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Abstract. We present a novel method of learning style-agnostic repre-
sentation using both style transfer and adversarial learning in the rein-
forcement learning framework. The style, here, refers to task-irrelevant
details such as the color of the background in the images, where gen-
eralizing the learned policy across environments with different styles is
still a challenge. Focusing on learning style-agnostic representations, our
method trains the actor with diverse image styles generated from an in-
herent adversarial style perturbation generator, which plays a min-max
game between the actor and the generator, without demanding expert
knowledge for data augmentation or additional class labels for adversar-
ial training. We verify that our method achieves competitive or better
performances than the state-of-the-art approaches on Procgen and Dis-
tracting Control Suite benchmarks, and further investigate the features
extracted from our model, showing that the model better captures the
invariants and is less distracted by the shifted style. The code is available
at https://github.com/POSTECH-CVLab/style-agnostic-RL.

Keywords: Reinforcement Learning, Domain Generalization, Neural Style
Transfer, Adversarial Learning

1 Introduction

Learning visual representation in reinforcement learning (RL) framework incor-
porated with deep convolutional neural networks enabled achieving remarkable
performances in various control tasks, including video games [29,41], robot ma-
nipulation [23,38], and autonomous driving [46]. Unfortunately, however, gener-
alization of the learned policies to unseen environments often results in failures,
even with slight changes in the backgrounds [44,4,15].

Several methods have been proposed to overcome this limitation of RL agents,
such as having an encoder with generative models [12,6,8,21] or training with
auxiliary tasks [19,27,24]. Methods using generative models are designed to train
the agents to understand the world environment, and auxiliary tasks enable the
agent to extract better features that will lead to better performances. Due to
its simplicity, the latter technique is gaining interest. For example, recent works
have shown that representation learning with self-supervision objectives [19,9],
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data randomization with feature matching [22], and data augmentation with
additional regularization [17,11,10] result in high success.

The central concept of these approaches is to diversify training data so that
the RL agents can learn invariants to the different styles of environments. Here,
the style of the environment indicates too detailed or irrelevant elements in the
observation. In an autonomous driving situation, for instance, detecting the road
or pedestrians is key to success, while the texture of the road, the colors of the
other cars, or the weather condition can be regarded as different styles, which
distract the agent from abstract and understand the situation. Data augmen-
tation, thus, might lead to better generalization capacity by mimicking natural
style changes of observations. However, the results are inefficient or unstable
without a careful choice of augmentation type and timing [20,16]. To tackle this
issue, sounder training methods of adding more regularization terms can be ap-
plied [17,32,11,10], but this makes the training objectives much more complex.

In this work, we focus on learning style-agnostic representations and propose
SAR: Style-Agnostic RL, which adopts the concept of both style transfer and
adversarial learning. Style transfer has been applied in many computer vision
tasks, including domain generalization in RL [14,42,45]. Here, we further examine
how style transfer is used to train the agents via generating images of new styles.
The generator module in our model generates never-seen styles and helps the
actor generalize its learned policy to the unseen styles with various background
images, including realistic images, without any heuristics or explicit environment
class labels. Notably, the generator is trained with adversarial loss to perform
adaptive style perturbation to the encoded feature representation. To our best
knowledge, this attempt and success have not been presented anywhere before.
An overview of our model is described in Figure 1.

In summary, the contributions of this paper are as follows:

• First, we introduce SAR, a novel method of learning style-agnostic represen-
tation for domain generalization in RL.

• Second, we conduct extensive empirical evaluations showing that the model
better captures invariants between different styles of environment.

• Finally, we show that the SAR agents achieve competitive or better results
on the Procgen [3] and Distracting Control Suite [36] benchmarks than the
previous state-of-the-art algorithms.

