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1 Additional Analyses

In this section, we present additional analyses that support the findings of the
main paper. Specifically, we explore the impact of the distillation trick beyond
the unlearning context. Additionally, we display the results for both CR and HR
scenarios using the COCO dataset as Dsur. We also examine the computational
impact of our method. Lastly, we investigate the behavior of feature maps from
various layers of the original and unlearned models in the feature space.

Fig. 1: Examples of train loss (left) and train set and test set accuracies (right) of a
resnet18 trained with the trick-distillation mechanism on the subset of Imagenet1K.

1.1 Distillation-Trick details

The distillation-trick mechanism has been verified outside the unlearning scope.
We used as ϕθ a resnet18 trained on CIFAR100 and as OOD surrogate dataset
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the subset of 10K images from Imagenet1K. ϕθ has been trained using the
distillation-trick mechanism (eq. 1 and 7) directly on the surrogate dataset and
tested on the test set of CIFAR100 (Fig. 1). For this training, it has been used
Adam [9] as the optimizer, a weight decay of 5×10−4, lr = 5×10−4 and StepLR
scheduler with γ = 0.1 and epochstep = 40. Overall, we observed that the ac-
curacy of the test set after the first 5 epochs remains constant at ≈ 76%. This
result demonstrates how this mechanism can be used as Model “Knowledge” reg-
ularization technique when training data are not available as in the CR and HR
scenarios where the Dr is not available.

1.2 Results with Coco as Dsur

We reported in Tab. 1 the results obtained for SCAR and SCAR self-forget in
CR and SCAR in HR for both CIFAR100 and TinyImagenet using the subset
of COCO as surrogate dataset. Overall, we observed compatible results in both
scenarios which highlights once more how differences in terms of kind of infor-
mation such as surrogate dataset classes and distribution of pixels do not affect
SCAR.

CIFAR100 TinyImagenet
At

r At
f AUS At

r At
f AUS

C
R

SCAR (Imagenet) 72.93(01.78) 02.00(02.00) 0.935(0.025) 62.99(01.39) 00.60(01.37) 0.940(0.019)
SCAR S-F(Imagenet) 71.69(02.69) 00.70(00.95) 0.929(0.028) 60.79(02.15) 00.80(01.40) 0.917(0.025)

SCAR (COCO) 71.61(01.92) 00.84(00.43) 0.933(0.023) 62.04(01.41) 01.00(01.41) 0.927(0.019)
SCAR S-F(COCO) 71.27(02.95) 00.75(01.30) 0.930(0.032) 61.88(00.98) 01.20(01.69) 0.924(0.018)

At Af AUS At Af AUS

H
R SCAR (Imagenet) 73.23(00.74) 75.63(00.54) 0.934(0.011) 61.35(00.69) 66.51(00.44) 0.886(0.011)

SCAR (COCO) 72.51(00.41) 75.64(00.57) 0.921(0.008) 61.56(00.73) 66.49(00.47) 0.890(0.011)

Table 1: Performance of SCAR and Scar self-forget in CR and HR scenarios for
CIFAR100 and TinyImagenet datasets using either the subset of Imagenet1K or the
subset of COCO as surrogate datasets. The metrics are reported as mean ± std over
ten runs. S-F stands for Self-forget

TinyImagenet CR TinyImagenet HR
At

r At
f AUS At

r At
f AUS

Cosine Similarity 60.55(01.66) 01.00(01.41) 0.912(0.021) 61.27(00.81) 66.48(00.52) 0.883(0.012)
L2 Distance 57.74(01.66) 01.40(01.90) 0.881(0.023) 49.20(01.18) 48.69(01.01) 0.806(0.018)
Mahalanobis 62.99(01.39) 00.60(01.37) 0.940(0.019) 1.35(00.69) 66.51(00.44) 0.886(0.011)

Table 2: Results of the ablation study on CIFAR100 in CR and HR scenarios. The
metrics for CR and HR are reported as mean ± std over ten runs.
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1.3 Computational Analysis

