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In this supplementary material we provide additional details about:

– Video (with audio) for qualitative depiction of our task and qualitative
evaluation of our agent’s performance (Sec. 1).

– Failure cases of our method (Sec. 2), as referenced in Sec. 5.2 in the main
paper.

– Separation quality of our method as a function of agent location in the 3D
environment (Sec. 3), as referenced in Sec. 5.2 in the main paper.

– Experiment to analyze the effect of our multi-step prediction parameter E (
Sec. 4.1 in main) on the dynamic separation quality (Sec. 4), as mentioned
in Sec. 5 of the main paper.

– Experiment to gauge robustness of our method to audio noise (Sec. 5), as
referenced in Sec. 5.2 of the main paper.

– Experiment to show the dependence of dynamic separation quality on the
number of audio sources (Sec. 6), as noted in Sec. 5.2 of the main paper.

– Experiment to show the dependence of dynamic separation quality on the
minimum inter-source distance (Sec. 7), as referenced in Sec. 5.2 of the main
paper.

– Audio data details (Sec. 8), as mentioned in Sec. 5 of the main paper.
– Baseline details for reproducibility (Sec. 9), as noted in Sec. 5 of the main

paper.
– Model architectures details for our method and baselines (Sec. 10), as noted

in Sec. 5 of the main paper.
– Training hyperparameters (Sec. 11), as referenced in Sec. 5 of the main paper.
– Definition of metrics used for measuring separation quality (Sec. 12), as

mentioned in Sec. 5 of the main paper.

1 Qualitative Video

The supplementary video, available at https://vision.cs.utexas.
edu/projects/active-av-dynamic-separation/, demonstrates the
SoundSpaces [3] audio simulation platform that we use for our experi-
ments, provides a qualitative depiction of our task, Active Audio-Visual
Separation of Dynamic Sound Sources, and also illustrates the technical contribu-
tions of our approach over Move2Hear [11], a state-of-the-art method for active
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Fig. 1: Separation quality of our model when placed at different locations in a 3D scene
for a given target source and distractor.

audio-visual separation of static sounds. Moreover, we qualitatively compare our
method with the best-performing heuristical baseline, namely Proximity Prior
(Sec. 5 in main), and Move2Hear [11] (Sec. 5 in main), as well as qualitatively
analyze failure cases. Please use headphones to hear the spatial audio correctly.

2 Failure Cases.

Our agent fails to separate well when it moves too far away from the target in
search of separation-friendly spots and hence cannot track the target after a point,
even with the help of its transformer memory. Other failure cases involve the
agent being stranded among multiple close-by audio distractors, while having very
limited scope of movement due to the surrounding 3D structure. For examples of
failure episodes, watch our qualitative video (Sec. 1).

3 Separation Quality vs. Agent Location

We show how our agent’s separation quality evolves during its trajectory as a
function of the observation poses it chooses, in the form of heatmaps in Fig. 4 in
main and Supp video (4:57 - 5:19; 6:57 - 7:19). The fill color of a circle on the
trajectory indicates its separation quality. Additionally, if we place our model
at fixed locations and measure the separation quality (i.e., non active setting),
we can produce a heatmap like Fig. 1 where we can see how separation quality
varies as a function of scene geometry.

4 Multi-step prediction parameter E

On setting our multi-step prediction parameter E (Sec. 4.1 in main) to non-zero
values other than 14 (Sec. 5 in main), the overall separation quality (SI-SDR)
on unheard sounds drops up to 6.6%. See Fig. 2. Lower E values reduce our
model’s ability to improve past separations given the new observations. However,
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Fig. 2: Effect of our multi-step prediction parameter E on dynamic separation quality.
Higher SI-SDR is better.
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Fig. 3: Models’ robustness to various noise levels in audio. Higher SI-SDR is better.

on increasing E beyond a certain level, we see a degradation in separation quality
as well. We expect that when the predictions are temporally distant, they are
likely to be dissimilar in nature and their quality gets adversely affected due to
the lack of useful cues in the current estimate for backward transfer.

5 Audio Noise

We test our method’s dynamic separation performance in the presence of standard
microphone noise [21,20] (Sec. 5.2 in main). See Fig. 3. Our method robustly
holds its superiority in separation over strong baseline models even at high noise
levels (e.g., SNR of 20 dB, 30 dB, etc. [3]) See and hear our supplementary
video (Sec. 1) to get a better understanding of the distortion caused by the
maximum noise that we evaluate, i.e., SNR = 20 dB, where we play some noisy
mixed binaural samples, as heard from the agent’s initial pose. Our method
benefits from having the transformer memory fT (Sec. 4.1 in main), without
which its separation performance drops sharply. Further, our multi-step prediction
mechanism (Sec. 4.1 in main) for improving older separations in addition to
separating the dynamic audio target for the current step provides a substantial
boost in performance across all noise levels (compare the green and blue curves).
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Fig. 4: Dynamic separation quality with 3 sources, i.e., , 2 distractor sounds. Higher
SI-SDR is better.