2 Related work

2.1 Domain Generalization in RL

The main target of the domain generalization in RL can be summarized as
training an agent to learn a robust policy that can be generalized to unseen en-
vironments. This allows RL algorithms to be applied in more realistic situations
because agents are often tested in different environments from the training stage.
One example is deploying a policy learned from the simulation to the real world
in the robot manipulation task.
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Data randomization is a promising technique for such domain generalization
in many cases [38,2]. However, it is difficult to build an accurate and practical
simulator that enables using data randomization. Visual augmentation, on the
other hand, is much easier to apply as it is based on simple image transforma-
tions. Laskin & Lee et al. [20], for example, demonstrated that simply using
data augmentation, such as random cropping or gray scaling, is indeed helpful
in improving the generalization capacity of RL agents. Also, Yarats & Kostrikov
et al. [17] suggested using regularization terms for stabilizing the model training
when using data augmentation.

However, although data augmentation is potentially effective, it has several
limitations. For example, a näıve choice of the augmentation type may degrade
the generalization performance [20]. Applying cropping to an essential part of
the image may confuse the agent, or training the model to produce the same
action from a rotated image may be unreasonable. Here, we present a method for
domain generalization by diversifying the training examples without requiring
a complex strategy for data augmentation. The generator in the SAR model
generates new feature examples having different styles and helps the agents with
learning style-agnostic representations.

2.2 Adversarial Feature Learning

Adversarial feature learning has become popular for domain generalization in
computer vision tasks [35,18,25,43,30]. Li et al. [25] showed that adversarial
objectives help a model learn universal feature representations across different
domains. Furthermore, Nam & Lee et al. [30] proposed a method of reducing the
style gap for domain generalization in the image classification task. Inspired by
this work, we investigate the adversarial feature learning for RL agents, but with
a simpler training procedure, i.e., without dividing training phases or considering
the environment style’s classes.

We note that adopting adversarial training for RL is not new [31,24]. To our
best knowledge, however, exploiting adversarial learning to the latent features in
RL framework and the min-max game scheme is not presented before. Especially,
our method can be interpreted as domain randomization beyond pixel space.
Mixing styles with linear interpolation for representation learning in RL setting
has been proposed in the earlier work [45]. However, unlike in the previous study,
the style perturbation generator in SAR produces new synthetic styles that will
not be seen with a simple interpolation. The adversarial examples help the actor
extract style-agnostic embeddings without any label of styles and, finally, learn
a robust policy for unseen environments.

3 Backgrounds

3.1 Deep Reinforcement Learning

RL agents interact and get trained with the world environment within a Markov
decision process, which is defined as a tuple of (state space S, action space



4 J. Lee et al.

A, transition probability P , reward space R, and discount factor γ); at every
timestep t, the agent observes a state st ∈ S and takes an action at ∈ A from
its policy π(at|st) [1]. Then, the agent is rewarded with rt ∈ R, and moves to
the next state st+1 sampled from the transition probability P (st+1|st, at).

The policy of the agent is optimized to maximize the discounted sum of
rewards Gt =

∑∞
k=t γ

krk. With given state st, the value of the state V (st) is
estimated as Eτ∼π[Gt|st] and the value of the state-action Q(st, at) is computed
as Eτ∼π[Gt|st, at], with trajectory τ sampled from the policy π.

With deep RL algorithms, the policy π gets parameterized by a set of learn-
able parameters ψ, and value function V or Q is optimized with network param-
eter ϕ. Also, especially for visual-based RL, since the images only offer partial
observations, Mnih et al. [28] has proposed that defining the state st as a stacked
consecutive image frames (ot−k, ot−k+1, . . . , ot), where O is a high-dimensional
image space and o ∈ O, is effective.

