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1 Supplementary Material

In this appendix, we first discuss our choice of dataset, followed by our choice
of evaluation categories and sequences, and a description of our pose-labelling
procedure, and data pre-processing steps. We then present several further exper-
iments and ablations to our method, showing that performance improves further
under greater numbers of target views, and the effectiveness of our full method
in refining a pose estimation. Results around the number and diversity of cor-
respondences are given, and the approach to the rigid body transform solution
and RANSAC is described further and justified. We examine our choice of evalu-
ation metric for the SO(3) component of pose estimation, and explore the effect
of near-symmetries on our results in this light. We give further implementation
details on several baselines.

A CO3D dataset

A.1 Choice of dataset

A comparison of several multi-category, multi-instance datasets is given in ta-
ble A.1. Several existing canonical category-level pose datasets are not appro-
priate for our method as they do not include depth information [46,47], or only
have extremely sparse depth [2]. The Redwood dataset [14] contains a good
diversity of object categories and instances, with many views per object and
ground truth depth maps, but structure-from-motion (SfM) is only run on a
small subset of categories and sequences, so very few sequences have camera
extrinsics, required to evaluate the multiple target view version of our method.
The REAL275 dataset [45], being motivated in the same embodied settings as
the present work, has the appropriate depth and extrinsic information. However,
the dataset contains only 6 categories and a small number of instances (7 per
category). The present work considers a zero-shot approach to category-level
pose, and a strong quantitative and qualitative evaluation of this method re-
quires a large diversity of object categories. CO3D [35] provides this, with 51

⋆ These authors contributed equally



2 W. Goodwin et al.

Dataset # Cat. # Obj./Cat. # View/Obj. Pose Extrinsics Depth Pcd/Mesh

Pascal3D [47] 12 ∼3000 1 Yes No No No
ObjectNet3D [46] 100 2019 1 Yes No No No

Objectron [2] 9 1621 268 Yes Yes No* No*

Redwood [14] 320 ∼28 ∼2300 No No Yes No†

REAL275 [45] 6 7 ∼950‡ Yes Yes Yes Yes
CO3D [35] 51 ∼380 ∼79 No Yes Yes Yes

Table A.1: A comparison of multi-view category-level datasets (# Cat. = num-
ber of categories, # Obj./Cat = average number of distinct object instances
per category, # View/Obj. = average number of views of each distinct in-
stance). We find that CO3D is the only dataset that offers a large number of
categories, with diversity within the category, alongside multiple views and depth
information for each object. *Depth and point cloud information in Objectron
is only available via the highly sparse points used in the SfM process. †The
Redwood dataset provides high quality mesh reconstructions for just 398 object
instances, from a subset of only 9 categories. ‡The combined train/val/test splits
of REAL275 contain 8,000 frames, each with at least 5 objects present. With
42 object instances, this gives ∼950 appearances per instance.

object categories, each containing a large variety of instances, with depth and
camera extrinsic information. While unlike most of the other datasets considered
in table A.1, CO3D does not contain labelled category-level pose, we find that
we are able to label sufficient sequences ourselves to reach robust quantitative
evaluation of our methods and baselines (appendix A.3). As our method is fully
unsupervised, we do not require a large labelled dataset for training: a sufficient
test set is all that is needed.

A.2 Choice of evaluation categories & sequences

The CO3D dataset contains hundreds of sequences for each of 51 distinct object
categories. In this work, our quantitative evaluation is performed on a subset of
20 of these categories. We exclude categories based on the following criteria:

– Categories for which the object has one or more axes of infinite rotational
symmetry. 16 categories (apple, ball, baseball bat, bottle, bowl, broccoli, cake,
carrot, cup, donut, frisbee, orange, pizza, umbrella, vase, wineglass).

– Categories for which the object has more than one rotational symmetry. 6
categories (bench, hot dog, kite, parking meter, skateboard, suitcase).

– Categories for which an insufficient number of sequences (< 10) have high-
quality point clouds and camera viewpoints. 6 categories (banana, cellphone,
couch, microwave, stop sign, TV ).