We present in Table 3 a computational comparison between our method and
other state-of-the-art approaches. We evaluated the methods based on the AUS
metric, required unlearning time, and memory usage for the forget and retain
data. Notably, our method only needs to store Dsur for the Self-Forget vari-
ant while Df and Dsur for SCAR. Furthermore, our approach demonstrates a
favorable balance between AUS, unlearning time, and storage efficiency, outper-
forming several methods that rely on both Dr and Df . Although slower than
Retain-Free approaches and requiring marginally more memory, our methods
exhibit significantly superior performance compared to these approaches and
are comparable to more computationally intensive methods that depend on the
Retain set.

Method Dr

free
Df

free AUS Time(s) Retain-Data
Stored(Mb)

Forget-Data
Stored(Mb)

Total-Data
Stored(Mb)

Fine Tuning ✗ ✓ 0.998(0.022) 366.99 145.02 0 145.02
DUCK ✗ ✗ 0.931(0.026) 12.56 145.02 1.46 146.48
Boundary S. ✗ ✗ 0.749(0.116) 23.19 145.02 1.46 146.48
Boundary E. ✗ ✗ 0.750(0.117) 66.50 145.02 1.46 146.48
SCRUB ✗ ✗ 0.977(0.051) 139.18 145.02 1.46 146.48
L1-Sparse ✗ ✗ 0.879(0.018) 35.29 145.02 1.46 146.48
ERM-KTP ✗ ✗ 0.814(-) 550.14 145.02 1.46 146.48
Bad Teacher ✗ ✗ 0.940(0.089) 56.07 145.02 1.46 146.48

Neg. Grad. ✓ ✗ 0.849(0.061) 09.02 0 1.46 1.46
Rand. Lab. ✓ ✗ 0.774(0.070) 17.03 0 1.46 1.46
SCAR ✓ ✗ 0.935(0.025) 109.11 29.30 1.46 30.76
SCAR Self-Forget ✓ ✓ 0.929(0.028) 101.61 29.30 0 29.30

Table 3: Comparison between our method, the self-forget variant, and methods from
the state-of-the-art on the Cifar100 dataset in the CR scenario in terms of AUS, un-
learning time, and memory requirements. For SCAR and SCAR Self-Forget, the amount
of memory occupied for the retain-data refers to the Dsur

1.4 t-SNE analysis on DNN layers

To gain deeper insights into the impact of the unlearning mechanism employed
in our approach, we conducted an analysis of the embeddings derived from the
neural network backbone (Φθ) both pre and post the unlearning process in the
CR scenario. Utilizing t-SNE [10], a dimensionality reduction technique for high-
dimensional data visualization, we analyzed the transformation of embeddings
from various layers of the deep neural network (DNN). The resulting distribu-
tions, as illustrated in Fig. 2, depict each class within the dataset as a uniquely
colored cluster for better visual distinction.
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We generated two separate t-SNE visualizations: one representing the orig-
inal model’s embeddings (Fig. 2-A) and the other post-unlearning with SCAR
(Fig. 2-B). Initially, in the original model, the embeddings of different classes,
particularly from the last residual layer, formed distinct and cohesive clusters,
signifying a high degree of separation within the test set. Contrastingly, after
applying SCAR, while the embeddings of the samples meant to be retained
preserved their clustered integrity, those designated for forgetting became inter-
spersed among the clusters of other classes.

These findings suggest that the information content of the embeddings de-
rived from Φθ for the forget-set no longer hold the necessary attributes for accu-
rate sample classification, signaling a comprehensive dilution of relevant details
not only in the final layer but also across preceding layers of the network. This
observation underscores the profound efficacy of our unlearning process, which
effectively destroys the pertinent data footprint throughout the neural architec-
ture.

2 Reproducibility

In this section we report all the details about the experiments reported in the
main paper and in this Supplementary Material.