Proximal policy optimization (PPO) [33] is a state-of-the-art on-policy RL
algorithm that is used for, in our setting, discrete control tasks. Here, on-policy
refers to a situation in which the model is trained with trajectories collected
from the current policy. With PPO, the actor is updated using policy gradients,
where the gradients are computed by using (i) action-advantages At to reduce
the gradient variances and (ii) clipped-ratio loss to constraint the update region.
The critic estimates the state-value Vϕ, and gets trained with mean-squared error
loss toward a target state-value V targett using generalized advantage estimation
[33]. So, the objectives for the actor and critic network can be written as follows:

At = Qϕ(st, at)− Vϕ(st) (1)

Lactor(ψ) = −Est,at∼π
[
min

( πψ(at|st)
πψold

(at|st)
At, clip

( πψ(at|st)
πψold

(at|st)
, ϵ
)
At

)]
(2)

Lcritic(ϕ) = Est∼π
[
(Vϕ(st)− V targett )2

]
, (3)

where ϵ is a coefficient for clipping function clip(·) → [1− ϵ, 1 + ϵ].

Soft actor-critic (SAC) [7] is an off-policy RL algorithm for continuous con-
trol tasks. Since off-policy algorithms can train the agent with trajectories col-
lected from the different policies, other than the current one, it appears to be
more flexible to alternative routes but may get slower. With SAC, the actor
learns a policy πψ, with the guide of critic estimating the state-action value
Qϕ to maximize an objective as a sum of the reward and the policy entropy
Est,at∼π[

∑
t rt+αH(π(at|st))]. Here, α is an entropy coefficient determining the

priority of exploration over exploitation.
The actor, then, is trained by maximizing the expected return of its sampled

actions where the objective can be denoted as follows:

Lactor(ψ) = −Eat∼π
[
Qϕ(st, at)− α log πψ(at|st)

]
. (4)
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The critic is updated to minimize the temporal difference. The objectives for
the critic, with the estimated target value of the next state, are as follows:

V (st+1) = Eat∼π
[
Qϕ(st+1, at)− α log πψ(at|st+1)

]
(5)

Lcritic(ϕ) = Est,at,rt,st+1∼D

[(
Qϕ(st, at)−

(
rt + γV (st+1)

))2]
(6)

where D is the replay buffer.
In this work, we show that our method can be attached to both on-policy

and off-policy RL algorithms, namely PPO and SAC. Also, our method can be
applied to both continuous and discrete control tasks as tested with the Procgen
and Distracting Control Suite benchmark.

Style transfer via instance normalization For style transfer, many recent
works adopt a method of using instance normalization (IN) [39,13,5,40,45]. The
underlying idea is that the mean and standard deviations of feature maps, com-
puted across the spatial dimension within each feature channel, reflect the im-
ages’ style. For example, the color or texture of an image can be captured with
these statistics, which may be irrelevant features for classifying or detecting an
object. By using IN, the effect of styles can be normalized with the formula:

IN(z) = γ · z − µ(z)

σ(z)
+ β (7)

where z ∈ RC×H×W is a feature map with channel C, height H and width W ,
and β, γ ∈ RC refers to the affine transformation parameters.

Note that µ(z) ∈ RC and σ(z) ∈ RC are denoted as:

µ(z)c =
1

HW

H∑
h=1

W∑
w=1

zc,h,w, σ(z)c =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(zc,h,w − µ(z)c)2 (8)

with c ∈ {1, . . . , C}.
Moreover, Huang & Belongie [13] proposed the method of adaptive instance

normalization (AdaIN), which can be understood as replacing the style statistics
of a target content image with those of a source style image with the definition
below:

AdaIN(z, z′) = σ(z′) · z − µ(z)

σ(z)
+ µ(z′) (9)

where z′ is the feature map extracted from the source style image.
This idea can be used for mixing styles between images within a mini-batch.

Especially in the domain adaptation for image classification, this has been proved
to be successful [30]. Zhou et al. [45] adopted style mixing for domain generaliza-
tion in RL. However, the scope of mixing styles is restricted only to the training
mini-batch as AdaIN is an interpolation. Here, our method enables the agents
to observe unseen styles by generating new adversarial feature examples.
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Fig. 1. Overview of the proposed Style-Agnostic Reinforcement learning (SAR) with
the base model of PPO. The upper Style Mixing module makes the policy network focus
on the critical content in the observations by mixing styles from randomly chosen states
s′. We newly employ our Style Perturbation module, helping the agent with learning a
robust policy by adversarially perturbing latent features.

