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Abstract. In this paper, we introduce Selective-distillation for Class
and Architecture-agnostic unleaRning (SCAR), a novel approximate
unlearning method. SCAR efficiently eliminates specific information while
preserving the model’s test accuracy without using a retain set, which is
a key component in state-of-the-art approximate unlearning algorithms.
Our approach utilizes a modified Mahalanobis distance to guide the un-
learning of the feature vectors of the instances to be forgotten, aligning
them to the nearest wrong class distribution. Moreover, we propose a
distillation-trick mechanism that distills the knowledge of the original
model into the unlearning model with out-of-distribution images for re-
taining the original model’s test performance without using any retain
set. Importantly, we propose a self-forget version of SCAR that unlearns
without having access to the forget set. We experimentally verified the
effectiveness of our method, on three public datasets, comparing it with
state-of-the-art methods. Our method obtains performance higher than
methods that operate without the retain set and comparable w.r.t the
best methods that rely on the retain set.
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1 Introduction

Over the past decades, deep learning algorithms have grown significantly in
applications like image classification, detection, and segmentation. For optimal
performance, these models learn from big training datasets and update their
weights to capture intrinsic patterns. Despite their effectiveness, many ethical
concerns such as potential biases affecting certain demographics [12] and pri-
vacy like unauthorized use of sensitive or personal data [38,48] have been raised.
Additionally, methods like model inversion [5,16,29,59,63,66,67], and member-
ship inference attacks [49, 52, 55, 64] raised many concerns about the potential
revelation of training data characteristics or can reveal particular data utiliza-
tion during training. These vulnerabilities highlight the critical necessity for
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implementing safeguards to secure sensitive information within machine learn-
ing models. This imperative is fundamental in light of the privacy-preserving
regulations that have been put into effect ( e.g. the European Union’s General
Data Protection Regulation [39] and the California Consumer Privacy Act [45]).

Machine Unlearning [41, 44, 51, 62] has emerged as a solution to these pri-
vacy and ethical challenges, aiming to remove specific information content from
algorithms without degrading their performance. Unlearning algorithms can be
classified into 3 main groups: model intrinsic, data-driven, and model agnostic.
The characteristic of model-intrinsic methods is to change the deep neural net-
work (DNN) architecture or add specific weights to induce the unlearning. The
data-driven group is characterized by the usage of data to induce forgetting, and
it can be roughly divided into methods that store optimization information dur-
ing training (e.g. gradient updates) and methods that involve data manipulation.
Similarly to this latter group, model-agnostic solutions do not require access to
specific optimization-related information and operate directly on the unaltered
trained model. Nonetheless, a common practice among these algorithms is to
maintain or restore the model performance using the residual portion of the
training dataset, known as retain set. Using the retain set to recalibrate models
post-unlearning represents a viable strategy, however, it also introduces practi-
cal challenges. In scenarios where privacy concerns dictate, only the forget set
—images to forget— might be accessible, leaving no retain set for performance
restoration. This poses a significant hurdle for models designed to undergo a
performance restoration phase after unlearning, potentially compromising their
utility. Moreover, when large-scale datasets such as ImageNet or ImageNet-21K
are involved and the forget set constitutes a minor fraction, the bulk of the data
is the retain set. This disproportionality can significantly inflate the time re-
quired to restore the model to its original efficacy. Furthermore, there are even
more intricate situations where also the forget set is unavailable, such as when
the unlearning task entails forgetting an entire class with access only to its ID.

This paper presents a novel, model-agnostic unlearning algorithm, Selective-
distillation for Class and Architecture-agnostic unleaRning (SCAR), which
leverages metric learning and knowledge distillation [26] to efficiently remove
targeted information and maintain model accuracy, notably without relying
on a retain set. Specifically, we use the Mahalanobis distance to shift the
feature vectors of the instances to forget toward the closest distribution of sam-
ples of other classes. This distance includes important information regarding the
original dataset distribution of samples resulting in an efficient metric learning-
based unlearning strategy. Concurrently, distilling the knowledge of the original
model into the unlearning model using out-of-distribution (OOD) images, allows
SCAR to maintain the performance of the original model on the test set. The
main contributions of this work include: (i) SCAR, a novel model-agnostic
unlearning algorithm that achieves competitive unlearning performance without
using retain data. (ii) A unique self-forget mechanism in class removal scenarios
that operates without direct access to the forget set. (iii) Comprehensive analy-
ses demonstrating SCAR’s efficacy across different datasets and architectures in
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class-removal and homogeneous-removal scenarios (iv) Experimental evidence
showing SCAR’s comparable or superior performance respectively to traditional
unlearning methods or state-of-the-art (sota) techniques that do not utilize a
retain set. Code is available at https://github.com/jbonato1/SCAR

