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Abstract. We tackle the problem of cooperative visual exploration where
multiple agents need to jointly explore unseen regions as fast as possible
based on visual signals. Classical planning-based methods often suffer from
expensive computation overhead at each step and a limited expressiveness
of complex cooperation strategy. By contrast, reinforcement learning (RL)
has recently become a popular paradigm for tackling this challenge due
to its modeling capability of arbitrarily complex strategies and minimal
inference overhead. In this paper, we propose a novel RL-based multi-agent
planning module, Multi-agent Spatial Planner (MSP). MSP leverages a
transformer-based architecture, Spatial-TeamFormer, which effectively
captures spatial relations and intra-agent interactions via hierarchical
spatial self-attentions. In addition, we also implement a few multi-agent
enhancements to process local information from each agent for an aligned
spatial representation and more precise planning. Finally, we perform
policy distillation to extract a meta policy to significantly improve the
generalization capability of final policy. We call this overall solution,
Multi-Agent Active Neural SLAM (MAANS). MAANS substantially
outperforms classical planning-based baselines for the first time in a
photo-realistic 3D simulator, Habitat. Code and videos can be found at
https://sites.google.com/view/maans.
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1 Introduction

Visual exploration [41] is an important task for building intelligent embodied
agents and has been served as a fundamental building block for a wide range of
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applications, such as scene reconstruction [1, 21], autonomous driving [3], disaster
rescue [26] and planetary exploration [50]. In this paper, we consider a multi-
agent exploration problem, where multiple homogeneous robots simultaneously
explore an unknown spatial region via visual and sensory signals in a cooperative
fashion. The existence of multiple agents enables complex cooperation strategies
to effectively distribute the workload among different agents, which could lead to
remarkably higher exploration efficiency than the single-agent counterpart.

Planning-based solutions have been widely adopted for navigation problems for
both single-agent and multi-agent scenarios [4, 45, 53]. Planning-based methods
require little training and can be directly applied to different scenarios. However,
these methods often suffer from limited expressiveness capability on coordination
strategies, require non-trivial hyper-parameter tuning for each test scenario, and
are particularly time-consuming due to repeated re-planning at each decision step.
By contrast, reinforcement learning (RL) has been promising solution for a wide
range of decision-making problems [28, 33], including various visual navigation
tasks [6, 9, 45]. Once a policy is well trained by an RL algorithm, the robot
can capture arbitrarily complex strategies and produce real-time decisions with
efficient inference computation (i.e., a single forward-pass of neural network).

However, training effective RL policies can be particularly challenging. This
includes two folds: (1) learning a cooperative strategy over multiple agents in
an end-to-end manner becomes substantially harder thanks to an exponentially
large action space and observation space when tackling the exploration task
based on visual signals; (2) RL policies often suffer from poor generalization
ability to different scenarios or team sizes compared with classical planning-based
approaches. Hence, most RL-based visual exploration methods focus on the
single-agent case [6, 9, 45] or only consider a relatively simplified multi-agent
setting (like maze or grid world [55]) of a fixed number of agents [30].

In this work, we develop Multi-Agent Active Neural SLAM (MAANS), the
first RL-based solution for cooperative multi-agent exploration that substantially
outperforms classical planning-based methods in a photo-realistic physical sim-
ulator, Habitat [46]. In MAANS, an agent consists of 4 components, a neural
SLAM module, a planning-based local planner, a local policy for control, and
the most critical one, a novel Multi-agent Spatial Planner (MSP). which is an
RL-trained planning module that can capture complex intra-agent interactions
via a self-attention-based architecture, Spatial-TeamFormer, and produce effective
navigation targets for a varying number of agents.