– Categories for which between-instance shape difference made labelling chal-
lenging or fundamentally ambiguous. 3 categories (baseball glove, plant, sand-
wich).
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This leaves 20 categories, as shown in fig. A.5. Some included categories were
still ‘marginal’ under these criteria, for instance handbag, where there was a 180º
rotational symmetry for most instances. Here, the labelling convention was to,
where possible, disambiguate pose labels by which side of the handbag the handle
fell onto. Nonetheless, categories such as handbag and toaster elicited bi-modal
predictions from our method, reflecting these ambiguities, as shown in fig. A.5.

We further select a subset of sequences for labelling (appendix A.3) from
each of these 20 categories. CO3D provides predicted quality scores for camera
viewpoints and point clouds reconstructed by the COLMAP structure-from-
motion (SfM) processes [35]. Each category has an average of 356 sequences
(distinct object instances), ranging from 21 for parking meter to 860 for backpack.
We choose to consider all sequences that have a viewpoint quality score of more
than 1.25, and a point cloud quality of greater than 0.3. On average, this is
the top 16% of sequences within a category, and returns a median of 36 valid
sequences per category. For our chosen categories (appendix A.2), we choose to
label the top 10 sequences based on point cloud scores with category-level pose.

A.3 Labelling pose for evaluation

For each sequence to be labelled:

R̂ = {R̂, t̂}
<latexit sha1_base64="cCAYMjWInJpypt37ePw7O3Jmm2w=">AAACGXicbZDLSsNAFIYnXmu9RV26GSyCCylJFXQjFN24rGIv0JQymU7aoZMLMydCCXkNN76KGxeKuNSVb+MkzcK2/jDw851zmHN+NxJcgWX9GEvLK6tr66WN8ubW9s6uubffUmEsKWvSUISy4xLFBA9YEzgI1okkI74rWNsd32T19iOTiofBA0wi1vPJMOAepwQ06puWMyKQ3Kf4CjtJ7h2fwMj1NEtP8QyBNHXSvlmxqlYuvGjswlRQoUbf/HIGIY19FgAVRKmubUXQS4gETgVLy06sWETomAxZV9uA+Ez1kvyyFB9rMsBeKPULAOf070RCfKUmvqs7syXVfC2D/9W6MXiXvYQHUQwsoNOPvFhgCHEWEx5wySiIiTaESq53xXREJKGgwyzrEOz5kxdNq1a1z6q1u/NK/bqIo4QO0RE6QTa6QHV0ixqoiSh6Qi/oDb0bz8ar8WF8TluXjGLmAM3I+P4FrBahXw==</latexit>

(a) Annotate keypoints on single 
reference point cloud (b) Reference and target point 

clouds, pre-alignment

(c) Annotate equivalent keypoints 
on target point cloud

(d) Solve for 6D transform, 
approve/reject new alignment

Fig.A.1: The process used in this work to generate category-level pose labels for
the CO3D dataset, in the presence of large between-instance shape and appear-
ance shift. Our interface uses Open3D [52] for annotation and visualisation.

The per-frame camera extrinsics in CO3D are given relative to the first frame
in each sequence. Thus, the camera extrinsic positions do not relate the SE(3)
poses of objects within a category with respect to any category-level canonical
pose. Indeed, this is noted by the dataset’s authors [35] as a limitation of using
the dataset to learn category-level object representations. To overcome this and
enable quantitative evaluation, we design a labelling interface that leverages the
sequence point clouds for fast and intuitive category-level pose alignment. The
process is depicted in fig. A.1. For each category, we choose the sequence with
the highest point cloud quality score to be the reference object. Four or more
semantically salient keypoints that are deemed likely to exist, in a spatially
consistent manner, across all instances in the category are selected interactively
on this point cloud, using the interface. Subsequently, the labeller is presented
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with the other candidate objects in turn, and selects the equivalent points in
the same order. Umeyama’s method is then used to solve for the rigid body
transform and uniform scaling, given annotated keypoint correspondences [42].
The labeller is then presented with the reference point cloud, overlaid with the
transformed target point cloud, both coloured uniformly for clarity, and can
inspect the quality of the alignment. If it is adequate, the transform is accepted,

and the rigid body parameters T̂ =
(
R̂, t̂

)
saved as a pose label relative to

the target sequence. This provides labels of pose offsets at the point cloud level,
which is in world coordinate space. Every frame in a sequence is related to the
world coordinates via the predicted camera extrinsics. Further, every sequence
will have a relative pose against the reference sequence’s point cloud. Using this,
a ground-truth relative pose in the camera frame, which is what our method
predicts, can be constructed for any two frames i and j from any two sequences
a and b as:

