DexMV: Imitation Learning for Dexterous
Manipulation from Human Videos

Yuzhe Qin*, Yueh-Hua Wu*, Shaowei Liu, Hanwen Jiang,
Ruihan Yang, Yang Fu, and Xiaolong Wang

University of California San Diego, La Jolla 92093, USA

A Overview

This supplementary material provides more details, results and visualizations
accompanying the main paper. In summary, we include

— More details about video data collection;

— More details about the Relocate, Pour, and Place inside environments

— More details about demonstration translation;

— More visualization of hand-object pose estimation and hand motion retar-
geting results.

B Video Data Collection

We use Intel RealSense D435 cameras to collect human demonstrations of
manipulating different objects for finishing diverse tasks on the table. In detail,
each captured demonstration is about 10 seconds. Moreover, after the demon-
stration is captured, only the pour task is in need to reset the particles back into
the mug, which tasks about 6 seconds. Thus, the time cost for data collection is
not high, and the procedure tends to be scalable on different objects and tasks.
In practice, it takes about 60 minutes to capture all 100 sequences for a task.

C Environments

We propose three types of manipulation tasks along with the DexMV Plat-
form: Relocate, Pour, and Place Inside. The manipulated objects come from YCB
Dataset [1]. Environments use the MuJoCo simulator [6] with timestep set to
0.002 and frame skip set to 5. We adopt the same contact friction parameters fol-
lowing the setting in the literature [5]. We use the open-source MuJoCo model of
Adroit Hand !. Figure 1 shows the seven different task used in DexMV:Relocate
with five different objects, Pour, and Place Inside.

Action. The action space is the same for all tasks, which is the motor com-
mand of 30 actuators on the robotic hand. The first 6 motors control the global
position and orientation of the robot while the last 24 motors control the fin-
gers of the hand. We normalize the action range to (—1,1) based on actuator
specification.

! https://github.com/vikashplus/Adroit

2 Y. Qin et al.

Relocate Relocate Relocate
Mustard Mu Clamp

Relocate

Fig.1: DexMV Tasks. There are three types of tasks in the figure. The first
five columns: relocate with mug, mustard bottle, clamp, sugar box, tomato soup
can. Relocate task means that the agent needs to move the object from the initial
position to the target position. The sixth and seventh columns: Pour and Place
Inside. In Pour task, the agent needs to pour the water particles inside a mug
into the yellow container. In Place Inside task, the agent needs to manipulate
the orientation of the banana to place it inside a mug. Both of the last two tasks
require delicate manipulation.

Relocate
Soup Can Sugar Box

C.1 Relocate

Observation. The observation of Relocate is composed of four components:
(i) joint angles of adroit robotic hand; (ii) global position of adroit hands root;
(iii) object position; (iv) target position. The overall observation space is 39-dim.
Reward. The reward is defined based on three distances: (i) the distance
between the robot hand and the object; (ii) the distance between the robot

DexMV 3

hand and the target; (iii) the distance between the object and the target. Lower
distance corresponds to higher reward.

Reset. For each episode, the xy position of both object and target is random-
ized within a (—0.3,0.3) square on the table. The height of target is randomized
between (0.15,0.25).

C.2 Pour

Observation. Similar to Relocate, we include the robot joint angles, root
position of robot hand, and object position in the observation. In Pour, we
replace the target position with the container position. Besides, since the agent
needs orientation information of the mug to pour the water particles, we add a
quaternion to represent object orientation.

Reward. The main reward is based on the final number of particles that
fell within the container. Additionally, similar to Relocate, we use the distance
between the robot hand and the object as well as the distance between the
object and the container to provide part of the rewards. Lower distance leads to
higher reward. The coefficient of the main reward is 10x larger than the reward
computed based on the distance.

Reset. For each episode, the xy position of the mug is randomized between
(—0.1,0.1) on the table. The water particles are inside the mug at the beginning
of each episode. The container is always at the center of the tabletop.

C.3 Place Inside

Observation. The observation space of the Place Inside task is the same as
the observation space of Pour as described in Section C.2.

Reward. The main reward is based on the position and orientation of the
manipulated object. If the object is placed inside of the mug, the agent will get
a large portion of the reward. Similar to Relocate, we also add a lifting reward to
encourage the robot to first lift the object before moving it towards the container.

Reset. For each episode, the xy position of the object is randomized between
(—0.15,0.15) on the table. The container, i.e. mug, is always placed at the center
of tabletop.

C.4 ShapeNet Objects

In the Generalization on Novel Objects and Category experiments (Section
8.4) of the main paper, we use objects from ShapeNet [2] dataset. We pre-process
the ShapeNet geometry by scaling the mesh so that it can be used in our sim-
ulated environment. The YCB objects [1] are captured from the real scan, so
the scale of object mesh from YCB dataset aligns with the real counterpart and
can be used for robot manipulation directly. Different from the YCB dataset,
the ShapeNet dataset does not contain any scale information, e.g. the mug in
ShapeNet can be larger than the robot. So we need to scale the object to a

4 Y. Qin et al.

reasonable size in which it can be manipulated by the robot. We scale the object
based on the diagonal length of the object bounding box. For each category,
we manually select a diagonal length so that all object instances from the cate-
gory will have the same bounding-box diagonal length after scaling. Besides, we
will not use objects with non-manifold geometry to avoid instability in physical
simulation. For the Place Inside task, the object mesh should be watertight for
volume computation. We use the convex meshes processed by VHACD [4] for
both simulation and volume computation.