We also implement a map refiner to align the spatial representation of each
agent’s local map, and a map merger, which enables the local planner to perform
more precise sub-goal generation over a manually combined approximate 2D map.
Finally, instead of directly running multi-task RL over all the training scenes, we
first train a single policy on each individual scene and then use policy distillation
to extract a meta policy, leading to a much improved generalization capability.
We compare MAANS with a collection of classical planning-based methods and
RL-based variants. Empirical results show that MAANS has a 20.56% and 7.99%
higher exploration efficiency on training and testing scenes than the best planning-
based competitor. The learned policy can further generalize to novel team sizes
in a zero-shot manner as well.
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2 Related Work

2.1 Visual Exploration

In classical visual exploration solutions, a search-based planning algorithm could
be adopted to generate valid exploration trajectories. Representative variants
include frontier-based methods [53, 62, 65], which always choose navigation targets
from the explored region, and sampling-based methods [27], which generate
goals via a stochastic process. In addition to the expensive search computation
for planning, these methods do not involve learning and thus have limited
representation capabilities for particularly challenging scenarios. Hence, RL-
based methods have been increasingly popular for their training flexibility and
strong expressiveness power. Early methods simply train navigation policies in
a purely end-to-end fashion [9, 22] while recent works start to incorporate the
inductive bias of a spatial map structure into policy representation by introducing
a differentiable spatial memory [16, 34, 37], semantic prior knowledge [30] or
learning a topological scene graph [2, 8, 63].

The Active Neural SLAM (ANS) method [6] is the state-of-the-art framework
for single-agent visual exploration(details in Sec. 3.2). There are also follow-up
enhancements based on the ANS framework, such as improving map reconstruc-
tion with occupancy anticipation [40] and incorporating semantic signals into
the reconstructed map for semantic exploration [7]. Our MAANS can be viewed
as a multi-agent extension of ANS with a few multi-agent-specific components.

2.2 Multi-agent Cooperative Exploration

There have been works extending planning-based visual exploration solutions
to the multi-agent setting by introducing handcraft planning heuristics over a
shared reconstructed 2D map [5, 11, 12, 18, 35, 38, 60]. However, due to the lack
of learning, these methods may have the limited potential of capturing non-
trivial multi-agent interactions in challenging domains. By contrast, multi-agent
reinforcement learning (MARL) has shown its strong performances in a wide range
of domains [36], so many works have been adopting MARL to solve challenging
cooperative problems. Representative works include value decomposition for
approximating credit assignment [42, 49], learning intrinsic rewards to tackle
sparse rewards [20, 29, 57] and curriculum learning [31, 58].

However, jointly optimizing multiple policies makes multi-agent RL training
remarkably more challenging than its single-agent counterpart. Hence, these
end-to-end RL methods either focus on much simplified domains, like grid world
or particle world [55], or still produce poor exploration efficiency compared with
classical planning-based solutions. Our MAANS framework adopts a modular
design and is the first RL-based solution that significantly outperforms classical
planning-based baselines in a photo-realistic physical environment.

Finally, we remark that MAANS utilizes a centralized global planner MSP,
which assumes perfect communication between agents. There are also works on
multi-agent cooperation with limited or constrained communication [24, 39, 48,
15, 22, 56, 69], which are parallel to our focus.
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2.3 Size-Invariant Representation Learning

There has been rich literature in deep learning studying representation learning
over an arbitrary number of input entities in deep learning [67, 68]. In MARL, the
self-attention mechanism [54] has been the most popular policy architecture to
tackle varying input sizes [14, 23, 44, 59] or capture high-order relations [19, 32, 63,
66]. A concurrent work [56] also considers the zero-shot team-size adaptation in the
photo-realistic environment by learning a simple attention-based communication
channel between agents. By contrast, our works develop a much expressive network
architecture, Spatial-TeamFormer, which adopts a hierarchical self-attention-
based architecture to capture both intra-agent and spatial relationships and
results in substantially better empirical performance (see Section 5.4). Besides,
parameter sharing is another commonly used technique in MARL for team-size
generalization, which has been also shown to help reduce nonstationarity and
accelerate training [10, 52]. Our work follows this paradigm as well.

3 Preliminary

3.1 Task Setup

We consider a multi-agent coordination indoor active SLAM problem, in which
a team of agents needs to cooperatively explore an unknown indoor scene as
fast as possible. At each timestep, each agent performs an action among Turn
Left, Turn Right and Forward, and then receives an RGB image through a
camera and noised pose change through a sensor, which is provided from the
Habitat environment. We consider a decision-making setting by assuming perfect
communication between agents. The objective of the task is to maximize the
accumulative explored area within a limited time horizon.