Taibj = (Tcam
ai

)−1 ◦T−1
0a ◦T0b ◦Tcam

bj (1)

Where T denotes a 4×4 homogeneous transform matrix composed from rotation
R and translation t, and T0a, T0b are the transforms from reference to target
object point clouds as computed in our labelling procedure, and Tcam

ai
, Tcam

bj

are the camera extrinsics (world to view transforms) from the SfM procedure in
CO3D. ◦ denotes function composition - as these functions are transformation
matrices, the resultant transform is Tcam

bj
T0bT

−1
0a (T

cam
ai

)−1.

A.4 Data processing

Depth completion CO3D uses crowd-sourced video, with the original data
coming from RGB cameras before structure-from-motion is extracted by COLMAP
[37]. CO3D chooses to scale all point clouds to have unit standard deviation av-
eraged across 3 world coordinate axes, which then fixes the camera intrinsics
and depth maps to be relative to this world coordinate scheme. For our pur-
poses, this scale ambiguity is acceptable - we can nonetheless evaluate SE(3)
pose predictions, for which the rotation component is independent of scale, and
for which the translation component will be affected but still has a well-posed
and recoverable ground truth.

On the other hand, the depth maps in CO3D are estimates from COLMAP’s
multi-view stereo (MVS) algorithm, and are incomplete. Our method requires ac-
curate depth to project the discovered semantic correspondences into 3D space,
enabling a solution for the rigid body transform between object instances (sec-
tion 4.3). One approach would be to disregard those correspondences that land
on an area with unknown depth. However, as the correspondences are found at
the ViT patch level (8 × 8 pixels, see section 4.1), we found a small number of
missing areas in the per-pixel depth maps led to throwing away a dispropor-
tionate amount of correspondences. Instead, we use a fast in-painting method
based on the Navier-Stokes equations [5], implemented in OpenCV, to fill missing
values.
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Object crops CO3D uses a supervised segmentation network to produce prob-
abilistic mask labels for every frame. We threshold these and pad the result by
10% to give a region of interest for the objects. We use this to crop the depth
maps and RGB images when evaluating our method. However, we do not use
these masks further within our method.

B Further experiments

B.1 Number of target views

Best view only Full method

Target views Acc30 ↑ Acc15 ↑ Acc30 Acc15

1 12.6 3.7 23.8 13.4
3 26.1 8.0 38.9 26.2
5 35.4 10.6 46.3 31.1
10 45.0 16.2 52.5 38.2
20 47.0 18.6 52.1 38.3

Table A.2: (Acc30, Acc15 = percentage of pre-
dictions with a geodesic error of less than 30º,
15º.). An extension of the comparison in sec. 5.5
of the effect of increasing the number of avail-
able target views, and the improvement of the
full method including solving for a rigid body
transformation, over just taking the best view
as a pose prediction.
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Fig.A.2: ‘Full’ method (pur-
ple) vs ‘BV’ (best view) only
(green). As the number of tar-
get views increases, both accu-
racy metrics improve, though
exhibit diminishing returns. The
full method leads the best-view
ablation throughout, especially
in Acc15.

In the main paper, we show that the number of available target views is an
important parameter in our method, demonstrating that as we increase from 1
view to 3 and 5 views, pose estimation performance improves. Here, we include
two further results, in which 10 and 20 target views are available, to investigate
whether these effects continue to scale. We also present the results achieved by
taking the coarse pose estimate given by our best view selection method, without
further refinement from the rigid body transform component. The results are
shown in Tab. A.2 and Fig. A.2. Clearly, increasing the number of target views
available has a positive effect on performance, though in an embodied setting
this would come at the cost of the time to explore and image multiple views.
While it can be seen that by doubling from 5 to 10 target views improves the
Acc30 by over 6%, we chose to report only the figures for the small number of
views (1, 3, 5) in the main text, to reflect such a practical use case. It can also be
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seen - as already noted in section 5.5 - that the full method, including the rigid
body transform computed leveraging the semantic correspondences, outperforms
the baseline of simply taking the ‘best’ view as predicted by our method’s first
stage. This continues to hold in the regimes with 10 and 20 target views. Finally,
inspecting Fig. A.2 makes it clear that while the full method benefits Acc30, its
effect is most marked in improving Acc15 over the performance of taking the
best view. This is in line with intuition, which is that the rigid body solution
provides fine-tuning on top of a coarse initial estimate (see section 5.5).

