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In this supplementary material, we provide additional contents that are not
included in the main paper due to the space limit:

– Training details of the proposed self-training method for sim-to-real 6D ob-
ject pose estimation (Section A)

– More details about ROBI dataset and SIBP dataset (Section B)
– Results with different amount of real data for self-training (Section C)
– More qualitative comparison results (Section D)

A. Details of Network Output and Loss Function

Our proposed iterative self-training method for sim-to-real object pose estima-
tion is designed to be scalable and network-agnostic. The specific output format
for representing the 6D object pose and the loss function are dependent on the
architecture of the adopted object pose estimation backbone network. In our
experiments, we mainly take DC-Net [9] as the backbone network to test the
performance of the proposed self-training method. In this case, the network out-
put and the loss function used for self-training are similar with the ones proposed
in [9].

For the rotation, we use discrete-continuous formulation for regressing ro-
tation. Specifically, based on the icosahedral group, we generate 60 rotation
anchors to uniformly sample the whole SO(3) space. For each rotation anchor,
the network would predict a rotation deviation in the form of quaternion and an
uncertainty value σ to indicate the confidence of each rotation anchor. For the
translation, the network would predict a unit vector v′ for each input point that
represents the direction from the point to the object center. Then, the trans-
lation is estimated based on a RANSAC-based voting. The loss function used
for rotation estimation is based on the ShapeMatch-Loss [10]. For symmetric
objects, it is defined as:

  L=\frac {1}{M}\sum _{x_1\in \mathcal {M}}\min _{x_2\in \mathcal {M}}\|\widetilde {R}x_1-R'x_2\|_2, 










   (1)

where M denotes the total number of points of the object CAD model. R̃ and
R′ denote rotations correspond to the pseudo label and the network output
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respectively. For asymmetric objects, the loss function is defined as:

  L=\frac {1}{M}\sum _{x\in \mathcal {M}}\|\widetilde {R}x-R'x\|_2. 







  (2)

The specific probabilistic loss used for rotation estimation that considers the
uncertainty value predicted by the network is defined as:

  L_R=\sum _{i}=\text {ln}\sigma _i+\frac {L_i}{d\times \sigma _i}, 



 



 (3)

where d denotes the diameter of the object. In addition, we use smooth L1 loss
for translation estimation:

  L_t=\left \{ \begin {aligned} & \sum _{i}\frac {1}{M}\sum _{j}0.5\times \|\widetilde {v_{ij}}-v_{ij}'\|_2^2, &\|\widetilde {v_{ij}}-v_{ij}'\| < 1.0\\ & \sum _{i}\frac {1}{M}\sum _{j}\|\widetilde {v_{ij}}-v_{ij}'\| - 0.5, &\text {otherwise}\\ \end {aligned} \right . 












       











    

(4)

where M denotes the total number of points of the object CAD model. ṽ and v′

denote unit vectors computed from the pseudo label and the network prediction
respectively. We integrate loss functions for rotation estimation and translation
estimation as in [9] for the network training.

B. Detailed Information about Experiment Dataset

As mentioned in the main paper, we extend ROBI with 7000 synthetic scenes
based on the provided CAD models shown in Fig. 1. We further build the SIBP
dataset. It provides both synthetic and real data for 6 objects with different
materials and sizes. When synthesizing virtual data for both ROBI and SIBP,
we follow [2,6] and leverage multiple strategies to narrow the sim-to-real gap: (a)
add realism surface texture based on the provided texture-less CAD model; (b)
simulate virtual cluttered scene under the physical constraints; (c) employ ray-
tracing rendering engine in Blender [1] to generate photo-realistic images; (d)
use copy-paste strategy to randomize background. Fig. 2 presents some examples
of our extended ROBI dataset.

Fig. 3 depicts 6 objects that are adopted in constructing the SIBP dataset.
We use a fixed industrial stereo camera to collect the required RGB-D data. To
make the collected real data of SIBP closer to the practical bin-picking scenario,
we follow the scheme in [5] to collect RGB-D data for each object. We first
put tens of objects in the scene. Then, we carefully remove the objects from
the scene one by one and keep the remaining objects unchanged. Fig. 4 depicts
some examples of the SIBP dataset. Tab. 1 further provides detailed statistics
information of SIBP.

In addition, before object pose estimation, we trained a Mask-RCNN [4]
with the synthetic data for instance segmentation. Thanks to photo-realistic
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Fig. 1. Seven object models provided by ROBI [11]. Zigzag, Din Connector, and D-Sub
Connector are three asymmetric objects, and the remains are symmetric objects. Din
Connector and D-Sub Connector are composed of two different materials.

Fig. 2. Examples of ROBI dataset. The first row presents the synthetic data. The
second and third rows show real data in low-bin and full-bin scenarios.

Cosmetic Flake Handle Corner Screw Head
T-Shape
Connector

Fig. 3. Six objects used in SIBP. Handle is an asymmetric object, and remains are
symmetric objects.

Fig. 4. Examples of SIBP dataset. The first row presents the synthetic data. The
second row shows the real data.
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Table 1. Statistics information of SIBP dataset.

Cosmetic Flake Handle Corner
Screw
Head

T-Shape
Connector

Diameter (mm) 67.9 34.5 77.4 66.6 54.5 108.4

Surface material plastic plastic metallic alloyed metallic plastic

Geometric symmetry yes yes no yes yes yes

Synthetic data 1000 1000 1000 1000 1000 1000

Real data 529 588 418 480 449 279

Fig. 5. Segmentation results on ROBI with a Mask-RCNN trained on synthetic data.

Fig. 6. Segmentation results on SIBP with a Mask-RCNN trained on synthetic data.

and physically plausible rendering techniques, as well as many off-the-shelf but
effective 2D augmentation techniques [3], the predicted instance masks on real
data could be very accurate to be used for self-training. Fig. 5 and Fig. 6 depict
some qualitative examples for instance segmentation.

C. Self-training with Different Amounts of Real Data

Fig. 7. Self-training results with different amount of real data for self-training.
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We further studied the self-training performance with different amounts of
real data on three objects of ROBI. We trained the object pose estimation net-
work on 20%, 40%, 60%, 80% and 100% of training data with the proposed
self-training method, and tested the resulting model on the same testing dataset.
Fig. 7 presents the experiment results. With only 20% real data, the self-training
model has significantly outperformed the model trained with only synthetic data.
With about 40% real data, the model achieved comparable performance with the
model trained with 100% real data. These results demonstrate the data efficiency
of our proposed self-training method for sim-to-real object pose estimation in
industrial bin-picking scenario.

D. More Qualitative Results

GT MP-AAE [7] AAE [8] DC-Net [9] Ours

Fig. 8. More qualitative comparisons with state-of-the-art methods on ROBI Dataset.
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GT MP-AAE [7] AAE [8] DC-Net [9] Ours

Fig. 9. More qualitative comparisons with state-of-the-art methods on ROBI Dataset.
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GT MP-AAE [7] AAE [8] DC-Net [9] Ours

Fig. 10. More qualitative comparisons with state-of-the-art methods on SIBP Dataset.
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