3.2 Active Neural SLAM

The ANS framework [6] consists of 4 parts: a neural SLAM module, a RL-based
global planner, a planning-based local planner and a local policy. The neural
SLAM module takes an RGB image, the pose sensory signals, and its past outputs
as inputs, and outputs an updated 2D reconstructed map and a current pose
estimation. Note that in ANS, the output 2D map only covers a neighboring region
of the agent location and always keeps the agent at the egocentric position. For
clarification, we call this raw output map from the SLAM module a agent-centric
local map. The global planner in ANS takes in an augmented agent-centric local
map as its input, and outputs two real numbers from two Gaussian distributions
denoting the coordinate of the long-term goal. The local planner performs classical
planning, i.e., Fast Marching Method (FMM) [47], over the agent-centric local
map towards a given long-term goal, and outputs a trajectory of short-term
sub-goals. Finally, the local policy produces actions given an RGB image and a
sub-goal and is trained by imitation learning.

With the advantage of the modeling capability of arbitrarily complex strategy
in RL, an RL-based global planner which determines the global goals encourages
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Fig. 1. Overview of Multi-Agent Active Neural SLAM (MAANS).

exploration faster. To apply RL training, we model the problem as a decentralized
partially observable Markov decision process (Dec-POMDP). Dec-POMDP is
parameterized by ⟨S,A,O,R, P, n, γ, h⟩. n is the number of agents. S is the state
space, A is the joint action space. o(i) = O(s; i) is agent i’s observations at
state s. P (s′|s, a) defines the transition probability from state s to state s′ via
joint action a. R(s,A) is the shared reward function. γ is the discount factor.
The objective function is J(θ) = Ea,s[

∑
t γ

tR(st, at)]. In this task, the policy πθ

generates a global goal for each agent every decision-making step. The shared
reward function is defined as the accumulative environment reward every global
goal planning step.

4 Methodology

The overview of MAANS is demonstrated in Fig. 1, where each agent is presented
in a modular structure. The Neural SLAM module corrects the sensor error and
performs SLAM in order to build a top-down 2D occupancy map. Then we use a
Map Refiner to rotate each agent’s egocentric local map to a global coordinate
system. We augment these refined maps with each agent’s trajectory information
and feed these spatial inputs along with other agent-specific information to our
core planning module, Multi-agent Spatial Planner (MSP) to generate a global
goal as the long-term navigation target for each individual agent. We remark
that only estimated geometric information is utilized in this map fusion process.
To effectively reach a global goal, the agent first plans a path to this long-term
goal in a manually merged global map using FMM and generates a sequence
of short-term sub-goals. Finally, given a short-term sub-goal, a Local Policy
outputs the final navigation action based on the visual input and the relative
spatial distance as well as the relative angle to the sub-goal. Note that the Neural
SLAM module and the Local Policy do not involve multi-agent interactions,
so we directly reuse these two modules from ANS [45]. We fix these modules
throughout training and only train the planning module MSP using the MAPPO
algorithm [64].Hence, the actual action space for training MSP is the spatial
location of the global goal.
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4.1 Multi-agent Spatial Planner

Fig. 2. Workflow of Multi-agent Spatial Planner (MSP), including a CNN-based Feature
Extractor, a Spatial-TeamFormer for representation learning and an Action Generator.

Multi-agent Spatial Planner (MSP) is the core component in MAANS, which
could perform planning for an arbitrary number of agents. The full workflow of
MSP is shown in Fig. 2. MSP first applies a weight-shared CNN feature extractor
to extract spatial feature maps from each agent’s local navigation trajectory and
then fuses team-wise information with hierarchical transformer-based network
architecture, Spatial-TeamFormer. Finally, an action generator will generate a
spatial global goal based on the features from Spatial-TeamFormer. Suppose
there are a total of N agents and the current decision-making agent has ID k.
We will describe how agent k generates its long-term goal via the 3 parts in MSP
in the following content. Note that due to space constraints, we only present the
main ideas while more computation details can be found in Appendix A.4.