4 6 8 10
Minimum Inter-source Distance (m)

2.0

2.5

3.0

3.5

4.0

SI
-S

DR

Proximity Prior
Move2Hear
Ours w/ E=0
Ours

Fig. 5: Dynamic separation quality with minimum inter-source distance. Higher SI-SDR
is better.

6 Number of Audio Sources

We evaluate how increasing the number of dynamic distractor sounds in the
environment affects separation performance (Sec. 5.2 in main). Fig. 4 shows that
even with k = 3 sources (i.e., , 1 target and 2 distractors) in every episode, our
model leverages its smart motion policy and transformer memory to generalize
better than the strongest of baselines. Further, multi-step predictions help tackle
more distractors with both heard and unheard sounds (compare blue and green
bars).

7 Minimum Inter-Source Distance

We examine how changing the minimum inter-source distance for every episode in
our dynamic audio setting affects the separation performance (Sec. 5.2 in main).
See Fig. 5. Our method is able to maintain its performance gain over the most
competitive baselines and also its own ablated version that makes single-step
predictions. This is true even at very low values of inter-source distance, where our
agent is severely cramped for room to move in search of separation-friendly spots,
due to the close proximity to distractor sounds. This highlights the robustness to
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variations in the relative spatial arrangement of the target and distractor sources,
which we can attribute to our method’s joint learning of a dynamic separation
policy and a transformer memory for making multi-step predictions for past and
current targets.

8 Audio Data

Here, we elaborate on the details of the audio data that we use for our experiments
(Sec. 5 in main).

Monaural Audio Dataset. Our monaural audio dataset contains 100 speaker
classes from LibriSpeech [8], 1 music class of different instruments from the
MUSIC [25] dataset, and 1 class of assorted background sounds from ESC-50 [14]
(Sec. 5 in main).

For LibriSpeech, each of the 100 speakers has at least 25 minutes of audio
data in total. For all speech types and music, we join audio clips from the same
type to form long audio clips, each of which is at least 20 s long, before splitting
them into non-overlapping clips for train/val/test splits for unheard sounds (Sec.
5 in main). For background sounds from our ESC-50 data, we replicate each 5 s
clip four times and join them end to end to produce long clips of 20 s length. We
choose replication for ESC-50 because joining distinct clips often doesn’t lead to
natural sounding audio due to high intra-class variance in the original dataset.

We resample all clips at 16kHz and encode them using the standard 32-bit
floating point format. Next, we compute the mean power across all clips and
normalize each clip such that its power is equal to the pre-computed mean of
1.44. As a result, the mean (±std) audio amplitude in our dataset is 2.4 (±399.7)
for speech, -1.0 (±399.6) for music, and -0.7 (±399.6) for background sounds.
The high std values for all sound categories indicate the high levels of dynamicity
in all monaural clips, which not only make the dynamic separation task realistic
but also challenging in nature.

Having preprocessed the long audio clips, we play a fresh audio segment at
every dynamic source during an episode by sampling a random starting point
within the long audio clips and shifting it forward by 1 s after every step. We
loop over from the clip start if its end is reached during the course of an episode.

Spectrogram Computation. To compute spectrograms, we use the Short-Time
Fourier Transform (STFT) with a Hann window of length 63.9ms, hop length
of 32ms to promote significant temporal overlap of consecutive windows, and
FFT size of 1023. This generates complex spectrograms of size 512 × 32 × C,
where C is the number of channels in the source audio (1 for monaural and 2 for
binaural). For all experiments, we use the magnitude of a complex spectrogram
after reshaping it to 32× 32× 16C, taking slices along the frequency dimension
and concatenating them channel-wise to make model training computationally
tractable. For all modules in our method and the baselines that take spectrograms
as an input, except for the monaural audio encoder FM (Sec. 4.1 in main) of the
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active motion policies, we compute the natural logarithm of the spectrograms by
adding 1 to all their elements for better contrast [5,6], before feeding them to
the respective modules.

Whenever the type label of the target audio source needs to be fed to a module
along with a magnitude spectrogram, its value is looked up in a pre-computed
dictionary with type names for keys and positive integers for label values, and
concatenated with the input spectrogram after slicing.

9 Baseline Details

We provide additional details about our baselines for reproducibility.

– DoA: To face the direction of arrival (DoA) of the target audio, this agent
first rotates clockwise from its starting pose until there is an adjacent node
in front of it that’s connected to the one it is currently at, then moves to the
neighboring node along the connecting edge, and finally turns twice in the
clockwise direction before holding its pose through the rest of episode for
sampling direct sound from the target.