2 Related Works

Machine Unlearning algorithms can be classified into three main categories: data-
driven, model-intrinsic, and model-agnostic unlearning algorithms [44].
Data-driven. The unlearning algorithms in this category employ a data-driven
approach to remove knowledge about specific image instances. For example,
methods that involve data manipulation, such as transformations or attacks, fall
within this group of algorithms [50, 53]. However, this category is not limited
to such models: it encompasses a broader range of approaches. In [19, 61] the
authors propose similar methods for reverting the gradient updates for the in-
stances of the classes to be removed. Despite their effectiveness, these methods
require storing gradient updates for all the batches in the training set. Simi-
larly, in [42], the authors propose two gradient-descent-based approaches for the
effective unlearning of convex models. In the first, Gaussian noise is used to per-
turb the gradient updates, while the second also incorporates reservoir sampling.
In [60], the authors modeled the impact of each training point on the model’s
training process and then compensated for the impact of removing data from
the model’s knowledge by re-weighting the gradient updates. In [14], the authors
employed a strategy of recursively assigning an incorrect class to samples des-
ignated for forgetting until a membership inference attack no longer recognizes
those samples as part of the training dataset. In [3], the authors segmented the
dataset into n parts and trained n models on each segment; during inference,
predictions from these models are aggregated. Only the model containing those
samples is retrained when a removal request is received. Moreover, novel retain-
set-free algorithms such as Random Labels [23] and Negative Gradient [17] have
been introduced. In the former approach, random labels are assigned to samples
designated for forgetting to calculate the cross-entropy, while the latter employs
the negative gradient obtained from these samples to optimize the loss function.
Model-intrinsic. Model-intrinsic approaches to machine unlearning consist of
algorithms that depend on a specific architecture. In these cases, the unlearning
process is facilitated by sophisticated mechanisms tailored to function within
that particular architecture. Depending on the task to be performed several ar-
chitectures can be involved. For instance in [17, 18] the authors proposed two
different unlearning approaches for CNNs. In the former, the authors “scrubbed”
from the weights of the model the knowledge about instances of images through
the computation of Fisher’s information matrix. Similarly in the latter, the au-
thors propose a CNN-based unlearning algorithm, inspired by the neural tangent
kernel, that models the weights dynamics and can remove from the information
about forget data. In [35], the authors proposed a two-phase algorithm for the
approximate unlearning of CNNs. During the first phase, called ERM, the model

https://github.com/jbonato1/SCAR 
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Fig. 1: SCAR overview. A)SCAR scheme B)distillation-trick through J.S. divergence
of the logits of Φθ(xj) and ΦU

θ (xj). C) Representation of the feature vector distributions
of samples for 3 classes before (left) and after (right) the unlearning process. Ellipses
denote the 95% confidence intervals of the distribution of samples.

is trained on all the data while a binary mask is learned for each layer of the
CNN for each class of the dataset. Then during the second phase, called KTP,
the knowledge about the classes of the forget set is removed using the previously
learned masks. In [20], the authors propose a certified algorithm for removing
knowledge about classes on linear classifiers. This method applied a Newton step
on the model’s weights to significantly reduce the influence of the deleted data
point, with the residual error decreasing quadratically as the training set size
increases. Then, for certifying the data removal and to prevent the extraction of
information from the minimal residual the training loss is perturbed. Recently,
additional unlearning approaches have been developed for dealing with specific
models on different learning paradigms such as Multimodal learning [7, 46]and
Adversarial Learning [37,57].
Model-agnostic. This group of algorithms includes universally applicable meth-
ods across different architectures. Their characteristic is the ability to intervene
in the feature/activation space to selectively erase data associated with the for-
get set. In [32], the authors used knowledge distillation to differentiate the logits
of the forget set from those of the retain set and erase the knowledge of these
examples. A similar strategy was proposed in [30], where distillation was com-
bined with contrastive labeling to achieve efficient unlearning. In [4] the authors
proposed two methods for unlearning based on the kinematics of the decision
boundary. The methods change the labels of the examples of the forget set to
the closest wrong class and then fine-tune the model with the reassigned sam-
ples. Similarly, In [9] the authors proposed a metric learning-based approach
that associates samples from the forget set to the closest centroid in the feature
space. Through this procedure, the model preserves the feature space organi-
zation. In [28] the authors proposed a model sparsification via weight pruning
for unlearning data samples. In [56], the authors proposed to learn a matrix
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noise associated with the classes to be forgotten to remove their influence on
the model’s weights followed by a repair step used to recover knowledge about
retain samples.

Our approach stands out as a model-agnostic approximate unlearning al-
gorithm and partially aligns with Boundary Unlearning [4] or DUCK [9] that
manipulates respectively forget samples labels or forget samples feature vectors
to induce unlearning. However, while these methods adjust samples towards in-
correct directions based on the nearest wrong class or centroid in feature space,
our solution focuses on using the distributions of features to efficiently reorganize
the positions of forget samples in the feature space. This enables us to utilize
a more precise and efficient mechanism, grounded in the Mahalanobis distance.
Nonetheless, SCAR does not rely on any images from the retain set to restore
performance during the unlearning process whereas model-agnostic methods like
DUCK [9], Boundary Unlearning [4], and SCRUB [32] partially or fully depend
on it. SCAR, thanks to an efficient knowledge preservation method based on
distillation and OOD data, can operate without accessing training data.

3 Methods

3.1 Preliminaries

Consider a dataset {xi, yi}Ni=1 consisting of N images xi each associated with a
label yi ∈ {0, . . . ,K} where K is the number of classes in the dataset. A model
Φθ is trained on the training subset of the dataset D to predict the corresponding
label for a given image, that is, ŷi = Φθ(xi). This model is then evaluated on the
test subset Dt. The objective of a machine unlearning algorithm is to derive a
model, denoted as ΦUθ , from which information about a specific subset of data,
known as the forget set Df , is removed from the original model’s parameters θ.
Concurrently, the algorithm aims to preserve the model’s performance on the
retain set Dr, such that it is comparable to that of a model trained exclusively
on the retain set. In this paper, we consider two scenarios: Class-Removal (CR)
and Homogeneous Removal (HR).

