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Fig. 1: Illustration of our vision-language programmer, Octopus, complete
a task in GTA environment. Given a task in the form of natural language, Octopus
relies on its egocentric vision to generate plans and the corresponding executable code.

Abstract. Large vision-language models (VLMs) have achieved sub-
stantial progress in multimodal perception and reasoning. When inte-
grated into an embodied agent, existing embodied VLM works either
output detailed action sequences at the manipulation level or only pro-
vide plans at an abstract level, leaving a gap between high-level planning
and real-world manipulation. To bridge this gap, we introduce Octopus,
an embodied vision-language programmer that uses executable code gen-
eration as a medium to connect planning and manipulation. Octopus
is designed to 1) proficiently comprehend an agent’s visual and textual
task objectives, 2) formulate intricate action sequences, and 3) gener-
ate executable code. To facilitate Octopus model development, we in-
troduce OctoVerse: a suite of environments tailored for benchmarking
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vision-based code generators on a wide spectrum of tasks, ranging from
mundane daily chores in simulators to sophisticated interactions in com-
plex video games such as Grand Theft Auto (GTA) and Minecraft. To
train Octopus, we leverage GPT-4 to control an explorative agent that
generates training data, i.e., action blueprints and corresponding exe-
cutable code. We also collect feedback that enables an enhanced train-
ing scheme called Reinforcement Learning with Environmental
Feedback (RLEF). Through a series of experiments, we demonstrate
Octopus’s functionality and present compelling results, showing that the
proposed RLEF refines the agent’s decision-making. By open-sourcing
our simulation environments, dataset, and model architecture, we aspire
to ignite further innovation and foster collaborative applications within
the broader embodied AI community. The project page is available at
https://choiszt.github.io/Octopus/.

1 Introduction

The rise of large language models (LLMs) [11,15,42,46,54] led to a surge in vision-
language models (VLMs) [4,5,31,33,35–37], enabling tasks such as image/video-
based descriptions [33], reasoning [14, 38, 60], and conversations [16, 31]. In the
realm of embodied AI, notable efforts [10, 18, 33] have trained agents to process
visual input and relay motor control commands.

Another approach to interacting with the environment focuses on task execu-
tion through code invocations, mirroring the human System-I stimulation [19,29]
(automatic, intuitive actions) with predefined code, and leaving the System-II
processes [19,29] (planning and reasoning) for large models. For example, refer-
ring to Fig. 1, planning a car ride with a pet might entail a subconscious check-
list (e.g., getOutOf() the house, open() the car door), each action could be
implemented using specific techniques [8, 24] such as imitation learning [22, 28].
This programmatic paradigm has been, although not in vision, leveraged by
works [25, 50, 52, 53] using LLMs to craft programs and trigger APIs. Game-
centric models like Voyager [55] have similarly employed GPT for function calls
within game engines, though they often parse data directly from their environ-
ments.

However, when incorporating visual perception, the programming paradigms
are largely unexplored. Primary initiatives [48,58] can only output plans, which
anchor their strategies only in initial environmental states or employ dynamic
scene graphs for LLM inputs, respectively. Despite their innovations, the over-
reliance on pre-trained vision models to convert vision content into language can
occasionally hinder the LLM’s planning performance. The conversion from plans
into real-world actions is still missing. While EmbodiedGPT [41] addresses the
problem by integrating vision-language modeling for planning and then transi-
tioning to manipulation using policy mapping, the capability of embodied vision-
language models to generate executable programs remains largely uncharted.

Our exploration aims to bridge this gap. An embodied vision-language pro-
grammer should integrate visual perspective with textual objectives to devise

https://choiszt.github.io/Octopus/
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action plans and executable code (Fig. 1). However, existing simulator envi-
ronments often lack the carefully designed functions necessary to support such
models effectively. These functions should balance usefulness and complexity to
avoid hindering the development of genuine embodied vision-language program-
mers. For example, the explore_until() function in Minecraft, which can lead
the player directly to specific blocks without relying on vision information, may
not be suitable for training these models.

To meet the requirement, we carefully design and develop OctoVerse, a suite
of environments consisting of diverse simulators, including (i) OctoGibson, built
upon the photorealistic OmniGibson [32], (ii) OctoMC, developed on the in-
finitely creative, pixel-style Minecraft platform [2], and (iii) OctoGTA, adapted
from the highly interactive and immersive Grand Theft Auto V (GTA-V) [1].
These environments enable the training and benchmarking of our embodied
vision-language programming model in a wide range of scenarios, from daily
household tasks to complex urban navigation and open-world exploration, while
the function calls are tailored to be vision-dependent.