– Novelty [2]: this agent is incentivized to maximize its coverage of novel
states in its environment. In our setup, each node of the SoundSpace [3] grids
is considered to be a unique state, which has an associated visitation count
value that starts from 0 and is incremented every time the agent visits that
state. At step t, the agent receives a reward:

rt =
1

√
ns

, (1)

where ns is the visitation count of its current state st.
– Move2Hear [11]: to account for dynamic audio, we modify the monaural

audio encoder of its active audio-visual controller to only receive M̈G
t in place

of the channel-wise concatenation of M̃G
t and M̈G

t .

10 Model Architectures

Passive Audio Separator. The passive audio separator fP comprises a binaural
extractor fB for extracting the target binaural given the mixed audio and a
target type, and a monaural converter for predicting the target monaural from
the extracted binaural (Sec. 4.1 in main).

fB and fM are U-Nets [15] (Sec. 4.1 in main). Their encoder is made of 5
convolution layers, each with a kernel size of 4, a stride of 2, a padding of 1
and a leaky ReLU [13,19] activation with a negative slope of 0.2. The number
of convolution output channels are [64, 128, 256, 512, 512], respectively. Their
decoder consists of 5 transpose convolution layers, each with a kernel size of
4, a stride of 2, a padding of 1 and a ReLU [13,19] activation. We append a
convolution layer with a kernel size of 1 and stride of 1 to the U-Nets to produce
the final spectrogram output of the networks.
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Transformer Memory. Our transformer memory is a transformer encoder [22] with
2 layers, 8 attention heads, a hidden size of 1024 and ReLU [13,19] activations.
It has a pre-norm architecture that’s been found to be well-suited for audio
separation [18,24]. Instead of using LayerNorm [1] on the additive skip connection
output, as proposed in the original transformer design [22], we use LayerNorm [1]
on the input side for both the multi-head attention and the feedforward blocks
before the additive skip connection branches out. We use this block for every
layer of the transformer encoder.

We use a CNN for encoding the current and past monaural estimates M̃G

from fP to 1024-dimensional features and add them with the corresponding
sinusoidal positional encodings of the same dimensionality (Sec. 4.1 in main),
before feeding them to the transformer encoder for self-attention. The encoder has
2 convolutions, each with a kernel size and a stride of 2, and 16 output channels.
We use a ReLU activation [13,19] after the first convolution. For decoding the
transformer encoder outputs to produce M̈Gs, we use another CNN with 2
transpose convolutions, each with a kernel size and a stride of 2, 16 output
channels and a ReLU activation [13,19] (Sec. 4.1 in main). The decoder also
receives the output of the first convolutional layer in the encoder as a skip
connection, and adds it to the output from its own first transpose convolutional
layer, before passing it to the second transpose convolution.

Observation Encoders. The visual encoder FV (Sec. 4.2 in main) of our method
and all baselines that uses one, namely Novelty [2] and Move2Hear [11], is a CNN
with 3 convolution layers with ReLU [13,19] activations, where the kernel sizes
are [8, 4, 3], the strides are [4, 2, 1] and the number of output channels are [32,
64, 32], respectively. The convolution layers are followed by 1 fully connected
layer with 512 output units.

We use the same architecture as FV for FB and FM (Sec. 4.2 in main),
except that we use a kernel size of 2 instead of 3 for the last convolution.

Policy Network. The policy network (Sec. 4.2 in main) for our method and
the baselines with RL motion policies (i.e., , Novelty [2] and Move2Hear [11]),
comprises a one-layer bidirectional GRU [4] with 512 hidden units, and one
fully-connected layer for its actor and critic networks.

We use He-normal [9] weight initialization for all network layers, except
for the policy network GRUs, where we use semi-orthogonal weight initializa-
tion [17], and the transformer encoder, for which we use the Xavier-uniform [7]
initialization strategy.

11 Training Hyperparameters

We pretrain fP by creating a static dataset of randomly sampled data points
(Sec. 4.3 in main), where each scene contributes a maximum of 30K data points,
and using the Adam [10] optimizer with an initial learning rate of 5e−4 and a
maximum gradient norm of 0.8 until convergence.
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We train the active motion policies of our method, Move2Hear [11] and
Novelty [2] for 150 million steps with Decentralized Distributed PPO (DD-
PPO) [23], where the weights on the value and entropy loss are 0.5 and 0.01,
respectively, and the Adam [10] optimizer with an initial learning of 1e− 4 and a
maximum gradient norm of 0.5. We update the policy parameters after every 20
steps of agent’s experience for 4 epochs.

To jointly train fT or the acoustic memory refiner of Move2Hear [11] with
the corresponding active motion policy, we use Adam [10] with an initial learning
rate of 5e−3.

12 Separation Quality Metrics

Here, we provide additional details about our metrics for evaluating dynamic
separation (Sec. 5 in main).

1. STFT distance – The Euclidean distance between the complex spectrograms
for the monaural prediction and the ground truth,

D{STFT} = ||M̈G −MG||2.

2. SI-SDR [16] – We adopt an efficient nussl [12] implementation to compute
the scale-invariant source-to-distortion ratio (SI-SDR) of a predicted monaural
waveform in dB.
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