In the CR scenario, the objective is to remove from the model’s weights
the information about the instances of a class C among the K available. The
two subsets D and Dt are split in forget (Df , Dt

f ) and retain (Dr, Dt
r) sets. The

forget set contains all the images, from the class to be removed Df = {xfi , y
f
i }N

f

i=1

with yfi ∈ {C} while the retain set contains all the remaining images Dr =
{xri , yri }N

r

i=1, with yri ∈ {0, . . . ,K − 1}; the same definition stands also for Dt.
The desiderata in this scenario is to maintain the original accuracy on the Dt

r

while minimizing the one on the Dt
f . In the HR scenario, the training dataset

D is divided into retain Dr and forget Df sets, while the test set Dt remains
unchanged. In this case, the images constituting Df are chosen from all the
classes. Here, the goal is to eliminate the model’s knowledge of specific training
instances in Df without compromising its performance on Dr. Following the
application of the unlearning algorithm, the model should no longer differentiate
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between data from Df and Dt or in other words it interprets Df samples as never-
seen-data. This indistinguishability has also to be reflected in the Df accuracy
which has to be approximately similar to Dt accuracy. This second scenario is
more challenging compared to CR since Dr and Df include images from the
same classes and the model should maintain its ability to generalize across all
classes.

3.2 SCAR

In SCAR, the unlearning process is based on metric learning and involves directly
modifying the feature vector projection of the sample to be forgotten within
the feature space. Additionally, we have devised a regularization technique that
enables the DNN to preserve the original model information through distillation
without access to the retain dataset. By leveraging an OOD dataset, SCAR
enables the transfer of knowledge from the original model to the unlearning
model, thereby ensuring that classification performance on test samples remains
consistent throughout the unlearning process. Initially, we present the unlearning
strategy of SCAR, followed by a deeper exploration of the distillation with OOD
data and the Metric Learning mechanism. Then we introduce a variant of SCAR,
called SCAR self-forget, that works without accessing the forget set.
Unlearning strategy. The unlearning strategy is composed of 2 synergistic
mechanisms, Metric Learning and Distillation-Trick (Fig. 1 A). In the following
sections each DNN Φθ will be represented as a sequence of a backbone Φψ and
a final fully-connected layer Φπ where θ, ψ, π are the corresponding weight.

During the training phase of the original model Φθ, for each class ith the
distribution of feature vectors Qi = {Φψ(xj)}j is prototyped [10, 22, 47] by its
mean µi and covariance matrix ŜQ (where Φψ(xj) represent a feature vector),
and accurately stored preventing any data leakage. Hence, given a forget sample
(xj , yj = k) belonging to the kth class, SCAR selects the closest distribution Q∗

j

among the set of distribution Qi with i ∈ {0, ...,K} and i ̸= k to the feature
vector ΦUψ (xj).

Q∗
j = argmin

Qi

dM (ΦUψ (xj), Qi) (1)

Hence, during the unlearning procedure, the algorithm, through the Metric
Learning mechanism, minimizes the Mahalanobis distance between the forget
samples feature vector ΦUψ (xj) and their corresponding selected distribution Q∗

j .
The overall forget loss is written in eq. 2:

LM =
1

Nf,batch

Nf,batch−1∑
j=0

dM (ΦUψ (xj), Q
∗
j ). (2)

where Nf,batch is the batch size of forget samples.
Since in our proposed scenario, the Dr dataset is no longer accessible, the

algorithm makes use of the Distillation-Trick mechanism to retain past knowl-
edge. We used the Jensen-Shannon divergence between the original model Φθ
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Fig. 2: A-B) TSNE plots of feature vectors for the first 20 classes in CIFAR100 (A,
D) and the surrogate dataset subset Imagenet (B, Dsur)

and the unlearning model ΦUθ ( see par. Distillation-Trick, eq. 5)

LTD =
1

Nr,batch

Nr,batch−1∑
j=0

dJS(Φ
U
θ (xj) ∥ Φθ(xj)) (3)

where Nr,batch is the batch size of the surrogate retain samples. The overall loss
combines the forget and retain contribution in eq. 2 and 3.

L = λ1LM + λ2LTD (4)

where λ1 and λ2 are hyperparameters. Instead of selecting a priori the number
of unlearning epochs, SCAR computes the Af at each epoch and it stops when
Ar is lower or equal to a threshold ϵ. In CR ϵ = 0 because the objective is to
remove completely the knowledge of the class to remove. In HR ϵ = At because
the forget test accuracy has to be close to the accuracy of the original model
on the test set. When this condition is not reached the unlearning process stops
when it reaches the maximum number of epochs allowed (epochsmax).
Distillation-trick. Numerous instances have been documented in literature
wherein DNNs exhibit high confidence predictions [21], even when presented
with data significantly distant from their training set. Examples include their
performance on fooling images [43], OOD samples [25], or within medical di-
agnostic tasks [34]. For instance, the t-SNE projection of feature vectors from
a DNN, both from the original training dataset and an external OOD dataset,
exhibited clustering at identical positions within the feature space (Fig. 2 A-B).
In our proposed algorithm, we leverage this characteristic behavior of DNNs on
OOD datasets as a form of regularization during the unlearning process, which
we term “distillation-trick”. This approach involves distilling the knowledge from
the original frozen model (referred to as the teacher model) into the unlearn-
ing model using an external dataset acting as a surrogate dataset, denoted as
Dsur [13] (Fig. 1 B). The distillation-trick leverages the Jensen-Shannon diver-
gence between ΦUθ (xj) and Φθ(xj) to retain the knowledge of the original model,
even as the unlearning model undergoes training on Dsur (omitting the depen-
dency on xj for brevity):