Using the OctoVerse environment, we train Octopus by leveraging GPT-4
to collect data. We provide GPT-4 with system messages, environmental cues,
and objectives, enabling it to formulate action strategies and code. Simultane-
ously, the agent captures visual perspectives, forming the image-code pair for
Octopus training. During data collection, the agent receives simulator feedback,
distinguishing successful moves from unsuccessful ones. We incorporate this feed-
back using Reinforcement Learning with Environmental Feedback (RLEF) and
fine-tune Octopus using Proximal Policy Optimization (PPO) [51]. Empirically,
Octopus demonstrates strong adaptability in various scenarios, outperforming
existing models in task planning, code generation, and execution. The integration
of RLEF further enhances Octopus’s performance, showcasing the effectiveness
of this training approach. In sum, our key contributions include:

– A Novel Vision-Language Programming Benchmark: Three diverse
embodied environments with designed tasks: (i) OctoGibson, which is devel-
oped upon OmniGibson [32], (ii) OctoMC that developed on Minecraft [2],
and (iii) OctoGTA, which is adapted from GTA-V [1].

– A New Vision-Language Programming Model: An embodied vision-
language planner and programmer trained with Reinforcement Learning with
Environmental Feedback (RLEF), demonstrates compelling results.

– Insights on Vision-Language Programming: We extensively explore
Octopus and share useful insights facilitating future research on visual plan-
ning and programming.

2 Related Work

2.1 Embodied AI Simulators

Embodied AI has advanced significantly with the development of diverse sim-
ulation environments, enabling research tasks such as visual exploration [47],
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Table 1: Related Work for OctoVerse - Overview of Embodied AI Environ-
ments. We select three environments into OctoVerse and carefully design executable
tasks and vision-dependent function calls (VC), in comparison to undesigned standard
function calls (C).

Simulator Kinematics
Continuous
Extended

States

Flexible
Materials

Deformable
Bodies

Realistic
Action

Execution

Game- or
World-Based

Formulated
Tasks

Function
Call
Type

OpenAIGym [9] ✓ × × × ✓ G × C
Matterport3D [12] × × × × × W × ×
AI2THOR [30] ✓ × × × × G × C
VirtualHome [44] × × × × × G × ×
House3D [57] × × × × × W × ×
Habitat 1.0 [49] ✓ × × × ✓ W × C
Robosuite [66] ✓ × × × ✓ W × C
RFUniverse [21] ✓ × ✓ ✓ ✓ W × C

Minecraft [2] ✓ × ✓ × ✓ G × C
OctoMC ✓ × ✓ × ✓ G ✓ VC
GTA [1] ✓ ✓ ✓ ✓ ✓ G × C
OctoGTA ✓ ✓ ✓ ✓ ✓ G ✓ VC
OmniGibson [32] ✓ ✓ ✓ ✓ ✓ W × C
OctoGibson ✓ ✓ ✓ ✓ ✓ W ✓ VC

navigation [56], and question-answering [17]. Several simulators, including AI2-
THOR [30], VirtualHome [44], Habitat-Sim [49], SAPIEN [59], and Omnigib-
son [32], provide realistic representations of the world for investigating embod-
ied AI challenges. OmniGibson [32] stands out for its high-fidelity simulation of
diverse indoor and outdoor environments. OctoGibson environment further en-
hances OmniGibson with carefully designed function calls and formulated tasks,
making it well-suited for vision-language programming.

Game-related simulators like Arade [7], CHALET [61], and VRKitchen [23]
also contribute significantly to embodied AI. Minecraft [2] has gained atten-
tion in reinforcement learning and game agents [6,20,39,55,63,64] but lacks the
necessary structure for vision-language programming. OctoMC addresses this by
providing designed function calls and formulated tasks. In contrast to Minecraft’s
voxel-based representations that limit transferability to real-world environments,
GTA-V [1] offers a highly realistic environment. In this work, we introduce Oc-
toGTA as a new setting, leveraging GTA-V’s rich, open-world environment with
incorporated tasks and function calls, extending this platform for embodied AI
study.

2.2 Embodied AI with Large Models

The recent wave of research focuses on merging LLMs with embodied AI tasks [11,
42,46,54]. For instance, VoxPoser addresses robotic manipulation problems through
unsupervised methods [27]. A group of projects, namely SayCan [3], Palm-E [18],
RT-2 [10], and EmbodiedGPT [41], effectively integrate visual or linguistic cues
with robot manipulation data. Outside the domain of robotic manipulation, ini-
tiatives like Voyager [55] and Smallville [43] harness the capabilities of GPT
to interface with game functions, relying on preset functions to manage intri-
cate manipulations. In a parallel vein, VisProg [25] leverages GPT-3 language
prompts to craft Python programs, opening the door to a multitude of fasci-
nating applications. While the proposed Octopus model also formulates plans
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Table 2: Related Work for Octopus - Overviewing Embodied AI Models. The
proposed Octopus distinguishes itself from other models as a unified vision-language
model for both plan and code generation.

