with an
associated depth value.

We voxelize the point cloud into a 128x64x128 occupancy ∈ {0, 1} centered
at the initial position of the agent, and aggregate (take max) the occupancies
across views to obtain Mo

t ∈ {0, 1}.

2.5 Object tracking and semantic aggregation.

As described in Section 3.2, we track previously detected objects by their 3D
centroid C ∈ R3. We estimate the centroid by taking the 3D point corresponding
to the median depth within the bounding box detection and bring it to a common
coordinate frame. We extend previous work [2] to 3D and add a channel to the
3D occupancy map for each object category. For each detected centroid Cj of
class index j, we accumulate it into a 3D occupancy map. We then apply a
Guassian filter g to dilate the centroids in the map and add this to to the jth
channel of the 3D semantic occupancy map Mt. Thus, the jth channel of the 3D
semantic map at time step t can be written as:

M j
t = Mo

t + g(f(Cj)) (2)

where Mo
t ∈ RH×W×D is the accumulated 3D occupancy, g is a guassian filter

operation, and f accumulates each centroid i in class index j into an occupancy
map M ∈ RH×W×D. Centroids are more robust to noisy depth and detection
estimates, and often provide enough information for active search and object
spatial tracking.

2.6 Out-of-place detector

As described in Section 3.2 of the main paper, our OOP detector makes use of
visual and relational language as input to our OOP network. We generate train-
ing scenes with some objects out-of-place using the same algorithm described in
Section 3.1. We first finetune deformable-DETR [9] (pretrained on COCO [4])
on the training houses (object seed randomized) to predict the bounding boxes,
semantic segmentation masks, and semantic labels by generating random tra-
jectories through the scene. We then train on the messup configurations and



TIDEE: Tidying Up with Commonsense Priors 5

add an additional classification loss on the output decoder queries to predict
whether the object is in- or out-of-place. We use the output decoder queries for
the dDETR-OOP classifier.

For the language detector, we freeze the detector described above, and use it
to update our object tracker MO while the agent explores the scene. Then, the
agent visits a location to search for an out-of-place object and for each object
detected in view above a confidence threshold, we infer its relations described in
Section 2.7 with all objects in memory, and systematically combine them into a
paragraph of text. An example paragraph is shown below. The pillow is next to

the key chain. The pillow is next to the laptop. The pillow is next to the side table. The

pillow is next to the mug. The pillow is next to the teddy bear. The pillow is supported

by the side table. The pillow is closest to the mug. We make use of the extensive
pretraining of the BERT language model [3] as a starting point for our language
classifier. We tokenize the paragraph text and give it as input to the BERT
model. For the language-only detector (BERT-OOP), we give the pooled output
{cls} token from BERT to a three-layer fully-connected classifier to predict in
or out-of-place.

For the language and visual detector (dDETR+BERT-OOP), we concatenate the
pooled output {cls} token from BERT with the output query embedding cor-
responding to the detected object from deformable-DETR, and give this con-
catenated embedding to a three-layer fully-connected classifier to predict in or
out-of-place. We train the classifiers using known labels of in or out-of-place from
our mess up algorithm.

For the BERT-only model, we give the pooled output {cls} token from BERT
as input to our classifier. For the visual-only model, we give the output query
embedding corresponding to the detected object from deformable-DETR to the
classifier.

We use the same hyperparameters for training all classifiers. We use a batch
size of 25, an AdamW optimizer with a learning rate of 2e-7 and weight decay
of 0.01, and train for 20k iterations.

2.7 Object centroid relations

As described in Section 3.2 of the main paper, we define a set of three relations
based on the estimated centroids of the detected objects within the scene. We
use these relations for building our input to the BERT out-of-place detector.
These relations are computed with the following metrics:

(i) Supported-by : A receptacle is defined as a type of object that can contain
or support other objects. Sinks, refrigerators, cabinets, and tabletops are some
examples of receptacles. For the floor receptacle class, we consider the point
directly below the object at the height of the floor (lowest height in our map).
For all centroids Crec

t corresponding to receptacle classes Lrec
t ⊆ Lt, we define

the single object Lsupp ∈ Lrec
t that supports the detected Cdet object as:

Lsupp = argmin(D(Cdet, Crec
t;ydiff<0)) (3)



6 Sarch et al.

Where D(x, Y ) is the euclidean distance between centroid x and each centroid
in Y , and ydiff < 0 takes all tracked centroids which are below the height of the
detected centroid.

(ii) next-to: We define the objects Lnext that are next to the detected Cdet

object as:
Lnext = D(Cdet, Ct) < d (4)

Where D(x, Y ) is the euclidean distance between centroid x and all centroids Y ,
and d is a distance threshold.