dJS(Φ
U
θ ∥ Φθ/T ) =

1

2
DKL(Φ

U
θ ∥ Φθ/T ) +

1

2
DKL(Φθ/T ∥ ΦUθ ) (5)

where T is a scaling temperature. To validate this, we trained Φθ using distillation-
trick on a surrogate dataset. Our experiments demonstrate that the accuracy of
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Φθ on Dt remains consistent across epochs and comparable to that of ΦUθ (refer
to Sec. 1 of the Supp. Materials).
Metric learning. In the context of unlearning problems, metric learning serves
as a pivotal concept aimed at modifying the feature vectors of forget samples,
thereby altering their class predictions. The prevalent strategies involve shifting
the feature vectors of forget samples towards the nearest incorrect class cen-
troids [9] or directly shifting the logits towards the nearest incorrect class [4]. In
our algorithm, we propose the application of metric learning by adjusting the
feature vectors of forget samples toward the nearest distribution of feature vec-
tors of a different class (Fig. 1 C). Thanks to the Mahalanobis distance, which
gauges the distance between the forget set samples and the whole distributions
of feature vectors, SCAR can integrate more comprehensive information about
the distributions through the covariance matrix. This approach contrasts with
simpler methods that represent distributions solely using centroids (see Sec.4.4
for a comparison with other distances based on centroids). Therefore, given the
set of distribution of feature vectors for each class Q = {Qi}Ki=0 the Mahalanobis
distance is defined in eq. 6.

dM (ΦUψ (xj), Qi) =
√
(ΦUψ (xj)− µQ)T Ŝ

−1
Q (ΦUψ (xj)− µQ) (6)

where ΦUψ (xj) is the feature vector of xj (i.e. the output of the backbone of ΦU ),
µQ and ŜQ are the mean and the normalized covariance matrix obtained from the
distribution Qi. Each class’s covariance matrix SQ will exhibit varying levels of
scaling and variances across different dimensions. Consequently, the Mahalanobis
distances of features from distinct classes will be subjected to differing scaling
factors. Therefore, to standardize the covariance matrices per class effectively,
we conduct correlation matrix normalization on all the covariance matrices (eq.
7):

ŜQ(i, j) =
SQ(i, j)

σQ(i)σQ(j)
, σQ(j) =

√
SQ(j, j), σQ(i) =

√
SQ(i, i). (7)

Since the number of samples per class in public datasets (≈ 500 for CIFAR100
and TinyImagenet) is generally lower than the number of dimensions in the
feature space (e.g. N=512 for resnet18), we use a covariance shrinkage method
to get a full-rank matrix [6], SsQ = SQ + γ0V0I + γ1V1(1 − I) where V0 is the
average diagonal variance, V2 is the average off-diagonal covariance of SQ and I
is the identity matrix. Furthermore, we added Tukey’s normalization [58] to the
feature vectors ΦUψ (x)

δ to obtain approximately Gaussian features, where δ is a
hyperparameter to decide the degree of transformation of the distribution.

3.3 SCAR Self-forget

Additionally, we present an adaptation of SCAR tailored for a more demanding
CR scenario, wherein access to the forget set is restricted, and only the class ID
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slated for removal is provided. We term this procedure SCAR self-forget (Fig. 3).
In this version, both the forgetting mechanism and the distillation-trick rely on
the surrogate dataset. Given Kret, the set of retained classes, and Kfgt, the set
of forget classes, SCAR initially employs the original model Φθ to classify Dsur.

Fig. 3: Scheme of SCAR self-forget in CR.
The surrogate dataset Dsur supplies during
the unlearning procedure both the surrogates
Dsur

r and Dsur
f .

Subsequently, SCAR splits the sam-
ples in Dsur into Dsur

r and Dsur
f if re-

spectively the predicted class ŷ be-
longs to Kret , and in Dsur

f if ŷ is
within Kfgt. Thus, Dsur

f serves as a
surrogate for Df , and SCAR is opti-
mized using the loss function in Eq.
4. This configuration poses an ex-
treme challenge as it lacks both re-
tain and forget data during the un-
learning process. SCAR self-forget
marks the first attempt to address
the unlearning problem within the
Class-Removal (CR) scenario with-
out necessitating training or forget
data, nor the retention of specific in-

formation during training such as gradient updates.

4 Experimental Results

We evaluated SCAR against a range of sota methods and baselines on three
datasets CIFAR10 [31], CIFAR100 [31], and TinyImageNet [33]. CIFAR-10 and
CIFAR-100 are comprised of 60,000 images of 32×32 pixels each (50,000 im-
ages for train and 10000 for test), with CIFAR-10 divided into 10 classes, and
CIFAR-100 categorized into 100 classes. TinyImageNet consists of 110,000 im-
ages of 64×64 pixels each, divided into 200 classes (100,000 for train and 10,000
for test). The considered sota methods include DUCK [9], Boundary Shrink [4],
Boundary Expanding [4], SCRUB [32], L1-Sparse [28], Bad Teacher [8], ERM-
KTP [35], Negative Gradient [17], and Random Labels [23], alongside traditional
approaches such as Retraining and Fine-Tuning. While the latter two are compu-
tationally demanding as they necessitate access to the Dr, they serve as critical
benchmarks. Retraining is by definition the upper bound for unlearning, remov-
ing the Df from the training process entirely. Fine-Tuning, conversely, adjusts the
pre-trained model weights using only the Dr. Importantly, changing the number
of epochs can substantially affect the finetuning performance: few epochs result
in an efficient unlearning whereas if the model is finetuned for many epochs it
is substantially retrained. For this reason, the original model is finetuned for a
sufficient number of epochs (≪ epochs of retrain) that guarantees to unlearn Df
(as outlined in [4, 35]). Unfortunately, for this reason, Fine-Tuning is extremely
time-consuming and inefficient compared to other sota methods [4, 9, 35]. All
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Table 1: Comparison between SCAR performance and different surrogate dataset in
CR scenario. The metrics are reported as mean ± std over ten runs.