4 Method

Overview. SAR is composed of an actor-critic module with RL objectives and
a style perturbation generator helping the agents to observe more diverse styles
of observations. While the generator is updated to produce more substantial
perturbations for style transfer by maximizing the difference between the ac-
tion predictions, the actor learns a more robust policy to the attack from the
generator by minimizing the gap between predicted action distributions.

To perform this min-max game between actor and generator, we present a
style perturbation layer, shown in Figure 1. Unlike the conventional approach
using only style mixing within the mini-batch [45], the model in the training
phase generates new styles and observes a broader range of feature examples.
Note that this does not require explicit data augmentation that potentially de-
grades performance without a cautious choice of augmentation type.

4.1 Style Perturbation Layer

Our method is based on the concept of style transfer, which was proven to
be successful in generating images with new styles [5,14]. The style perturba-
tion layer shifts the style of observations z with the generated perturbation
mean βadv(z) and variance γadv(z), to build style-perturbed feature map zadv,
or StylePerturb(z), with the following equation:

zadv = γadv(z) ·
z − µ(z)

σ(z)
+ βadv(z). (10)
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Then, the SAR agent should take the same action from zt and zadv,t to
be robust among different environments, as the perturbed feature indicates an
observation with different styles but the same semantics, e.g., in Procgen, the
same player, enemies, and items, but shifted texture of the background image,
the colors of projectiles, and the shapes of obstacles. We will further explain the
objectives to achieve this generalization.

4.2 SAR Objectives

Primarily, the policy network is updated via PPO or SAC objectives. Thus, the
actor loss of SAR is adopted from Equation 2 with PPO baseline or from Equa-
tion 4 when using SAC. We will denote this loss be L◦

actor. Also, for the critic
loss, as suggested in RAD [20], we adopt the critic objective of PPO or SAC
interchangeably, denoted as L◦

critic.
Another big goal of SAR is to be robust to different environments. There-

fore, the agent should learn its policy by minimizing the difference between the
distributions of actions from the style-perturbed features zadv,t and the orig-
inal ones zt. By leveraging KL-divergence, we can calculate the objective as
Ldiv = KL[π(·|zt)||π(·|zadv,t)]. Integrating this with a weight coefficient λ, the
objective for the SAR actor module can be written as:

Lactor(ψ) = L◦
actor(ψ) + λ · Ldiv (11)

On the other hand, the generator participates in the min-max game in an-
other manner: to maximize the differences between the action distributions. This
module is trained with the objective of the same Ldiv but with a converted sign.
Unlike the previous works using class label information of the environment style
[24] or additional heavy background images [10], the objectives for the robust
policy (i.e., adversarial loss) do not demand any secondary labors. Hence, the
overall goals for the generator can be formalized as:

Lgen(θ) = −λ′ · Ldiv, (12)

where λ′ can be different coefficient from that of actor objective.
Finally, the critic gets updated to guide the actor to optimize its policy to

maximize the value function. Meanwhile, we observed that the sharing critic net-
work, for predicting the value for both style-perturbed features and the original
ones, does not bring a huge difference in the performance from decoupling the
critic network but lighter training computation. Instead, we add a regularization
term Gcritic for the value function, to minimize the difference between the value
predicted from the adversarial example, i.e., (Vϕ(zt)− Vϕ(zadv,t))

2, which helps
stabilization. Thus, the critic’s objectives can be computed as follows:

Lcritic(ϕ) = L◦
critic(ϕ) + κ ·Gcritic, (13)

with hyperparameter κ1.