2.1 Experimental Details and Hyperparameters

We trained the original model with the seed fixed to S = 42. Then for the two
scenarios proposed in the paper, we adopted two different setups.
CR. In CR scenario, we set the seed to S = 42. Subsequently, we divided the
training and testing datasets into forget sets (comprising all instances of a spe-
cific class q) and retain sets (comprising instances of the remaining classes).
We applied the unlearning algorithms to these sets and recorded the metrics.
This process of splitting and applying the unlearning procedure was repeated
ten times, each time altering the class q designated for the forget set. Ulti-
mately, we calculated the mean and standard deviation (std) for all metrics.
For CIFAR10, one class at time constituted the forget sets (q = [0, 1, 2...]). For
CIFAR100, the forget set contained at each time a class multiple of 10, start-
ing from class 0 (q = [0, 10, 20, ..., 90]). Similarly, for TinyImagenet, starting
from class 0, at each iteration, a class multiple of 20 constituted the forget set
(q = [0, 20, 40, 60, ..., 180])
HR. In the HR scenario, we select a seed S and split the training dataset into
forget set (containing 10% of the training data independently from the class) and
retain set (containing the remaining 90%). We applied the unlearning algorithms
to these sets and recorded the metrics. This process of splitting and applying
the unlearning procedure was repeated ten times, each time selecting a different
seed in S = [0, 1, 2, 3, 4, 5, 6, 7, 8, 42] designated for the forget set. Ultimately, we
calculated the mean and standard deviation (std) for all metrics.
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Fig. 2: T-SNE plot of feature vectors of the original model ϕθ (A) and unlearned model
ϕU
θ (B) applied to Dt

r and Dt
f of CIFAR10. Feature vectors are extracted after the first

convolutional layer, and after the first and last residual block. The original model or
unlearned model predicted classes are reported in different colors.
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All the hyperparameters of SCAR used to produce the results reported in
Tab. 1 and 2 of the main text are detailed in Tab. 4, while the ones used for SCAR
self-forget case are listed in Tab. 5. For comprehensive reproducibility, all
scripts necessary to replicate our findings are attached to this Supple-
mentary Material and will be released at https://github.com/jbonato1/
SCAR.

CR HR
λ1 λ2 lr BS T δ γ1 γ2 Emax λ1 λ2 lr BS T δ γ1 γ2 Emax

Cifar10 1 5 5× 10−4 1024 1 0.5 3 3 30 1 8 5× 10−4 1024 5 1 3 3 30
Cifar100 1 5 5× 10−4 1024 1 0.5 3 3 30 1 6 5× 10−4 1024 2.5 1 3 3 30
TinyImagenet 1 5 1× 10−4 1024 1 0.5 3 3 30 1 5 1× 10−4 1024 1.8 1 6 6 30

Table 4: Hyperparameters of SCAR used to produce the results reported in Tab. 1
and Tab. 2 of the main text for the two scenarios, CR on the left, HR on the right.

λ1 λ2 lr BS T δ γ1 γ2 Epochmax

Cifar10 1 5 7.5× 10−4 1024 2 0.5 3 3 25
Cifar100 1 4 1× 10−3 1024 2 0.5 3 3 25
TinyImagenet 1 5 1× 10−4 1024 2 0.5 3 3 25

Table 5: Hyperparameters of SCAR self-forget used to produce the results reported
in Tab. 1 of the main text, for the CR scenario.

2.2 AUS

The AUS metric [3] has been formulated to address the need for a measure
that considers both the performance on the retain and forget-set of an untrained
model. It serves the pivotal function of enabling the ranking of different methods
based on their ability to balance memory retention and forgetting. This metric
is particularly designed to provide a singular score reflecting each method’s effi-
ciency in maintaining high test set accuracy while successfully engaging in the
unlearning process. The metric is outlined as follows:

AUS =
1− (AOr

t −At)

1 +∆
, ∆ =

{
|0−Af | if CR
|At −Af | if HR

, (1)

In this formulation, At represents the accuracy on the test set and Af represents
the accuracy on the forget-set of the untrained model, whereas AOr

t denotes
the accuracy on the test samples of the original model. To simplify notation,

https://github.com/jbonato1/SCAR
https://github.com/jbonato1/SCAR
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we sobstituted Af with At
f , AOr

t with At,Or
r , and At with At

r. By offering a
unified score, the AUS metric simplifies the comparative assessment of different
models, underscoring their performance in both retaining essential information
and effectuating targeted unlearning.