(ii) closest-to: We define the single object Lclosest that is closest to the de-
tected Cdet object as:

Lclosest = argmin(D(Cdet, Ct)) (5)

Where D(x, Y ) is the euclidean distance between centroid x and all centroids Y .

2.8 Relational graph convolutional network

As described in Section 3.3 of the main paper, we use a relational graph convolu-
tional network to predict plausible receptacle classes for the out-of-place object.
The memex graph nodes are the sum of a learned object category embedding
and visual features obtained from cropping the deformable-DETR backbone with
the object’s bounding box at the closest navigable location to the object. We
connect nodes in the memory graph by computing their relations as described
in Section 2.9. For the out-of-place object node, we similarly sum the learned
embedding of the object’s category label and visual features obtained from crop-
ping the deformable-DETR backbone with the detected bounding box. The scene
graph nodes are deformable-DETR output query features in the initial mapping
of the scene for all detections above a confidence threshold. We include a map
type node which is initialized with a learned embedding for each of the four room
types.

We use the rGCN to message pass 1) within the memory graph, and 2) to
bridge the memory, scene, and out-of-place nodes. Let nOOP denote the node of
the out-of-place object initialized with a learned category class embedding and
visual features.

Following the rGCN formulation in [5], we first update the nodes in the
memory graph to distribute information within the memory:

h
(l+1)
i = σ(

∑
r∈Rmem

∑
j∈Nmem

i,r

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ), (6)

where h
(l)
i ∈ Rd(l)

is the hidden state of node vi in the l-th layer of the neural
network, with d(l) being the dimensionality of this layer’s representations, Nmem

i,r

denotes the set of memory neighbor indices of node i under relation r ∈ Rmem,
and ci,r is a problem-specific normalization constant.

Inspired by [8], we then define a set of four bridging edges Rbridge, one to
connect nOOP to the updated memory nodes of the same object class, one to



TIDEE: Tidying Up with Commonsense Priors 7

connect nOOP to all current scene nodes, one to connect nOOP to the room type
node, and one to connect the the updated memory nodes to current scene nodes
with the same category label. We then message pass via the bridging edges:

h
(l+1)
i = σ(

∑
r∈Rbridge

∑
j∈Nbridge

i,r

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i ), (7)

where N bridge
i,r denotes the set of bridge neighbor indices of the target node under

bridge relation r ∈ Rbridge.
We use four relational graph convolutional layers for each stage of message

passing. Finally, we run the updated out-of-place object node through a classifier
layer to predict a probability distribution over proposed receptacle classes to
search for placing the target object. We optimize with a cross entropy loss using
the object’s ground truth receptacle label from the training scenes.

2.9 Memex graph

We use 20 of the 80 training rooms to construct the memex graph. As de-
scribed in section 3.3 of the main paper, the memex graph is a large graph of
object nodes and relational edges that provide the relational graph convolutional
network with exemplar context of object-object and object-scene relations. We
obtain the ground truth category labels for the objects and use ground truth
information from the simulator to obtain the relations above, below, next to,
supported by, aligned with, and facing. The memex remains a constant graph
throughout all remaining training and testing scenes. We use simulator ground
truth information for convenience, but note that we could instead obtain the
neural memex graph from human annotations of real-world houses. We compute
above, below, next to, and supported by similar to Section 2.7, but instead use
a distance metric on the 3D bounding boxes. For aligned with, we check if the
3D bounding boxes have parallel faces. For facing, we note that the back of an
object usually carries more of its mass (e.g. the back of a sofa). Thus, we look
at the mass distribution of the object within its 3D bounding box, and take
the box face with the most of the point mass in its direction to be the back
of the object. An object is facing a second object if the frustum of its front
3D bounding box face intersects the second object. We only consider facing for
the following classes: Toilet, Laptop, Chair, Desk, Television, ArmChair, Sofa,
Microwave, CoffeeMachine, Fridge, Toaster.

2.10 Visual search network

As described in Section 3.4 of the main paper, we use a visual search network
to propose search locations conditioned on an object class. The input to the
network is a 3D occupancy map ∈ RC×D×H×W with C = 116, D = 64, H =
128, W = 128. C = 116 represents a channel for each possible category in
AI2THOR, as described in Section 2.5. We first tile classes along all heights
in M3D to obtain a 2D input ∈ R(C·D)×H×W to the network. This enters four



8 Sarch et al.

2D convolutional layers and returns a feature map V uncond ∈ RC×H×W . The
target object class is encoded with a learned category embedding and matrix
multiplied with the feature map to condition the network on the target class.
This is sent as input to four additional 2D convolutional layers to get a final
output map V cond ∈ RH×W . We optimize this with a binary cross entropy loss
on each 2D position independently using a Guassian-smoothed 2D map of ground
truth object positions in the training scenes. Our output map provides spatial
positions at a resolution of 128×128. Since our output map need not predict a
single location to search, we give positive samples significantly larger class weight
than the negative samples to encourage high recall of the true location in the
thresholded area.