Surrogate dataset Size CIFAR100 TinyImagenet
Dsur At

r At
f AUS p-val At

r At
f AUS p-val

Random Images 2*103 72.20(01.90) 02.60(02.17) 0.922(0.027) <10−3 60.69(01.80) 01.20(01.40) 0.912(0.022) <10−3

Imagenet subset 104 72.93(01.78) 02.00(02.00) 0.935(0.025) <10−3 62.99(01.39) 00.60(01.37) 0.940(0.019) <10−3

COCO subset 104 71.61(01.92) 00.84(00.43) 0.933(0.023) <10−3 62.04(01.41) 01.00(01.41) 0.927(0.019) <10−3

Imagenet distilled 104 72.13(02.28) 02.51(01.62) 0.923(0.023) <10−3 62.36(01.56) 01.03(01.41) 0.930(0.020) <10−3

Gaussian Noise 104 16.62(08.64) 00.70(00.67) 0.388(0.086) <10−3 17.13(06.08) 01.20(01.93) 0.482(0.061) <10−3

methods utilized resnet18 [24] as the neural architecture. The details about the
hyperparameters are reported in the Supp. Material, Sec. 2, "Reproducibility".

We established two experimental frameworks, CR and HR, based on the sce-
narios outlined in Sec. 3.1. For CR, we applied a constant seed, dividing each
dataset into Dr and Df with distinct class distributions. The Df included in-
stances from a single class, while the Dr comprised the remaining classes. This
setup was replicated across ten splits to calculate average metrics and standard
deviations. In the HR scenario, we selected 10 different seeds for dataset parti-
tioning, ensuring a 90:10 split between Dr and Df , with class overlaps but unique
instances. We reported the mean and standard deviation of the results across
these seeds. Further details are available in the Sec. 2 of the Supp. Material.

For the CR scenario, the metrics considered are the accuracies on retain
(At

r) and forget (At
f ) test sets, to be maximized and minimized, respectively,

and the Adaptive Unlearning Score (AUS) [9]. This final score facilitates the
comparison among various methods by encapsulating forget and retain test set
performances into a single metric. It captures a delicate balance between two
essential objectives: preserving high test accuracy while effectively tackling the
unlearning task (see Supp. Material Sec. 2). For the HR scenario, the metrics
included are accuracy on Df (Af ), overall test set accuracy (At), AUS, and
the success of a membership inference attack (MIA) [9,49,54], with the optimal
MIA value being F1 = 0.5. Specifically the number of forget and test samples
are balanced and F1 = 0.5 (chance level) means the impossibility to distinguish
the membership of the forget data. The Sec. 2 of the Supp. Material provides
details about hyperparameters for MIA tuning.

4.1 Impact of different Datasets as Dsur

A critical role in SCAR is played by the distillation-trick mechanism. It al-
lows SCAR to maintain acquired information about the retain set even without
accessing it during the unlearning. The distillation-trick works using an OOD
dataset, and investigating how different datasets can or cannot affect the effi-
ciency of SCAR is of utmost importance. For this reason, following [2, 15, 27],
we selected 4 different OOD external public datasets characterized by different
distributions of pixels, number of images, resolution, and number of classes (a
random subset of 10K images of Imagenet1K [11], a random subset of 10K images
of COCO [36], a set of 2K public natural images [1], and a set of 10K images dis-
tilled with [65] from Imagenet1K). We verified through the Kolmogorov-Smirnov



SCAR 11

Table 2: Performance comparison between SCAR and sota methods in CR scenario
for CIFAR10, CIFAR100, and TinyImagenet datasets. The metrics are reported as
mean ± std over ten runs. Results marked with † are taken from [9]. Columns “Dr

free” and “Df free” indicate whether the method was (✓) or not (✗), Retain-Free or
Forget-free, respectively. Green and red colors highlight respectively the best results
between methods based on retain set and between retain free methods.