1 The values used for each hyperparameters λ, λ′, κ in the experiment are described
in the supplementary material.
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On convergence. When the SAR agents learn the optimal policy π∗, the KL
divergence term, or Ldiv, becomes zero. This is the situation where the actors
infer the same actions from the features with different styles. This might be one
of the two cases: (i) the generator produces the same style statistics for all images
in the mini-batch, or more possibly, (ii) the actor well focuses on the invariant
part of all observations.

Since the model should learn an additional generator module, the training
procedure indeed demands more computations. However, the sample efficiency
is not highly degraded even with limited training timesteps, e.g., the usual 25M
timesteps in Procgen. Although the agent may not learn the optimal policy
due to the limited number of epochs, we also empirically observed that the
performances of the SAR agents converge as shown in Figure 3.

4.3 Pseudo-code

Here, we present the pseudo-code of the SAR algorithm. As depicted in Figure 1,
to maximize the effect of style transfer, we design the zt to pass a Style Mixing
module and a Style Perturbation module with two divided branches. In the Style
Mixing module, the styles of observations in the mini-batch get interpolated
with Equation 9. In Style Perturbation module, on the other hand, the styles of
observations are shifted with new styles generated from the generator network
with Equation 10.

With two different features zt and zadv,t, the SAR agent predicts two different
action distributions πt and πadv,t. The difference between these predictions Ldiv

is computed, and it gets interpreted in two different ways: by the generator to
produce more unfamiliar styles and by the actor to make its policy more robust.

Algorithm 1 SAR algorithm

1: Initialize rollout or replay buffer D
2: Initialize parameters for policy ψ, generator θ, and critic ϕ
3: for every epoch do
4: for every environment step do
5: Sample (st, at, rt, st+1)
6: Update D ← D ∪ {(st, at, rt, st+1)}
7: end for
8: for each mini-batch sampled from D do
9: zt ← Encoder(st) ▷ Encoder in the actor network
10: Generate βadv(zt), γadv(zt) ▷ From the generator network
11: zadv,t ← StylePerturb(zt) ▷ Use Equation 10
12: zt ← AdaIN(zt, z

′
t) ▷ z′t is permuted from zt within mini-batch

13: Compute Ldiv from zt, zadv,t
14: Compute Lactor, Lgen, and Lcritic

15: Update ψ, θ, and ϕ
16: end for
17: end for
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5 Results

5.1 Setup

In this section, we exhibit the experiment results for the generalization per-
formance of our SAR model on Procgen [3] and Distracting Control Suite [36]
benchmarks. Recently, these benchmarks have become a standard for measuring
the generalization performance of visual-based RL algorithms [20,17,32,11,10].
These contain reasonably challenging and diverse tasks, which are highly relevant
to real-world robot learning.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples of seen training environments
from (a) starpilot and (b) jumper in Procgen,
(c) walker:walk and (d) cartpole:balance

task in Distracting Control Suite, with examples
of unseen test environments from (e) starpilot
and (f) jumper in Procgen, (g) walker:walk and
(h) cartpole:balance task in Distracting Con-
trol Suite.

While the Procgen bench-
mark is with a discrete action
space, the Distracting Control
Suite presents continuous control
tasks. We exploited PPO as the
basic baseline on the Procgen, and
SAC as the basic baseline on the
Distracting Control Suite, show-
ing that the SAR algorithm can
be applied to both on-policy and
off-policy algorithms. Figure 2 vi-
sualizes some examples of training
and test environments in the two
different benchmarks.

OpenAI Procgen. One key rea-
son for choosing this benchmark is
that this presents different styles
between test and training envi-
ronments. We train the agents on
the first 200 levels in the Proc-
gen environment. Then, we test
the generalization performance of
the agents on the environment levels sampled from the full distribution of un-
seen levels, with easy distribution mode. Among 16 tasks, we selected four
tasks demonstrating comparably more considerable differences (starpilot,
climber, jumper, ninja) and four tasks showing comparably less significant
differences (coinrun, maze, bigfish, dodgeball) between the training and
test environments style.