3 Experimental details

3.1 Tidying task

Our tidying task begins with moving N objects out of their natural locations
in the scene. We use N = 5 and generate five messy configurations per test
room (total of 20 rooms × 5 configurations = 100 test configurations). For each
object to be moved out-of-place, we randomly select a pickupable object, spawn
an agent to a random navigable location in the scene at a random orientation in
increments of 90 degrees, and with probability p, drop the object at the agent’s
location, or with probability 1 − p, throw the object with a constant force and
let AI2THOR’s physics engine resolve the final location (action ”ThrowObject”
in AI2THOR). We use p = 0.5. In AI2THOR, the throw distance of an object
depends on its pre-defined mass, and thus the throw distance will change de-
pending on the object. We keep the throw force constant at 150.0 newtons. We
disable object breaking so that no objects are changed to their breaking state
after dropping or throwing them. We show examples of out-of-place objects in
Figure 1.

We define an episode as the time from the spawn of the agent in the messy
environment to the time the agent executes the “done” action, or 1000 steps have
been taken (whichever comes first). Once the tidying episode begins, the agent
is spawned near the center of the map. At each time step, the agent is given an
RGB and depth sensor, and its exact egomotion in terms of how far each action
takes the agent and in what direction. During the out-of-place detection phase,
TIDEE samples random locations within its 2D map to search.

3.2 Human placement evaluation

We report in Section 4.2 of the main paper a human evaluation of TIDEE place-
ments compared to baselines. We use the Amazon Mechanical Turk interface to
query human evaluators as to whether they prefer TIDEE placements compared
to baseline placements. For all successful placements by the agents, we generate
three images of each placement to show the object from three distinct viewing



TIDEE: Tidying Up with Commonsense Priors 9

Fig. 1. Example images of out-of-place objects.

angles, as shown in Figure 2. We instruct the evaluators to choose between the
placements of TIDEE and the baseline placement by looking at the images and
picking which position of the object they would prefer. The full instructions
given to the human evaluators for an example statue placement is displayed be-
low. For this evaluation, we only consider objects which were picked up by both
agents (TIDEE and the baseline).

Consider a scenario where you are putting the statue into its correct location in

a room. Please choose which location you would prefer to place the statue within the

room. The two options (A & B) represent two different possible locations of the statue

in the same room (in the images the location of the statue is shown with a box). Each

option (A & B) show the object from three distinct camera angles to help you make your

decision. Important: Please judge only by the placement location of the object within

the room, and NOT by the orientation of the object on the supporting surface.

3.3 Out-of-place detection evaluation

We evaluate the out-of-place detector performance in Section 4.3 on the same
messy test scenes used for the tidying-up task. We generate 20 random views
of each messy configuration where at least one out-of-place objects is in view.
The total evaluation consists of 2000 images (20 scenes × 5 configurations × 20
views = 2000). We evaluate each detector by measuring average precision across
all the images, where in and out-of-place are the two categories.



10 Sarch et al.

Fig. 2. Example images shown to Amazon Mechanical Turk evaluators.

3.4 Exploration with visual search network evaluation

We evaluate the visual search network to assist in object goal navigation for
objects in their default locations in the AI2THOR test scenes (20 scenes in to-
tal) in Section 4.4. For each test scene, the agent is tasked with finding each
object category that exists at least once in the test scene. Each episode involves
finding an instance of a given category. We consider all object categories across
the AI2THOR simulator (116 categories). Tasking the agent under these specifi-
cations provides 591 total episodes in the evaluation. As mentioned in the main
text, the agent is successful when the agent is within 1.5 meters of the target
object and the object is visible to the agent. To declare success, the agent must
execute the ”Stop” command. If ”Stop” is not executed within the maximum
number of steps (200 max), the episode is automatically considered a failure and
the next episode will begin. Both TIDEE and the baseline presented in Table
2 of the main text use the same object detector and navigation modules from
Section 3.1 of the main paper. The only difference is how the model selects loca-
tions in the scene to search for the object-of-interest. For both TIDEE and the
baseline, the agent executes the ”Stop” command after the object category has
been detected above a threshold and the agent has navigated to the detected
object using the estimated 3D centroid.



TIDEE: Tidying Up with Commonsense Priors 11

3.5 Updating placement priors by instruction

We show that we can alter the output of the language out-of-place detector by
pairing specific language input with a desired label after additional training in
Section 4.3. To do so, we first train the language detector (BERT-OOP) as described
in Section 2.6 and Section 3.2 of the main paper. We then target a relation-
label pairing. For example, we may want the relation ”alarm clock supported-by
the desk” to output the label ”out-of-place” (which does not appear in the
unaltered training set) whenever the relation occurs. Then, for an additional
amount of (9k) iterations, whenever the relation ”alarm clock supported-by the
desk” appears in the training batch, we pair the sample with the ”out-of-place”
label as supervision.