B.2 Design of correspondence method

Method Med. Err (↓) Acc30 (↑) Acc15 (↑)
Optimal Transport [30] 54.6 44.8 29.1

Dual Softmax [13] 54.0 44.5 30.1
Cyclical Distances (Ours) 53.8 46.3 31.1

Table A.3: We ablate our design of correspondence method, which is based on
building a cyclical distance map (see Sec. 4.1). Here, we report results of pose
estimation using an equivalent map arising from running optimal transport [30]
and dual-softmax [13] on top of the raw feature similarity matrix.

Our method builds a cyclical distance map to extract semantic correspon-
dences between two images. Here, we experiment with alternate methods of
identifying the corresponding locations. Specifically, our problem is a special
case of the general machine learning problem of identifying matches between
two sets of features (i.e the spatial features in the target and reference images).
As such, given a matrix of feature distances between the two normalised feature
maps, D ∈ {−1...1}H′×W ′×H′×W ′

, we experiment with two additional methods
for selecting K entries to serve as correspondences. In table A.3, we experiment
both with a standard optimal transport solution [30] as well as a recent dual-
softmax method [13], and find our ‘cyclical distance’ design choice is the most
suitable for this task.

B.3 Number and diversity of correspondences

In section 4.1, we describe our approach to guarantee the return of a desired num-
ber of correspondences through the introduction of the concept of the ‘cyclical
distance’ induced by following a chain of descriptor nearest neighbours from
reference image, to target, and back to the reference image. We keep the top-
K correspondences under this metric for our method. In some cases, however,
there can be a particular region of the two objects that gives rise to a large
portion of the top-K correspondences. This can in turn lead to less appropriate
pose estimates from the rigid body transform solution (see appendix B.4), as a
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Without K-means With K-means

# Correspondences Acc30 (↑) Acc15 (↑) Acc30 (↑) Acc15 (↑)

30 38.7 25.2 43.5 29.0
50 42.0 28.6 46.3 31.1
70 43.4 30.4 47.1 30.8

Fig.A.3: Comparison of results over 20 categories as the number of correspon-
dences is varied, and when K-means clustering is used to return a set of corre-
spondences that are maximally distinct in descriptor space.

transform can produce this cluster of points and give a large number of inliers
for RANSAC, while not aligning the object’s in a satisfactory global way. To
address this bias, we seek to augment the choice of the top-K correspondences
to encourage spatial and semantic diversity. Inspired by [4], we employ k-means
clustering in descriptor space. We sample the top-2K correspondences under the
cyclical distance measure, then seek to produce K clusters. We return a corre-
spondence from each cluster, choosing the one that has the highest ViT salience
in the reference image. The effect of this K-means step, and the impact of using
differing numbers of correspondences, is shown in fig. A.3. We find that k-means
clustering improves performance, and use this throughout the other experiments
in this paper. We find that using 50 correspondences in our method is sufficient
for a trade-off between run-time, correspondence quality, and pose prediction
error.

B.4 Rigid body transform solution

Algorithm choice In our method, given a number of corresponding points
in 3D space, we solve for the rigid body transform that minimises the residual
errors between the points of the target object, and the transformed points of the
reference object. There are a number of solutions to this problem, with some
based on quaternions, and some on rotation matrices and the singular value
decomposition. A comparison of four approaches is given in [17]. We choose to
use Umeyama’s method [42], as it allows for simultaneously solving for both the
6D rigid body transform, as well as a uniform scaling parameter. It is also robust
under large amounts of noise, while other methods can return reflections rather
than true rotations as a degenerate solution [17].

RANSAC parameters We performed light tuning of the RANSAC parameters
by considering only the teddybear category. Two parameters are important: the
maximum number of trials, and the inlier threshold. As the point clouds in
CO3D are only recovered up to a scale, the authors choose the convention of
scaling them to have a unit standard deviation averaged across the three world
axes. This makes the choice of a single inlier threshold to be used across all
categories possible. In our experiments, we choose 0.2 as this threshold, which
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in the context of the rigid body transform solution means that any point that,
under the recovered transform, is less than a 0.2 Euclidian distance away from
its corresponding point, is considered an inlier.