Distracting Control Suite. DeepMind Control Suite [37] presents various
continuous control tasks where RL agents can be tested. On top of the DMC,
Stone et al. [36] proposed Distracting Control Suite that distracts the agents by
applying a color shift, changing the background images into videos, and rotating
the camera angle. We test our model and other baselines with different noise
coefficient values and show how these models generalize to unseen situations.
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5.2 Generalization Performance

Procgen. First, Table 1 shows the result of the generalization test of SAR with
six other baselines. The SAR agent achieved high and robust performances in
the zero-shot generalization test: 3 top-1 scores and 7 top-3 scores out of 8 tasks.

The baselines are six visual-learning RL algorithms showing state-of-the-art
results on Procgen. PPO [33] is the vanilla on-policy RL baseline, and RAD
[20] uses data augmentation on top of PPO. We performed random translation
(denoted as ‘trans’) and random color cutout (denoted as ‘color’) for RAD, as
they are reporting the best performance. Among many advanced algorithms on
RAD, UCB DrAC[32], and Meta DrAC [32] are chosen to be compared with
our method among three variants of DrAC; the former one presents the best
performance among the variants. Mixstyle [45] exploits the style mixing, and
DARL [24] uses an adversarial objective for regularization with style labels. 2

Table 1. The generalization scores of SAR and baseline methods on Procgen. The
results are averaged over three runs with 100M training timesteps without smoothing.
The ranking stands for the average rank among all tasks. The top-1 score is bold.

PPO [33]
RAD [20]
(trans)

RAD [20]
(color)

UCB
DrAC [32]

Meta
DrAC [32]

MixStyle
[45]

DARL
[24]

SAR
(Ours)

Starpilot 30.37
±11.14

29.57
±7.52

27.03
±7.51

33.17
±6.37

29.40
±4.61

25.70
±8.13

21.97
±10.66

35.87
±9.13

Climber 6.73
±1.27

4.87
±1.31

7.23
±2.05

9.43
±1.35

7.77
±0.68

7.37
±2.71

7.03
±1.37

7.93
±1.10

Jumper 6.00
±2.65

4.67
±0.58

5.67
±1.53

5.67
±0.58

7.33
±2.52

6.00
±2.65

7.67
±1.53

6.33
±1.15

Ninja 6.00
±2.83

5.33
±2.52

5.33
±2.08

6.33
±1.53

7.33
±0.58

8.67
±1.53

7.33
±0.58

8.33
±1.15

Coinrun 8.67
±1.15

8.33
±1.15

9.33
±1.15

9.00
±1.00

8.33
±0.58

9.33
±0.58

9.33
±1.15

9.00
±1.00

Maze 4.67
±0.58

5.33
±1.53

5.33
±0.58

7.33
±1.53

4.67
±0.58

5.33
±0.58

3.67
±1.15

5.00
±1.00

Bigfish 10.37
±3.27

6.03
±2.06

10.13
±1.84

9.37
±3.16

12.03
±4.38

9.00
±2.94

9.07
±4.05

13.20
±6.16

Dodgeball 4.13
±1.75

4.93
±1.53

3.20
±1.56

8.13
±1.33

2.40
±2.46

3.60
±2.31

4.47
±2.73

3.60
±2.23

Avg. Rank 4.9 5.8 4.8 3.1 4.5 3.9 4.5 2.9

Distracting Control Suite. As Table 2 demonstrates, SAR again showed ro-
bust performances in selected four tasks in Distracting Control suite compared
to the baselines. This experiment implies that our method can also be applied
in continuous control tasks and is attachable to the off-policy RL algorithms.