Dr

free
Df

free
CIFAR10 CIFAR100 TinyImagenet

At
r At

f AUS At
r At

f AUS At
r At

f AUS

Original - - 88.64(00.63) 88.34(00.62) 0.531(0.005) 77.55(00.11) 77.50(02.80) 0.563(0.009) 68.26(00.08) 64.60(15.64) 0.607(0.058)
Retrained† - - 88.05(01.28) 00.00(00.00) 0.994(0.014) 77.97(00.42) 00.00(00.00) 1.004(0.022) 67.67(01.00) 00.00(00.00) 0.993(0.010)
Fine Tuning† - - 87.93(01.14) 00.00(00.00) 0.993(0.013) 77.31(02.17) 00.00(00.00) 0.998(0.022) 67.89(00.24) 00.00(00.00) 0.994(0.010)
DUCK† ✗ ✗ 85.53(01.37) 00.00(00.00) 0.969(0.015) 71.57(02.08) 01.00(01.76) 0.931(0.026) 61.29(01.13) 00.20(00.63) 0.927(0.013)
Boundary S.† ✗ ✗ 83.81(02.29) 13.64(03.57) 0.840(0.543) 55.07(11.85) 03.54(02.26) 0.749(0.116) 55.98(03.33) 04.25(02.12) 0.840(0.036)
Boundary E.† ✗ ✗ 82.36(02.39) 13.34(03.21) 0.827(0.032) 55.18(11.98) 03.50(02.32) 0.750(0.117) 55.92(03.45) 02.60(02.50) 0.853(0.040)
SCRUB ✗ ✗ 87.88(01.18) 00.00(00.00) 0.992(0.013) 77.29(00.25) 02.00(05.35) 0.977(0.051) 68.15(00.25) 01.20(03.79) 0.986(0.037)
L1-Sparse ✗ ✗ 85.21(09.41) 04.88(02.18) 0.862(0.023) 62.63(07.56) 01.22(00.53) 0.879(0.018) 63.76(01.29) 04.81(01.54) 0.901(0.011)
ERM-KTP† ✗ ✗ 80.31(-) 00.00(-) 0.917(-) 58.96(-) 00.00(-) 0.814(-) 49.45(-) 00.00(-) 0.811(-)
Bad Teacher ✗ ✗ 88.89(00.87) 02.37(05.86) 0.982(0.057) 77.19(00.19) 06.00(10.09) 0.940(0.089) 64.09(00.78) 11.20(09.04) 0.862(0.070)

Neg. Grad.† ✓ ✗ 76.27(03.27) 00.56(00.12) 0.871(0.033) 62.84(06.13) 00.50(00.50) 0.849(0.061) 60.09(02.58) 00.60(01.35) 0.911(0.028)
Rand. Lab.† ✓ ✗ 65.46(07.59) 00.83(00.44) 0.762(0.076) 55.31(07.06) 00.40(00.70) 0.774(0.070) 43.29(10.10) 01.20(01.03) 0.740(0.100)
SCAR ✓ ✗ 87.71(01.62) 00.97(00.24) 0.981(0.017) 72.93(01.78) 02.00(02.00) 0.935(0.025) 62.99(01.39) 00.60(01.37) 0.940(0.019)
SCAR Self-Forget ✓ ✓ 87.18(01.76) 01.20(00.43) 0.974(0.019) 71.09(02.69) 00.70(00.95) 0.929(0.028) 60.79(02.15) 00.80(01.40) 0.917(0.025)

(KS) test [40] that the distributions of pixels of these surrogate datasets are dif-
ferent from the datasets used for benchmarking SCAR (Tab. 1 p-val columns).
This is fundamental to assess the generality of SCAR and it does not rely on
data leakage between datasets; this is especially true for tinyImagenet and the
random subset of Imagenet1K where we observed the KS p-val is <0.001 . More-
over, we also used a surrogate dataset made of Gaussian noise images where the
semantic information was absent. We performed our experiments in the CR sce-
nario using CIFAR100 as D. Both accuracies and AUS scores were statistically
comparable across datasets (Tab. 1) even if the Imagenet1K subset gives the
overall highest results. Importantly, when in the surrogate dataset semantic in-
formation is removed (Gaussian Noise) SCAR performance is poor, suggesting
how the surrogate dataset has to contain some spatial feature and patterns to
trigger the DNN filters. Hence, the presence of semantic information content in
images plays a pivotal role in the distillation-trick mechanism, but, at the same
time, the differences in terms of kind of information (e.g. classes and distribu-
tion of pixels) do not affect this technique. For the rest of the paper results are
presented using as a surrogate the OOD random subset of Imagenet1K.

4.2 Comparison with sota methods

We evaluated SCAR, and SCAR Self-Forget, within the CR scenario across three
datasets (Tab. 2). Our findings indicate that our method surpasses Retain-Free
approaches like Negative Gradient and Random Label in performance. Further-
more, SCAR’s performance is on par with methods that leverage both
forget and retain sets. Notably, SCAR’s performance is lower than Fine-
Tuning and within 1 std. from SCRUB in CIFAR100 and TinyImagenet, though
these methods depend heavily on the Dr requiring several finetuning steps on
it. Importantly, these outcomes are also achieved with SCAR Self-Forget, which
remarkably does not utilize any data from the original training set.
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Table 3: Performance comparison between SCAR and sota methods in HR scenario for
CIFAR10, CIFAR100, and TinyImagenet datasets. The metrics are reported as mean ±
std over ten runs. Results marked with † are taken from [9]. Columns “Dr free” indicate
whether the method was (✓) or not (✗), Retain-Free. Green and red colors highlight
respectively the best results between methods based on retain set and between retain
free methods.