(1) CNN Feature Extractor For every single agent, we use its current
location, movement trajectory, previous goal, goal history, self-occupancy map
and obstacle map as inputs and convert them to a 480 × 480 2D map with
6 channels over a global coordinate system. We adopt a weight-shared CNN
network with 5 layers to process each agent’s input map, which produces a G×G
feature map with D = 32 channels. G corresponds to the discretization level of
the scene. We choose G = 8 in our work, leading to G2 grids corresponding to
different spatial regions in the underlying indoor scene.

Besides CNN spatial maps, we also introduce additional features, including
agent-specific embeddings of its current position and grid features, i.e., the
embeddings of the relative coordinate of each grid to the agent position as well
as the embedding of the previous global goal.

(2) Spatial-TeamFormer With a total of N extracted G × G feature
maps, we aim to learn a team-size-invariant spatial representation over all the
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agents. Transformer has been a particularly popular candidate for learning
invariant representations, but it may not be trivially applied in this case. Standard
Transformer model in NLP [54] tackles 1-dimensional text inputs, which ignores
the spatial structure of input features. Visual transformers [13] capture spatial
relations well by performing spatial self-attention. However, we have a total of N
spatial inputs from the entire team.

Hence, we present a specialized architecture to jointly leverage intra-agent and
spatial relationships in a hierarchical manner, which we call Spatial-TeamFormer.
A Spatial-Teamformer block consists of two layers, i.e., an Individual Spatial
Encoder for capturing spatial features for each agent, and a Team Relation Encoder
for reasoning cross agents. Similar to visual transformer [13], Individual Spatial
Encoder focuses only on spatial information by performing a spatial self-attention
over each agent’s own G×G spatial map without any cross-agent computation.
By contrast, Team Relation Encoder completely focuses on capturing team-wise
interactions without leveraging any spatial information. In particular, for each of
the G×G grid, Team Relation Encoder extracts the features w.r.t. that grid from
the N agents and performs a standard transformer over these N features. We
can further stack multiple Spatial-TeamFormer blocks for even richer interaction
representations.

We remark that another possible alternative to Spatial-TeamFormer is to
simply use a big transformer over the aggregated N×G×G features. Such a naive
solution is substantially more expensive to compute (O(N2G4) time complexity)
than Spatial-TeamFormer (O(N2G2 +NG4) time complexity), which may also
incur significant learning difficulty in practice (see Section 5.4).

(3) Action Generator The Action Generator is the final part of MSP,
which outputs a long-term global goal over the reconstructed map. Since spatial-
TeamFormer produces a total of N rich spatial representation, which can be
denoted as N ×G×G , we take the first G×G grid, which is the feature map
of the current agent, to derive a single team-size-invariant representation.

In order to produce accurate global goals, we adopt a spatial action space
with two separate action heads, i.e., a discrete region head for choosing a region
g from the G×G discretized grids, and a continuous point head for outputing a
coordinate (x, y), indicating the relative position of the global goal within the
selected region g. To compute the action probability for g, we compute a spatial
softmax operator over all the grids while to ensure the scale of (x, y) is bounded
between 0 and 1, we apply a sigmoid function before outputting the value of
(x, y). We remark that such a spatial design of action space is beneficial since it
alleviates the problem of multi-modal issue of modeling potential "good" goals,
which could not be simply represented by a simple normal distribution as used
in [9] (see Section 5.4).

4.2 Map Refiner for Aligned 2D Maps

We develop a map refiner to ensure all the maps from the neural SLAM module
are within the same coordinate system. The workflow is shown as the blue and
green part in Fig. 3. The map refiner first composes all the past agent-centric local
maps to recover the agent-centric global map. Then, we transform the coordinate
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system based on the pose estimates to normalize the global maps from all the
agents w.r.t. the same coordinate system. To ensure the feature extractor in
MSP concentrates only on the viable part and also induce a more focused spatial
action space, we crop the unexplorable boundary of the normalized map and
enlarge the house region as our final refined map.

4.3 Map Merger for Improved Local Planning

The local planner from ANS plans sub-goals on the agent-centric local map, while
in our setting, we can also leverage the information from other agents to plan
over a more accurate map. The diagram of map merger is shown in Fig. 3. After
obtaining N enlarged global maps via the map refiner, the map merger simply
integrates all these maps by applying a max-pooling operator for each pixel
location. We remark that the artificial merged global map is only utilized in the
local planner, but not in the global planner MSP. We empirically observe that
having a coarse merged map produces better short-term local goal while such an
artificial map is not sufficient for accurate global planning. (see Section 5.4)
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Fig. 3. Computation workflow of map refiner (blue and green) and map merger (purple).