In this experiment, we purposely tested different baselines from Procgen to
compare SAR with various algorithms. SAC [7] is the vanilla off-policy RL algo-
rithm, and CURL [19] uses a contrastive objective for representation learning

2 We reproduced all the results of the baselines. The results showed better than the
reported performance in several tasks as more training steps [20,32,45].
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Table 2. The generalization results on Distracting Control Suite after training 500k
timesteps. The models are evaluated in two distraction settings: moderate setup with
the noise coefficient βcam = βrgb = 0.3 and 60 background videos, and hard setup with
the noise coefficient βcam = βrgb = 0.5 and 60 background videos, where βcam and βrgb
mean camera angle noise intensity and color noise intensity. The results are averaged
over 3 runs with different seeds, and rank is calculated within distracted environments.

SAC
[7]

CURL
[19]

DrQ
[17]

PAD
[9]

SAR
(Ours)

walker

:walk

zero noise 373±89 828±99 930±23 838±47 325±57
moderate 96±10 88±11 126±33 125±27 139±19
hard 85±8 57±7 80±11 71±8 112±15

cartpole

:balance

zero noise 996±1 995±3 996±3 992±6 990±5
moderate 262±20 215±57 246±15 236±17 266±26
hard 251±12 216±62 240±26 238±22 261±17

reacher

:easy

zero noise 197±7 960±24 844±63 671±285 177±51
moderate 88±11 79±11 83±10 75±19 98±13
hard 72±11 67±12 78±3 71±8 93±10

cheetah

:run

zero noise 316±159 280±12 332±21 285±29 304±80
moderate 55±10 46±8 47±8 49±5 49±11
hard 53±15 41±8 33±13 41±10 46±13

Avg. Rank 2.125 4.625 3.125 3.625 1.25

on top of SAC. DrQ [17] was chosen as the representative baseline using the
data augmentation with additional regularization terms. PAD [9] adapts to a
new test environment using self-supervision.34

Model behavior. Figure 3 provides the learning curve of the SAR agents. They
exhibit competitive sample efficiency compared to the baselines. A quantitative
comparison of the models’ computational complexity is in Table 3. Although the
SAR model requires more parameters, it does not sacrifice much training and
test time in comparison with methods using data augmentation.

With augmentation. Training the SAR agents can be integrated with other
techniques. For example, Table 4 presents the result of the SAR agents with data
augmentation. Both the use of random translation and color cutout improved
the performance. This result implies that the SAR agents can potentially be
improved using other auxiliary tasks or regularization terms.

On curriculum learning. Choice of timing for adopting the min-max game,
i.e., curriculum learning, can improve final generalization performances for SAR.
See supplementary for the results of the experiment.

3 We reproduced all the results of the baselines and applied ‘trans’ to DrQ. The results
with zero noise well match the reported performances in most cases [7,19,17].

4 The performance of PAD differs from the reported value because of the simultaneous
application of natural video backgrounds, color noise, and camera angle noise.
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Fig. 3. The learning curve of SAR with baselines. For better visualization, we selected
three models and three tasks: PPO (blue), RAD (orange), and SAR (red). Here, we
applied exponential moving average smoothing with a coefficient value of 0.98.

Table 3. A comparison between the number of parameters, training time, and test
time. The training time refers to the time consumed for 256 timesteps and an update,
and the test time is for running ten episodes in Procgen.

PPO
[33]

RAD [20]
(color)

UCB
DrAC[32]

MixStyle
[45]

DARL
[24]

SAR
(Ours)

Parameters (×106) 0.626 0.626 0.626 0.626 0.678 1.151

Training Time (s) 6.507 11.605 12.841 6.735 6.542 13.377

Test Time (s) 2.983 2.656 3.154 2.349 2.521 3.969

Table 4. Results on generalization performances of SAR with the application of data
augmentation and ablation study in starpilot. SAR (λ = 0) refers to the setting with-
out adversarial loss, and SAR (κ = 0) refers to the setting without regularization loss.
We apply two different data augmentation: trans and color. The results are averaged
over three runs.