The second important parameter for RANSAC is the number of trials that
are run. We chose to limit this to keep inference to a few seconds, and use 1,000
trials for all categories. With 5 target views, this gives the 46.3% Acc30 reported
in the main paper. Using 500 trials, this drops to 45.8%, and using 2,000 trials,
it rises to 46.6%.

Finally, we sample 4 correspondences within every RANSAC trial to compute
the rigid body transform. Solutions to this problem can suffer from degeneracy
with only 3 points [17].

B.5 Depth-free methods

Med. Err (↓) Acc30 (↑) Acc15 (↑)
Ours (K = 50, No Depth) 81.7 23.6 6.8

Ours-BV (K = 50, With Depth) 61.1 35.4 10.6
Ours (K = 50, With Depth) 53.8 46.3 31.1

Fig.A.4: We investigate the performance of our method in a depth-free setting,
finding that allowing access to depth substantially improves pose estimation
performance. ‘Ours-BV’ indicates simply assuming that the best target view
(recovered with our method) is perfectly aligned with the reference.

We permit depth maps in our setting as we believe them to be readily avail-
able in many practical scenarios, whether through SfM (as in our experiments
with CO3D), depth cameras, or stereo. However, here we include a depth-free
algorithm where, following ‘best view’ retrieval with our method, we estimate
the essential matrix between this and the reference, and extract pose from this.
We show the results in fig. A.4, finding that this depth-free method is not as
robust as our depth-based method, for the fine-grained alignment task required
after best view retrieval (though it still outperforms the baselines). Specifically,
we find pose prediction through essential matrix estimation to be worse than
simply predicting an identity transform on top of the best-view. We suggest
further investigation is warranted in depth-free variants of our setting.

B.6 Analysis of results

Choice of evaluation metrics It has long been noted that when reporting
pose estimation errors and accuracies, results can be skewed by the presence of
rotationally symmetric objects, where a ‘reasonable’ pose estimate can nonethe-
less be assigned a very high geodesic error (e.g. a toaster that is predicted to have
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an azimuth angle of 180º rather than 0º — both settings would have very simi-
lar appearance). For this reason, some works that assume access to object CAD
models or point clouds relax the evaluation of pose estimation. For instance, [23]
propose the closest point distance metric for symmetric objects, which naturally
accounts for symmetries by summing the distances between all points on an ob-
ject under the predicted pose, and the closest points to these on the reference
object under the ground-truth pose.

In this work, we use accuracy (at 15º, 30º) and median error metrics, as
is conventional across much of the pose estimation literature. Our reasons for
this are twofold. Firstly, cross-instance shape gap makes closest point distance
metrics, used in the single-instance literature to handle symmetry, ill-posed. A
‘perfect’ relative pose prediction between two object instances would nonetheless
carry a non-zero distance due to shape differences. Second, the choice of whether
or not to use the closest point distance is made based on whether an object has
a rotational symmetry or not [23]. In the zero-shot setting, this cannot be known
either a-priori or at test time. Our metrics are thus sensitive to symmetries, but
the most appropriate choice for category-level pose estimation. To reduce the
impact of symmetries in skewing the reported results, we do not consider object
categories with infinite rotational symmetry (see appendix A.2).

Impact of near rotational symmetry on results Many of the 20 categories
included in our evaluation exhibit near rotational symmetry between a 0º and
180º azimuthal view (about the gravitational axis). For instance, most instances
in the handbag category have almost complete rotational and mirror symmetry
in this sense, with labelling using cues from the handle position to disambiguate
pose (see appendix A.2). To inspect the extent to which categories such as this
affect our results, which as just discussed use metrics that enforce a single correct
pose label, we plot geodesic errors in 3D orientation prediction from our method
in fig. A.5. Inspect these results, it can be seen that categories that intuitively
have a near-symmetry at a 180º offset do tend indeed exhibit a strong bi-modal
prediction error that reflects this. For the chair and toaster categories, where
some instances further have 90º rotational symmetry, a third mode of error can
be seen that reflects this, also.