2.3 MIA

In the HR scenario, through the usage of a membership inference attack (MIA)
[3], the goal is to investigate whether forget set samples were used to train an
input model Φθ. To achieve this, the MIA tries to assess whether, from the
model perspective, the forget data can be distinguished from the test set data
(the actual set of data never seen by the model Φθ during training). Failure of
the MIA indicates the inability to differentiate forget data from test data and
consequently the impossibility to classify the former samples as training data.

Summarizing the step of the MIA proposed in [3, 11, 12]: given the datasets
Df and Dt, we combine Df and an equal number of samples from Dt into a
single dataset, which we then split into a training set Dmia (containing 80% of
the samples) and a test set Dt

mia (containing 20% of the samples).
Subsequently, an SVM with a Gaussian kernel classifier is trained. This SVM
takes as input the probability distribution across classes obtained from the
softmax(ΦU

θ (xi)), where xi belongs to either Dmia or Dt
mia. The SVM is trained

on Dmia to distinguish between training (i.e. forget) and test instances.
SVM hyperparameters are optimized through a 3-fold cross-validation grid search
and finally, the SVM is evaluated on Dt

mia. Failure of the Membership Inference
Attack (MIA) indicates that information about forget-samples has been success-
fully removed from the untrained model. The MIA performance is assessed based
on the mean F1-score over 10 iterations of the SVM, each utilizing different train
and test splits of Df and Dt.

In the CR scenario, the forget set consists solely of samples from a single
class, differently from the HR scenario where the test set is composed of in-
stances from multiple classes. In this scenario, the application of MIA as defined
before, would lead the SVM to detect biases in the logits related to the identity
of the classes, thereby skewing results away from reflecting true sample member-
ship. To mitigate the introduction of these biases, stemming from the differing
class distributions between the two datasets, we employed the forget subset of
the test data to ensure a fair and unbiased comparison. Rather than utilizing the
entire Dt for the MIA test, Df is combined with Dt

f to ensure uniform class iden-
tification across both subsets, thus mitigating the introduction of class-related
biases in Dt. The SVM is trained to discriminate forget train instances vs. for-
get test instances. The number of forget samples (N = 5000 for CIFAR10 and
N = 500 for CIFAR100) and forget test samples (N = 1000 for CIFAR10 and
N = 100 for CIFAR100) are unevenly distributed. To address this imbalance,
we resample Df to create a less imbalanced Dmia with a ratio of 1:3 forget test
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CIFAR10 CIFAR100
At Af AUS F1 At Af AUS F1

Original 88.64(00.63) 88.34(00.62) 0.531(0.005) 77.63(1.33) 77.55(00.11) 77.50(02.80) 0.563(0.009) 83.15(4.12)
Retrained 88.05(01.28) 00.00(00.00) 0.994(0.014) 74.91(0.10) 77.97(00.42) 00.00(00.00) 1.004(0.022) 75.47(0.75)
SCAR 87.71(01.62) 00.97(00.24) 0.981(0.017) 74.91(0.19) 72.93(01.78) 02.00(02.00) 0.935(0.025) 75.60(0.44)

Table 6: Results obtained applying the MIA defined in [3,11,12] adapted for the CR
scenario.

samples per forget samples, resulting in a chance level of .75. Results for CR
scenario in CIFAR10 and CIFAR100 are reported in Tab. 6

In the HR scenario, both Dt and Df encompass all classes, with an equal
number of samples per dataset. Consequently, the chance level for the MIA test
in this case is .5.