4 Additional results

4.1 2021 Rearrangement Challenge

In section 4.5 of the main paper, we report the performance of TIDEE on the
2022 rearrangement benchmark. We additionally report performance on the 2021
rearrangement benchmark in Table 1.

Table 1. Test set performance on 2-Phase Rearrangement Challenge (2021).

% FixedStrict ↑ % Success ↑ % Energy ↓ % Misplaced ↓

TIDEE 8.9 2.6 93 95
TIDEE +noisy pose 6.6 1.9 97 98
TIDEE +est. depth 5.5 1.4 96 97
TIDEE +noisy depth 8.9 2.3 93 95
Weihs et al. [7] 1.4 0.3 110 110

4.2 Visualizations of the Visual Search Network

In Section 4.4 of the main paper, we displayed visualizations of the Visual Search
Network predictions. We provide additional visualizations of the sigmoid output
of our Visual Search Network conditioned on an object category in test rooms
in Figure 3. We display an overhead view of the full scene on the left, and
the network predictions corresponding to the overhead spatial locations on the
right conditioned on four randomly-selected object categories. Darker red corre-
sponds to higher probability. The blue dot indicators plotted in the prediction
maps correspond to the search locations for the agent to visit after thresholding
and farthest point sampling (for # location = 3). The output generally puts
the highest probability at plausible areas for the category to exist. However, oc-
casionally the network puts high probability where it should not. For example,



12 Sarch et al.

Fig. 3. Examples of the output of the Visual Search Network in test scenes.

the network puts high probability near a dresser for category ”Bed”, or near the
armchair for category ”Coffee Table”. This may be in part due to our training
procedure to prioritize high recall over precision of the true location in our cross
entropy weighting.

4.3 Evaluation of altering priors with natural language

In Section 4.6 of the main paper, we showed for a single example that we can alter
the learned priors of the out-of-place detector using external language input. We
augment training with nine additional object relation pairs that are among the
most commonly found in the AI2THOR houses and pair the relation with an
out-of-place label. The relation pairs include ”alarm clock is supported by desk”
(from main text), ”Soap bottle is supported by countertop”, ”Pen is supported
by desk”, ”Laptop is supported by desk”, ”Pillow is supported by bed”, ”Toilet
paper is support by toilet”, ”salt shaker is supported by countertop”, ”Spatula is
supported by countertop”, ”Statue is supported by shelf”, and ”Vase is supported



TIDEE: Tidying Up with Commonsense Priors 13

by shelf”. We follow the same training procedure as in Section 3.5. The average
change in probability across test houses for examples where the relation appears
is shown in Table 2. The significant change in probability indicates we are able
to change the detector output with simple language instructions.

Table 2. Altering priors with instructions. The out-of-place confidence of the out-
of-place classifier before and after augmenting training with the uncommon relation-
label pairing.

Before instruction After instruction

Alarm Clock supported-by Desk .10 .70
Knife supported-by Dining Table .44 .91
Bowl supported-by Dining Table .23 .71
SoapBar supported-by Toilet .21 .68
Laptop supported-by Bed .25 .71
Apple supported-by CounterTop .14 .62
Mug supported-by CounterTop .27 .77
Newspaper supported-by Sofa .43 .98
Pillow supported-by Bed .56 .70
Book supported-by Desk .63 .88



14 Sarch et al.

References

1. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to
explore using active neural slam. In: International Conference on Learning Repre-
sentations (ICLR) (2020) 3

2. Chaplot, D.S., Jiang, H., Gupta, S., Gupta, A.: Semantic curiosity for active vi-
sual learning. In: European Conference on Computer Vision. pp. 309–326. Springer
(2020) 3, 4

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/

N19-1423 5
4. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014) 3, 4

5. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: European semantic
web conference. pp. 593–607. Springer (2018) 6

6. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996) 1, 3

7. Weihs, L., Deitke, M., Kembhavi, A., Mottaghi, R.: Visual room rearrangement.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2021) 11

8. Zareian, A., Karaman, S., Chang, S.F.: Bridging knowledge graphs to generate scene
graphs. In: European Conference on Computer Vision. pp. 606–623. Springer (2020)
6

9. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable {detr}: Deformable
transformers for end-to-end object detection. In: International Conference on Learn-
ing Representations (2021), https://openreview.net/forum?id=gZ9hCDWe6ke 3, 4

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=gZ9hCDWe6ke

	Supplementary for ``TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Commonsense Priors"