D Demonstration Translation

D.1 Kinematics Model

In Table 1, we compare the difference of kinematics model between the hu-
man hand and robot hand. The overall Degree-of-Freedom(DoF) of the human
hand is higher than the DoF of the robot hand. Thus hand motion retargeting
from human to robot is projecting a pose from a higher dimension to a lower di-
mension, which will lose information inevitably. The motion retargeting module
try to maintain the task space vectors between these two different kinematics
model.

H-Joints|H-DoF| R-Joints |R-DoF
Thumb| 3x Ball 9 5x Revolute 5

Index | 3x Ball 9 4x Revolute 4
Middle| 3x Ball 9 4x Revolute 4
Ring | 3x Ball 9 4x Revolute| 4
Pinkie | 3x Ball 9 5x Revolute 5
Wrist Null 0 2x Revolute 2
Root | 1x Free 6 1x Free 6
Overall| N/A 51 N/A 30

Table 1: Comparison of Kinematics We compare the kinematic model be-
tween MANO human hand and the robot hand we used in simulator. H is the
abbr for Human while R stands for robot. For example, the H-Joints column
shows the number and type of joints for a specific sub-part in the kinematics
model. Each ball joint has 3 Degree-of-Freedom(DoF), each revolute joint has 1
DoF, and each free joint has 6 DoF

D.2 [Initialization in Hand Motion Retargeting

As mentioned in the Demonstration Translation section of the main paper,
the robot joint angles are solved using optimization. A good initialization is es-
sential for optimization. For ¢ > 1, ¢; is initialized using the optimization results

DexMV 5

gt—1. Here we will discuss how to initialize ¢; for ¢ = 0. Previous work [3] initial-
izes q; with zero vectors. The optimization cannot provide reasonable outputs
when the goal is far from zeros. To tackle this issue, we use a heuristic func-
tion ¢(0y) to initialize go. The heuristic function takes the MANO hand pose
parameters 0y and outputs an estimation of the robot joint angles. The heuristic
function ¢(y) can be regarded as a coarse hand motion retargeting function
which does not consider the shape difference between human and robot hands.
It is only used to provide a reasonable initialization for further optimization.

Given the axis-angle representation 6y from hand pose estimation, we first
convert it to 15 rotation matrices. Then we compute the projection of each
rotation matrix on the joint axis direction of each robot hand joint. Then we use
a manually-designed vector w to map the projection to the robot joint angle.
The overall function can be formulated as below,

#(00) = Prot(R(00))w (1)

where R(-) is the Rodrigues’ formula that maps axis-angle to rotation matrix,
P.ot(+) is the projection function to compute the nearest rotation along with the
robot joint direction for each joint, i.e. projection. Prot(R(6p)) € R**15 and
w € R® is a manually designed vector. Thus the dimension of ¢(y) is 24, which
corresponds to the joint angles for finger and wrist. As mentioned in Table 1,
the overall DoF of the robot hand is 24 4+ 6 = 30, which includes 6 DoF hand
root pose. We directly use the root position plus root orientation from human
hand pose estimation as the root pose for the robot hand.

D.3 Post Processing

Filter Estimated Pose: When human is manipulating the object, either
hand or object is in heavy occlusion, which may cause inconsistent estimation
results. To improve the temporal consistency of the estimated hand and object
poses, we apply a digital low-pass filter to remove the high-frequency noise.
The sampling frequency of the filter is 100 while the cutoff frequency is 5 for the
position of both object and hand. Filtering the rotation is not as straightforward
as filtering the position. To get a smooth orientation sequence, we first convert
the rotation into so(3) lie algebra. Then, we apply the filter in so(3) space and
convert it back to rotation matrix SO(3) after filtering.

Hindsight Goal Position for Relocate. As mentioned in the Task Section
of the main paper, relocate is a goal-conditioned task. The goal information
should also be included in the state representation. To provide goal information
from human demonstration, we use the position of the object in the last step as
the hindsight goal.

Frame Alignment. Spatial quantities like object pose are dependent on the
frame in which it is observed. The natural frame for pose estimation results is
the camera frame. In the simulated environment, such a camera frame does not
exist and the pose is represented in the world coordinate fixed on the table. Thus
we also align the frame in demonstrations to match the simulated environment.

6 Y. Qin et al.

Raw

Human
Hand Pose

Robot Hand
Pose

Raw
Image

Human
Hand Pose

Robot Hand
Pose
|
-

Fig.2: 3D hand-object pose estimation results and hand motion retar-
geting results. Visualization on relocate tomato soup can, sugar box, mustard
bottle, mug, clamp, pour, and place inside.

E More Visualization of Hand-Object Pose Estimation
and Hand Motion Retargeting

In this section, we provide more visualization on hand-object pose estimation
and hand motion retargeting in Figure 2. The four tasks in the first three rows
are Relocate with tomato soup can, sugar box, a mustard bottle, and mug. The
three tasks in the last three rows are: Relocate with clamp, Pour, and Place
Inside.

DexMV 7

References

. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Bench-
marking in manipulation research: The ycb object and model set and benchmarking
protocols. arXiv (2015) 1, 3

. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015) 3

. Handa, A., Van Wyk, K., Yang, W., Liang, J., Chao, Y.W., Wan, Q., Birchfield,
S., Ratliff, N., Fox, D.: Dexpilot: Vision-based teleoperation of dexterous robotic
hand-arm system. In: ICRA (2020) 5

. Mamou, K., Ghorbel, F.: A simple and efficient approach for 3d mesh approxi-
mate convex decomposition. In: 2009 16th IEEE international conference on image
processing (ICIP). pp. 3501-3504. IEEE (2009) 4

. Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E.,
Levine, S.: Learning complex dexterous manipulation with deep reinforcement learn-
ing and demonstrations. arXiv (2017) 1

. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: TROS (2012) 1