C Baselines

C.1 Iterative closest point

Iterative Closest Point (ICP) methods seek to minimise the distance between a
reference and target point cloud, in the absence of known correspondences, by
computing the optimal rigid body transform between these clouds, in an iterative
manner. We use the implementation of ICP in the Pytorch3D library [34], and
include a uniform scaling parameter, to match our method’s setting. The time
complexity of ICP in the number of points n is O(n2), and in order to keep
the run-time tractable, we sub-sample each object’s point cloud at random to
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Fig.A.5: The results from 100 pose estimation problems for each of the 20 cate-
gories considered (for the 10 view setting considered in appendix B.1). A small
amount of vertical displacement is added to the plotted points to make larger
clusters salient. For many of the categories, a clear second mode is observed to-
wards maximal geodesic error. In CO3D, where objects tend to vary mostly by
an azimuthal rotation (about the gravitational axis), this often reflects a failure
mode of predicting ‘back-to-front’ pose for objects that almost exhibit a rota-
tional symmetry between the 0º and 180º azimuthal views (e.g. bicycles, cars,
keyboards, handbags).

5000 points prior to running ICP. For the reference object, we construct a point
cloud by back-projecting the single reference image using its depth map. For the
target object, if multiple views are available, we leverage all of these for a more
complete point cloud. We use the labelled foreground masks provided in CO3D
to produce a masked point cloud - we do not use this in our method except to
take a region of interest crop.

As discussed in section 5.2, we try running ICP both without any pose ini-
tialisation (ICP), and - in the multiple target view settings - with initialisation
given by the predicted ‘best frame’ from our method. When running without
initialisation, we first transform the point clouds to put them in a coordinate
frame induced by assuming that the viewing camera (in the reference frame, or
in the first frame of the target sequence) is in the position of the camera in first
frame of the sequence. That is, for the ith reference frame refi, we transform the
reference point cloud by Tcam

ref0
◦ (Tcam

refi
)−1, where Tcam denotes a world-to-view

camera transform, and ref0 is the first frame in the reference sequence. This is to
reduce a bias in CO3D towards point clouds that are very nearly already aligned
in their standard coordinate frames - the camera extrinsic orientation is always
the same in first frame of each sequence, and the point cloud coordinate frame
is defined with respect to this. For most categories, the crowd-sourced videos
start from a very similar viewpoint, which leads to nearly aligned point clouds.
When initialising from a best-frame estimate with index j∗, we use this frame’s
extrinsics to transform the reference point cloud i.e. Tcam

ref0
◦ (Tcam

refj∗
)−1 to bring

it in line with this view.
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C.2 PoseContrast

PoseContrast [49] is an RGB-based method designed for zero-shot category level
3D pose estimation. In contrast to our work, it only estimates SO(3) pose,
with no translation estimate. It makes use of a pre-trained ResNet50 backbone,
and trains on pose-labelled category-level datasets (Pascal3D [47] and Object-
net3D [46]) with a contrastive loss based on the geodesic difference in pose
between samples. Intuitively, it seeks to learn an embedding space in which ob-
jects of similar pose are closer together, in the hope that this will generalise to
previously unseen categories. The authors note that zero-shot successes are still
only probable in cases in which the unseen category has both similar appear-
ance, geometry and canonical reference frame to a category in the training set.
As canonical reference frames can be arbitrarily chosen, this makes the success
or otherwise of this method entirely dependent on a dataset’s choice for category
reference frames. In the present work, we formulate zero-shot pose as agnostic
of canonical frame, by providing the reference frame implicitly through use of a
single reference image. To directly compare to PoseContrast, we bring PoseCon-
trast to the relative setting too. First, PoseContrast estimates a 3D pose for both
reference and target frames individually. We then compute the relative SO(3)
transform between these two estimates to form the final prediction. We then
compare this to the ground-truth given by our labelling process as in all other
methods.

Despite the presence of some of our considered categories (e.g. toaster) in
the ObjectNet3D training set used by PoseContrast, we find that this method
does not perform well in our setting. Inspecting the output predictions for in-
dividual categories, we find that for certain categories it appears to exploit the
uneven viewpoint distributions in the ObjectNet3D dataset, rather than learning
meaningful pose estimates.
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