4.4 Policy Distillation for Improved Generalization

The common training paradigm for visual exploration is multi-task learning,
i.e., at each training episode, a random training scene or team size is sampled
and all collected samples are aggregated for policy optimization [6, 9]. However,
we empirically observe that different Habitat scenes and team sizes may lead
to drastically different exploration difficulties. During training, gradients from
different configurations may negatively impact each other. Similar observations
have been also reported in the existing literature [17, 51]. We use policy distillation
to tackle this problem. Therefore, we adopt a two-phase distillation-based solution:
in the first phase, we train separate policies for representative training scenes with
a fixed team size, i.e., we choose N = 2 in our experiments. in the second phase,
we learn another policy with N = 2 agents to distill the collection of pretrained
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policies over different training scenes and directly measure the generalization
ability of this distillation policy to novel scenes and different team sizes.

More specifically, for the i-th training scene, we first learn a specialized teacher
policy π(g, x, y|s, θi) given state s with parameter θi, where g denotes the region
output and (x, y) is the point head output. Then we train another distillation
policy π(g, x, y|s, θ) by simply running a dagger-style [43] imitation learning, i.e.,
randomly rollout trajectories w.r.t. the distillation policy π(s, θ) and imitate the
output from the specific teacher policy.

Since the region action g is discrete, we adopt a KL-divergence-based loss
function while for the continuous point action (x, y), a squared difference loss
between the teacher policy and distillation policy is optimized.

5 Experiment Results

5.1 Experiment Setting

We adopt scene data from the Gibson Challenge dataset [61] while the visual
signals and dynamics are simulated by the Habitat simulator [46]. Although
Gibson Challenge dataset provides 72 training and 14 validation scenes, we
discard scenes that are not appropriate for our task, such as scenes that have
large disconnected regions or multiple floors so that the agents are not possible
to achieve 90% coverage of the entire house. Then we categorize the remaining
scenes into 23 training scenes and 10 testing scenes. We consider N = 2, 3, 4
agents in our experiments. Every RL training is performed with 104 training
episodes over 3 random seeds. Each evaluation score is expressed in the format of
“mean (standard deviation)”, which is averaged over a total of 300 testing episodes,
i.e., 100 episodes per random seed. More details are deferred to Appendix E.

5.2 Evaluation Metrics

We take 3 metrics to examine the exploration efficiency:
1. Coverage: Coverage represents the ratio of areas explored by the agents

to the entire explorable space in the indoor scene at the end of the episode.
Higher Coverage implies more effective exploration.

2. Steps: Steps is the number of timesteps used by agents to achieve a coverage
ratio of 90% within an episode. Fewer Steps implies faster exploration.

3. Mutual Overlap: For effective collaboration, each agent should visit re-
gions different from those explored by its teammates. We report the average
overlapping explored area over each pair of agents when the coverage ratio
reaches 90%. Mutual Overlap denotes the normalized value of this metric.
Lower Mutual Overlap suggests better multi-agent coordination.

5.3 Baselines

We first adapt 3 single-agent planning-based methods, namely Nearest [62],
Utility [25], and RRT [53], to our problems by planning on the merged global
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map. The 3 planning-based baselines are frontier-based, i.e., they choose long-term
navigation goals from the boundary between currently explored and unexplored
area using different heuristics. Note that though these are originally single-agent
methods and are adapted to multi-agent settings by planning on the merged
global map. When choosing global goals, each agent performs computation based
on the merged global map, its current position and its past trajectory.

For multi-agent baselines, we compare MAANS with 3 planning-based meth-
ods, namely Voronoi [18], APF [65] and WMA-RRT [35]. APF [65] computes
artificial potential field over clustered frontiers and plans a potential-descending
path with maximum information gain. APF introduces resistance force among
multiple agents to avoid repetitive exploration. WMA-RRT [35] is a multi-agent
variant of RRT, in which agents cooperatively maintain a single tree and follow a
formal locking-and-search scheme. Voronoi -based method partitions the map into
different parts using a voronoi partition and each agent only searches unexplored
area in its own partition. More details can be found in Appendix B.