Dr

free
CIFAR10 CIFAR100 TinyImagenet

At Af F1 AUS At Af F1 AUS At Af F1 AUS

Original - 88.54(00.25) 99.49(00.08) 54.62(00.80) 0.900(0.004) 77.23(00.53) 99.63(00.10) 61.80(00.59) 0.814(0.006) 68.08(00.39) 84.83(00.44) 54.06(01.48) 0.854(0.007)
Retrained† - 84.13(00.59) 84.56(00.72) 50.22(00.80) 0.950(0.011) 77.27(01.03) 76.87(00.95) 49.45(00.40) 0.993(0.017) 63.45(02.34) 63.24(02.58) 49.56(00.47) 0.950(0.040)
Fine Tuning† - 85.70(00.48) 88.66(00.44) 50.06(01.30) 0.942(0.008) 72.06(00.52) 74.97(00.72) 49.68(00.43) 0.918(0.009) 67.03(00.45) 70.52(00.65) 49.86(00.56) 0.937(0.011)
DUCK† ✗ 85.96(00.64) 86.05(00.55) 50.26(00.49) 0.972(0.011) 74.74(00.74) 75.51(02.01) 50.66(00.64) 0.965(0.022) 62.01(00.79) 64.43(00.76) 49.87(00.73) 0.916(0.014)
SCRUB ✗ 78.02(07.80) 82.53(10.80) 50.59(00.89) 0.854(0.132) 73.33(00.85) 92.46(01.50) 56.45(01.48) 0.804(0.014) 68.52(00.40) 83.14(00.53) 53.89(00.96) 0.875(0.008)
L1-Sparse ✗ 93.05(00.53) 99.06(00.65) 52.21(00.95) 0.927(0.011) 52.26(01.65) 66.89(02.34) 53.46(00.94) 0.690(0.024) 63.76(01.19) 84.30(01.04) 53.29(00.73) 0.794(0.032)
Bad Teacher ✗ 86.66(00.44) 92.91(00.57) 50.26(00.87) 0.922(0.008) 73.57(00.61) 86.57(00.57) 54.44(01.81) 0.851(0.006) 67.41(00.49) 80.28(00.81) 54.83(01.44) 0.876(0.006)

Neg. Grad. † ✓ 79.35(00.85) 87.11(00.86) 51.74(00.54) 0.841(0.012) 60.83(00.77) 76.77(00.57) 50.98(00.47) 0.718(0.009) 54.83(00.81) 67.27(00.59) 49.78(00.33) 0.770(0.011)
Rand. Lab. † ✓ 77.28(01.37) 87.07(01.20) 51.45(00.79) 0.807(0.018) 60.51(00.82) 77.18(00.50) 50.55(00.49) 0.711(0.009) 54.34(00.85) 67.65(00.45) 49.84(00.64) 0.760(0.011)
SCAR ✓ 86.14(00.47) 88.40(00.31) 50.07(00.59) 0.953(0.008) 73.23(00.74) 75.63(00.54) 49.77(00.28) 0.934(0.011) 61.35(00.69) 66.51(00.44) 49.85(00.19) 0.886(0.011)

Table 4: Results of the ablation study on CIFAR100 in CR and HR scenarios. The
metrics for CR and HR are reported as mean ± std over ten runs.

LTD LM
CIFAR100 TinyImagenet

At
r At

f AUS At
r At

f AUS

CR

✗ ✗ 77.55(00.11) 77.50(02.80) 0.563(0.009) 68.26(00.08) 64.60(15.64) 0.607(0.058)
✓ ✗ 72.09(02.72) 40.00(13.36) 0.675(0.067) 63.14(01.77) 29.80(12.09) 0.730(0.069)
✗ ✓ 66.90(05.03) 02.60(02.27) 0.871(0.053) 49.72(02.54) 00.80(01.40) 0.807(0.028)
✓ ✓ 72.93(01.78) 02.00(02.00) 0.935(0.025) 62.99(01.39) 00.60(01.37) 0.940(0.019)

At Af AUS At Af AUS

HR

✗ ✗ 77.39(00.46) 99.64(00.09) 0.817(0.005) 68.08(00.39) 84.83(00.44) 0.854(0.007)
✓ ✗ 76.53(00.41) 99.18(00.14) 0.807(0.005) 64.84(00.60) 80.51(00.51) 0.835(0.009)
✗ ✓ 18.83(01.06) 19.69(01.19) 0.409(0.013) 05.88(02.94) 05.51(02.63) 0.376(0.033)
✓ ✓ 73.23(00.74) 75.63(00.54) 0.934(0.011) 61.35(00.69) 66.51(00.44) 0.886(0.011)

We also extended our analysis to the HR scenario (Tab. 3). Importantly, the
Self-Forget variant of our method is not applicable in HR, as the Df is essen-
tial to identify the specific instance to forget. In this more demanding context,
SCAR surpasses all the performance of Retain-Free approaches. Be-
tween the methods that use the Dr only DUCK in CIFAR100 (within 1 std.)
and TinyImagenet and Fine-Tuning in TinyImagenet achieve superior results.

Notably, our method outperforms the Retain-Free approaches in both sce-
narios and demonstrates commendable performance relative to methods that
rely on the Dr. This distinction highlights the effectiveness and versatility of our
approach, making it a viable alternative for scenarios where the Dr is entirely
unavailable. We also confirmed our result using the COCO dataset as a surrogate
dataset (Sec. 1 of the Supp. Material).

4.3 Ablation Study

We conducted an ablation study to evaluate the impact of different loss com-
ponents LLD and LM of our method on the unlearning performance across CR
and HR scenarios. The results of this study are presented in Tab. 4. In CR,
considering only LLD leads to similar retain set accuracy but with high Df ac-
curacy. In fact, the stopping criteria is hardly fulfilled and the method stops at
the maximum number of epochs allowed. Conversely, considering only LM the
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Table 5: Results of SCAR changing the measure used in LM on the CIFAR100. The
metrics for CR and HR are reported as mean ± std over ten runs.