PPO
[33]

MixStyle
[45]

SAR
(λ = 0)

SAR
(κ = 0)

SAR
SAR
(trans)

SAR
(color)

starpilot
27.09
±0.83

26.81
±0.89

27.44
±2.59

29.28
±7.79

28.92
±4.60

30.76
±0.90

33.72
±1.16

5.3 Ablation Study

This ablation study answers two questions regarding (1) whether the generator
module helps generalization performance and (2) generalization term GV is im-
portant for stabilization. Comparing SAR to PPO baseline, MixStyle using only
style mixing, and SAR (λ = 0), Table 4 shows that the adversarial objective
helps improve the mean of the performances. Comparing SAR to SAR (κ = 0),
Table 4 shows that GV helps stabilize the variance of the performances. 5

5 Note that the results in Table 4 are slightly different from Table 1, as we applied
exponential moving average smoothing before averaging with coefficient value 0.98.
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5.4 Learned Feature Analysis

Furthermore, we qualitatively examine the features extracted from the encoder
learned with the SAR objectives. The feature z we analyzed is from encoded
features before entering the AdaIN layer to exclude the effect of explicit style
mixing.

We demonstrate three analyses on the embedding:

• GradCAM [34] visualization for the high-level understanding interpretation.
• Reconstruction images from the feature maps.
• t-SNE [26] for analyzing the latent representations.

Visualization of model decision We use GradCAM [34] to visualize where
the trained agents are focusing with respect to the decisions. GradCAM can be
computed by averaging the activation scores across the channels of the target
convolutional layer and weighting by their gradients. Both the agent trained
by the vanilla PPO and our agents predict their actions as focused on similar
objects in the training environment; in the case of starpilot, they are focusing
on the shooter and the projectiles from enemies. In the unseen test environment
shown in Figure 4, however, the vanilla PPO agent gets more distracted by the
changed backgrounds and focuses on irrelevant areas in the images.

(a) (b) (c) (d) (e)

Fig. 4. GradCAM results of (a) PPO and (b) SAR, overlaid on (c) the original images
from starpilot in Procgen. The highlighted regions represent where the agent is fo-
cusing. The SAR model better focuses on what is important with the style shifts. (d)
Image reconstruction results from features extracted with the SAR agents, and (e) the
original observations of starpilot in Procgen are displayed.
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Image reconstruction from embedded features. Reconstructing images
from the feature maps displays a more straightforward visualization of the char-
acteristics of the learned features. We trained a new decoder network that con-
verts the feature maps into the original images from training environments. In
Figure 4, we show the reconstructed and original images. While the meaningful
semantics, e.g., shooters or enemies, are remained, the reconstructed background
seems invariant to the different original styles.

t-SNE Analysis. Li et al. [24] addressed that the distance between the em-
bedding in the latent space may reflect the dissimilarities between the features.
Thus, by observing the t-SNE [26] of the embedding from different environments,
how the feature maps are correlated with the style of images can be visualized.
While the features extracted from the PPO encoder are patterned with respect
to the level labels, i.e., the styles, the SAR encoder extracts invariant embed-
ding regardless of them. The visualization result can be seen in supplementary
materials.

6 Limitation

We address the limitation of the SAR agents, mainly shown in the noise-free
setting in Distracting Control Suite in Table 2, although they could well adapt
to heavy noise. The additional terms in learning objectives may negatively affect
the performance when there is zero noise in the test environment. Not enough
styles of training environments would have also affected the actors, as they could
not observe a sufficient amount of styles of training features to compete well
with the generator. The generator would have taken the wrong direction for
generating the new styles, and a failure in the min-max game may happen.
Curriculum learning may help alleviate such concerns.

7 Conclusion

The SAR agents learn style-agnostic representations by observing features with
a wide range of styles by (i) mixing with style randomization and (ii) producing
from an adversarial style perturbation generator. In both Procgen and Distract-
ing Control Suite benchmark experimentation, the SAR agents show the best
generalization performances in terms of rank. The qualitative analysis reveals
that the model helps to learn style-agnostic representations. We hope that the
progress made here provides a broader view bringing out more techniques for
many other tasks as well, as the SAR agents do.
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