5.4 Ablation Study

We report the training performances of multiple RL variants on 2 selected scenes,
Colebrook and Dryville, and measure the Steps and the Mutual Overlap over
these 2 scenes.

(1) Comparison with ANS variants We first consider 2 ANS variants:
1. ANS-idv We train N ANS agents to explore individually, i.e., without any

communication, in the environment.
2. ANS-stack We directly stack all the agent-centric local maps from the neural

SLAM module as the input representation to the global planner, and retrain
the ANS global planner under our multi-agent task setting.

Fig. 4. Comparison between MAANS (red) and other ANS variants.

We demonstrate the training curves in Fig. 4. Regarding Steps, both ANS variants
perform consistently worse than MAANS on each map. Regarding Mutual Overlap,
the idv variant fails to cooperate completely while the stack variant produces
comparable Mutual Overlap to MAANS despite its low exploration efficiency.
We remark that ANS-stack performs global and local planning completely on
the agent-centric local map while the local map is a narrow sub-region over the
entire house, which naturally leads to a much conservative exploration strategy
and accordingly helps produce a lower Mutual Overlap.
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(2) Ablation Study on MSP We consider 3 additional MSP variants:
1. MSP w.o. TeamFormer: We completely substitute Spatial-TeamFormer

with a simple average pooling layer over the extracted spatial features from
CNN extractors.

2. MSP w.o. Act. Gen. We remove the region head from the spatial action
generator, so that the global goal is directly generated over the entire refined
global map via two Gaussian action distributions. We remark that such an
action space design follows the original ANS paper [45].

3. MSP-merge We consider another MSP variant that applies a single CNN
feature extractor over the manually merged global map from the map merger,
instead of forcing the network to learn to fuse each agent’s information.
As shown in Fig. 5, the full MSP module produces the lowest Steps and

Mutual Overlap. Among all the MSP variants, MSP w.o. Act. Gen. produces the
highest Steps. This suggests that a simple Gaussian representation of actions
may not be able to fully capture the distribution of good long-term goals, which
can be highly multi-modal in the early exploration stage. In scene Dryville, MSP
w.o. TeamFormer performs much worse and shows larger training unstability
than the full model, showing the importance of jointly leveraging intra-agent and
spatial relationships in a hierarchical manner. In addition, MSP-merge produces
a very high Mutual Overlap in scene Dryville. We hypothesis that this is due to
the fact that many agent-specific information are lost in the manually merged
maps while MSP can learn to utilize these features implicitly.

(3) Ablation Study on Spatial-TeamFormer We consider the following
variants of MAANS by altering the components of Spatial-TeamFormer as follows:
1. No Ind. Spatial Enc.: Individual Spatial Encoder is removed from Spatial-

TeamFormer
2. No Team Rel. Enc.: Similarly, this variant removes Team Relation Encoder

while only keeps Individual Spatial Encoder.
3. Unified: This variant applies a single unified transformer over the spatial

features from all the agents instead of the hierarchical design in Spatial-
TeamFormer. In particular, we directly feed all the N ×G×G features into a
big transformer model to generate an invariant representation.

4. Flattened: In this variant, we do not keep the spatial structure of feature
maps. Instead, we first convert the CNN extracted feature into a flatten vector
for each agent and then simply feed these N flattened vectors to a standard
transformer model for feature learning. We remark that this variant is exactly
the same as [56].

Fig. 5. Ablation studies on MSP components.
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Fig. 6. Ablation studies on Spatial-TeamFormer.