CIFAR100 CR CIFAR100 HR
At

r At
f AUS At

r At
f AUS

Cosine Similarity 72.74(02.19) 02.00(02.36) 0.933(0.031) 73.88(00.46) 77.05(00.54) 0.934(0.008)
L2 Distance 72.45(02.23) 02.70(02.54) 0.924(0.032) 69.58(00.82) 76.93(00.55) 0.857(0.011)
Mahalanobis 72.93(01.78) 02.00(02.00) 0.935(0.025) 73.23(00.74) 75.63(00.54) 0.934(0.011)

methods can push down the accuracy on the Df , but at the cost of a low retain
set accuracy. In the HR scenario, we observed similar but more pronounced re-
sults. The presence of LLD alone is insufficient for effectively erasing knowledge
about forget samples, as evidenced by a high forget accuracy. Employing only
LLD results in a steep decrease in both accuracies. This result suggests how the
unlearning strategy without a method for retaining knowledge can’t be used to
unlearn. This effect is more evident in HR because images from the same class
are distributed across both the Dr and Df , meaning that the LLD compromises
the general knowledge of the classes.

Fig. 4: Values of final AUS for SCAR
and SCAR self-forget as a function
of the number of samples available in
Dsur (subset of Imagenet1K). AUS is
reported as mean ± std over ten runs

CIFAR100
At
r At

f AUS

Original (AllCNN) 70.08(00.15) 69.70(14.83) 0.545(0.048)
Unlearned 65.35(02.37) 02.90(03.38) 0.926(0.036)

Original (Resnet18) 77.55(00.11) 77.50(02.80) 0.563(0.009)
Unlearned 72.93(01.78) 02.00(02.00) 0.935(0.025)

Original (Resnet34) 80.13(00.10) 80.30(10.02) 0.569(0.031)
Unlearned 75.67(01.74) 01.90(00.92) 0.937(0.019)

Original (Resnet50) 80.64(00.10) 80.80(09.50) 0.570(0.030)
Unlearned 75.99(01.77) 00.80(02.36) 0.942(0.028)

Original (ViT-B16) 85.51(01.45) 83.30(06.24) 0.546(0.023)
Unlearned 81.99(02.59) 02.04(03.10) 0.945(0.031)

Table 6: Results of SCAR on CI-
FAR100 dataset in the CR scenario
changing the model to unlearn. The met-
rics are reported as mean ± std over ten
runs before and after the unlearning.

4.4 Analysis on the effect of different measures in the metric
learning mechanism of SCAR

We report in Tab. 5 and Supp. Tab. 2 the results of the SCAR using different
distance measures for the LM component across CIFAR100 and TinyImagenet
datasets in both the CR and HR scenarios. Using the Mahalanobis distance
yields a perfect balance, achieving the highest AUS scores in both CR and HR.
Cosine Similarity distance achieves compatible results (even if constantly lower)
in CR and HR scenarios but at the cost of being (22 ± 5%) slower than the
Mahalanobis. This result suggests how the information about the distributions
of samples embedded into the Mahalanobis distance is fundamental to guide the
optimization efficiently. In contrast, the L2 distance resulted in lower perfor-
mance in both CR and HR scenarios suggesting how this metric hampers the
unlearning process.
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4.5 Analysis of the impact of the dimension of Dsur

Fig. 4 illustrates the relationship between the number of images in the surrogate
dataset Dsur (subset of ImageNet1K) and the AUS for both SCAR and its
self-forget variant, in the CR scenario. SCAR maintains a relatively stable AUS
score as the number of images increases, suggesting that the method’s unlearning
ability does not significantly depend on the size of the surrogate dataset. The self-
forget variant of SCAR shows a plateau in AUS score when at least 6K surrogate
images are used which suggests how the dimension of Dsur can affect the self-
forget mechanism. Importantly, the self-forget mechanism that can access 6K
surrogate samples or more exhibits performance comparable with the method
that can access forget data. This pattern reflects the effectiveness of SCAR in
handling the unlearning process, with only minor improvements seen with the
addition of more surrogate data when forget data are not available.

4.6 Architectural-Agnostic Results

For additional insight, we examined the performance of SCAR (Tab. 6) across
various DNN architectures within the CR scenario. We investigated the effect
of the unlearning with SCAR on a basic CNN network (AllCNN), ResNet ar-
chitectures (18, 34, and 50), and a Vision Transformer (ViT-B16). Our method
consistently demonstrates strong performance across all tested architectures. No-
tably, the results achieved with the ViT confirm the model-agnostic nature of
our approach beyond the CNN architectures. It is worth mentioning that the
efficacy of our method is not contingent on the initial accuracy of the model,
which underscores its adaptability and broad applicability.

5 Conclusions

In this paper, we introduced SCAR a novel method for approximate unlearning,
designed to effectively erase information about the forget-set data while main-
taining the original model performance. Our experimental results indicate that
SCAR outperforms the methods that do not require access to the retain set and
achieves performance levels comparable to, or even surpassing, those of exist-
ing approximate unlearning methods that depend on the retain set, across both
CR and HR scenarios. Furthermore, we have developed a self-forget variation
of SCAR capable of delivering impressive results in CR without accessing both
the retain and forget sets. Future work should include a mathematical explo-
ration of the algorithms’ certifiability and the development of alternatives to the
distillation-trick, enabling the retention of past knowledge without the need for
a surrogate dataset, which can limit the application of SCAR to other domain.

Despite these challenges, we firmly believe that our algorithm, that do not
require access to any retain set, can significantly impact society: for example in
the performance restoration of models poisoned by corrupted data or in recog-
nition systems (such as facial recognition), by enabling individuals to exercise
their right to have their data removed from the model’s knowledge.
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