3 Baselines

In this section, we report additional details about the baselines and competitors
we included in the comparisons.
Original: This is the original model trained on the entire dataset. This model
is used as a starting point for SCAR, the competitors, and the baselines consid-
ered. The goal of every unlearning algorithm is to remove the knowledge about
the forget set from this model. The model, as Resnet18, has been trained for 300
epochs with cosine annealing as lr scheduler.
Retrained: The “Retrained” model, is a model initialized from random weights
and then trained only on the retain set Dr. This is considered an upper bound
since it does not have any knowledge of the forget data Df . The model has been
trained for 200 epochs with cosine annealing as lr scheduler.
Finetuning [4]: This method fine-tunes the original model using the retained
data Dr. The model has been fine-tuned for 30 epochs and with X of learn-
ing rate. Following [1] the fine-tuning method results are effective but time-
consuming. Importantly, this method requires access to the entire retained set.
Negative Gradient (NG) [4]: In this method, the original model is tuned on
the forget data minimizing the inverse of gradient. Results are reported from [3].
Random Label (RL) [5]: In this method, the original model is tuned, using
the cross-entropy loss, matching the exemplars from the forget set with random
labels among the ones of the retain data. Results are reported from [3].
Boundary Expanding (BE) [1]: This method assigns an additional shadow
class to each sample in the forget-set, thereby shifting the decision boundary
and leveraging the decision space.
Boundary Shrink (BS) [1]: In this method, the decision boundary is adjusted
matching for each sample in the forget-set the closest wrong class label and then
finetuning the model with the forget set with these new labels and the retain set
using cross-entropy loss. Results are reported from [3]
ERM-KTP (ERM) [8]: This approach switches between the Entanglement-
Reduced Mask and the Knowledge Transfer and Prohibition phases to erase the
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data related to the forget-set while enhancing the accuracy on the retain-set.
Results are reported from [3]
SCRUB [7]: This method employs a distillation mechanism to forget the Df

pushing away the student network predictions (unlearned model) from the teacher
network (original model). This procedure is called max-steps. Unfortunately, this
mechanism is extremely disruptive, and SCRUB alternates to the max-steps a
specific procedure to regain performance on the retain set called min-steps which
combines distillation and cross-entropy losses. The distillation loss is weighted
.001 whereas the cross-entropy is .999. Additionally, the authors conducted a
limited number of min-steps to recover the lost knowledge pertaining to the re-
tained data. For each dataset and scenario, lr, number of min-steps, max-steps,
and epochs have been optimized to obtain the best overall AUS.
DUCK [3]: In this paper, the authors minimize the distance between feature
vectors derived from the forget data and the nearest centroid of a different class
through metric learning. Concurrently, cross-entropy loss has been employed to
maintain performance on retained data. This approach operates directly on sin-
gle forget samples, enabling the method to function effectively in both CR and
HR scenarios. Results are reported from [3].
Bad Teacher [2]: In this method, similarly to [7], the student model adheres
to the original model (i.e., the teacher) with respect to the retain set data. Si-
multaneously, it minimizes the KL-divergence between its logits and those of
a randomly initialized model using as input the forget set data. We followed
the training procedure reported in the paper: the model has been trained for 4
epochs with lr = 0.0001 and Adam as optimizer.
L1-sparse [6]: In this paper the authors elucidates the relationship between
exact unlearning methods and approximate unlearning methods when subjected
to pruning. This led to the development of an unlearning strategy based on two
phases: the pruning phase and the unlearning phase. During the pruning phase,
the original model is pruned removing uninformative weights connections. Then,
an unlearning regularization, i.e. the “L1-sparse MU” method, is applied to the
pruned model for 10 epochs with lr = 0.001.

4 Examples of images from different Dsur
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Fig. 3: Examples of surrogate images sampled from Imagenet1K

Fig. 4: Examples of surrogate images sampled from COCO dataset
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Fig. 5: Examples of surrogate images sampled from random images dataset

Fig. 6: Examples of surrogate images sampled from imagenet1K distilled
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