We report training curves in Fig. 6. Compared with Spatial-TeamFormer,
No Team Rel. Enc. has the highest Mutual Overlap and worst Steps on both
scenes, which suggests that lacking partners’ relationship attention significantly
lowers the cooperation efficiency. We remark that No Team Rel. Enc. is indeed a
single-agent variant of Spatial-TeamFormer: each agent plans global goal using
its individual information while doing path planning still with the merged global
map. The variant using Flattened features is also performing much worse than
the full model with a clear margin, showing that the network architecture without
utilizing spatial inductive bias could hurt final performance. When individual
spatial encoder is removed (No Ind. Spatial Enc.), the sample efficiency drops
greatly in scene Dryville and the method achieves a higher Mutual Overlap than
MAANS. Unified also has worse sample efficiency that the full model. Note
that Unified shows greater performance than Flattened, again confirming the
importance of utilizing spatial inductive bias.

5.5 Main Results

Due to space constraints, we defer the full results to Appendix F.
(1) Comparison with Planning-based Baselines and RL baseline
a. Training with a Fixed Team Size: We first report the performance

of MAANS and selected the baseline methods with a fixed team size of N = 2
agents on both representative training scenes and testing scenes in Table 1. We
remark that only 9 policies of representative training scenes are used to do
policy distillation(PD) since it takes a lot of work to train a separated policy
for each scene. Except for the Mutual Overlap on the testing scenes where
the performance is slightly worse than Voronoi, MAANS still outperforms all
planning-based baselines in Steps and Coverage metrics on training and testing
scenes. More concretely, MAANS reduces 20.56% exploration steps on training
scenes and 7.99% exploration steps on testing scenes than the best planning-based
competitor. We also compare with an RL baseline MAANS w.o. PD, which is
trained by randomly sampling all training scenes instead of policy distillation.
MAANS w.o. PD performs much worse than MAANS on both training and
testing scenes, and slightly worse than the best single-agent planning-based
method RRT and multi-agent planning-based method Voronoi on testing scenes,
indicating the necessity of introducing policy distillation. Further illustration and
analysis could be found in Appendix F.3.
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Sce. Metrics Utility RRT APF WMA-RRT Voronoi MAANS w.o PD MAANS

Train
Mut. Over. ↓ 0.68(0.01) 0.53(0.02) 0.61(0.01) 0.61(0.01) 0.44(0.01) 0.46(0.01) 0.42(0.01)

Steps ↓ 236.15(3.61) 199.59(3.27) 251.41(3.15) 268.20(2.24) 237.04(2.95) 180.25(2.35) 158.55(2.25)

Coverage ↑ 0.92(0.01) 0.96(0.00) 0.90(0.01) 0.87(0.01) 0.93(0.00) 0.96(0.00) 0.97(0.00)

Test
Mut. Over.↓ 0.69(0.01) 0.57(0.01) 0.57(0.01) 0.64(0.01) 0.51(0.01) 0.57(0.01) 0.54(0.02)

Steps ↓ 161.28(2.32) 157.29(2.59) 181.18(4.17) 198.92(3.83) 156.68(3.21) 159.53(2.73) 144.16(2.52)

Coverage ↑ 0.95(0.00) 0.95(0.01) 0.93(0.01) 0.91(0.01) 0.96(0.01) 0.96(0.00) 0.96(0.00)

Table 1. Performance of MAANS and selected planning-based baselines and RL baseline
with a fixed size of N = 2 agents on both training and testing scenes.

b. Zero-Shot Transfer to Different Team Sizes: In this part, we directly
apply the policies trained with N = 2 agents to the scenes of N = 3, 4 agents
respectively. The zero-shot generalization performance of MAANS compared with
the best single-agent baseline RRT and the best multi-agent baseline Voronoi
on both training and testing scenes is shown in Table 2. Note that experiments
on testing scenes are extremely challenging since MAANS is never trained with
N = 3, 4 team sizes on testing scenes. MAANS achieves much better performance
than the best planning-based methods with every novel team size on training
scenes (17.56% fewer Steps with N = 3 and 18.36% fewer Steps with N = 4) and
comparable performance on testing scenes (< 3 more Steps with N = 3, 4).

# Agent Metrics Training Scenes Testing Scenes

RRT Voronoi MAANS RRT Voronoi MAANS

3
Mut. Over. ↓ 0.44(0.01) 0.37(0.01) 0.42(0.01) 0.45(0.01) 0.43(0.01) 0.53(0.01)

Steps ↓ 155.13(3.26) 180.27(2.51) 127.88(1.91) 128.33(1.66) 119.98(2.31) 122.48(2.22)

Coverage ↑ 0.95(0.01) 0.95(0.00) 0.97(0.00) 0.95(0.01) 0.96(0.00) 0.96(0.00)

4
Mut. Over. ↓ 0.36(0.01) 0.34(0.01) 0.42(0.01) 0.41(0.01) 0.39(0.01) 0.50(0.01)

Steps ↓ 140.57(1.78) 147.01(2.38) 114.75(1.69) 111.30(1.58) 101.90(2.36) 109.07(2.02)

Coverage ↑ 0.92(0.01) 0.93(0.00) 0.96(0.00) 0.93(0.01) 0.95(0.00) 0.94(0.00)

2 ⇒ 3
Mut. Over.↓ 0.36(0.01) 0.35(0.01) 0.30(0.01) 0.43(0.01) 0.32(0.02) 0.46(0.01)

Steps↓ 185.94(1.83) 200.91(2.32) 148.82(2.01) 136.42(2.41) 148.12(6.69) 134.11(2.88)

Coverage↑ 0.94(0.00) 0.92(0.00) 0.96(0.00) 0.96(0.01) 0.92(0.05) 0.96(0.00)

3 ⇒ 2
Mut. Over.↓ 0.35(0.01) 0.33(0.01) 0.41(0.01) 0.39(0.01) 0.42(0.01) 0.43(0.01)

Steps↓ 187.93(1.98) 206.94(2.50) 145.14(2.83) 139.52(3.74) 133.77(2.83) 145.43(3.44)

Coverage↑ 0.91(0.00) 0.89(0.01) 0.95(0.00) 0.94(0.01) 0.95(0.01) 0.94(0.01)

Table 2. Generalization performance of MAANS and selected planning-based methods
to novel fixed and varying team sizes on training and testing scenes. Note that MAANS
has the best performance on training scenes and comparable results on testing scenes.

c. Varying Team Size within an Episode We further consider the setting
where the team size varies within an episode in Table 2. We use "N1 ⇒ N2" to
denote that each episode starts with N1 agents and the team size immediately
switches to N2 after half of episode length. In cases where the team size increases,
MAANS produces substantially better performances w.r.t. every metric. In
particular, MAANS achieves 33 fewer Steps in training scenes and lower Steps
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than other methods in testing scenes, which suggests that MAANS has the
capability to adaptively adjust its strategy. Regarding the cases where the team
size decreases, MAANS consumes over 40 fewer Steps in 3 ⇒ 2 than RRT in
training scenes.

(2) Learned Strategy

Fig. 7. Learned strategy on scene Colebrook of MAANS vs. RRT, where the red line
with arrow represents the trajectory, the explored area shows in blue and the obstacle
shows in green. MAANS achieves much higher and faster coverage ratio than RRT.

Fig. 7 demonstrates two 2-agent trials of MAANS and RRT, the most compet-
itive planning-based method, with the same birth place. The merged global map
are shown in keep timesteps. As shown in Fig 7, MAANS’s coverage ratio goes
up faster than RRT, indicating higher exploration efficiency. At timestep around
90, MAANS produces global goals successfully allocate the agents towards two
distant unexplored area while RRT guides the agents towards the same part of
the map. And at timestep around 170 when MAANS reaches 90% coverage ratio,
RRT still stuck in previous explored area though there is obviously another large
open space. Notice that at this key timestep RRT selects two frontiers that are
marked unexplored but with no actual benefit, which an agent utilizing prior
knowledge about room structures would certainly avoid.

6 Conclusion

We propose the first multi-agent cooperative exploration framework, Multi-Agent
Active Neural SLAM (MAANS) that outperforms planning-based competitors
in a photo-realist physical environment. The key component of MAANS is the
RL-based planning module, Multi-agent Spatial Planner (MSP), which leverages
a transformer-based architecture, Spatial-TeamFormer, to capture team-size-
invariant representation with strong spatial structures. We also implement a
collection of multi-agent-specific enhancements and policy distillation for bet-
ter generalization. Experiments on Habitat show that MAANS achieves better
training and testing performances than all the baselines. We hope MAANS can
inspire more powerful multi-agent methods in the future.
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