Models Release
Date

Supported
Environment

Vision
Model

Code
Generator

Action
w/ Feedback

LLM Training
Enabled

Text2Motion [34] Mar. 2023 Sim × ✓ ✓ ×
Instruct2Act [26] May 2023 Sim × ✓ × ×
Lang2Rewards [62] Jun. 2023 Sim × ✓ ✓ ×
VoxPoser [27] Jul. 2023 Sim ✓ × × ×
SayCan [3] Apr. 2022 Real ✓ × ✓ ×
PALM-E [18] Mar. 2023 Sim, Real ✓ × ✓ ✓
RT-2 [10] Jul. 2023 Real ✓ × ✓ ✓
SayPlan [48] Jun. 2023 Real × × ✓ ×
EmbodiedGPT [41] May 2023 Sim ✓ × ✓ ✓
TaPA [58] Jul. 2023 Sim × × × ✓
Voyager [55] May 2023 Game × ✓ ✓ ×
Steve-Eye [64] Dec 2023 Game ✓ × ✓ ✓
RoboScript [13] Feb 2024 Sim, Real × ✓ ✓ ×

Octopus - Sim, Game ✓ ✓ ✓ ✓

and code, its distinguishing feature is the seamless integration of visual input in
program and code generation. This also stands in contrast to other embodied
planners like TAPA [58] and SayPlan [48], which deploy separate vision mod-
ules to translate visual data into linguistic inputs for LLMs. Octopus excels as
a cohesive vision-language model, delivering not just plans but also code.

More discussion on additional related works (Vision Language Model, and
Feedback in Large Language Models) is included in the supplementary materials.

3 The OctoVerse Environment

In this section, we introduce three simulator environments designed to train
and evaluate the Octopus model. For each environment, we will describe their
overall information, the special design considerations that ensure the tasks are
well-formulated and the callable functions are vision-dependent.

OctoGibson We built the environment on the foundation of OmniGibson [32],
an existing simulation framework that supports 1,000 daily activities across 50
scenes, featuring over 5,000 meticulously annotated objects. We incorporated
16 functions that the robot can execute, such as moveBot() and easyGrasp().
Within this environment, we meticulously crafted 476 tasks1, each with a well-
defined initial state and a definitive termination state, allowing for a straight-
forward assessment of task completion. Among these tasks, 367 are routine
tasks—simple and direct actions like “place a glass in a trash can,” marked
as Follow. Conversely, the remaining 109 are reasoning tasks that necessitate
deeper comprehension. An example is “buy a chocolate,” where the agent needs

1 The full list of tasks and their categories are listed in the supplementary material.
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to know to pick a chocolate bar from the shelf and then place it, along with
money, on the checkout counter, denoted as Reason tasks.

To ensure our tasks are vision-aware, we deliberately constrain the usage of
certain functions, such as moveBot(object), which moves the agent in front of
the given object. To avoid making the task too easy and vision-agnostic, we
limit the given parameter to a predefined set of large objects, such as tables
and cupboards, rather than small items like cups and glasses. In this case, if the
robot wants to pick up a cup, it needs to recognize whether the cup is on the
table or in the cupboard. A simple moveBot(object) call with an inappropriate
parameter would cause a runtime error. The full list of the functions is in the
Appendix.

OctoMC The OctoMC environment is built on Minecraft [2], a popular plat-
form for reinforcement learning and game agents. We integrated 6 functional
actions and crafted 40 tasks2, each designed to facilitate comprehensive observa-
tions and executions by the agent. These tasks are distributed across 10 differ-
ent biomes, including indoor, outdoor, and underground settings, under varying
weather conditions.

However, existing Minecraft environments often lack vision-formulated tasks
and the necessary structure for vision-language programming. For example, in
Voyager [55], the exploreUntil() function allows the player to navigate directly
to specific blocks without relying on vision information. This function works by
randomly exploring the environment within a certain range until the desired
object is found, at which point it returns a true value, enabling the agent to
interact with the located object, such as gold blocks or trees. While effective,
this approach is entirely automated and does not utilize visual information,
making it unsuitable for our vision-based objectives.

To address this limitation, we crafted a vision-dependent exploration func-
tion, teleport(yaw, distance), which operates within the robot’s perceptual
range. This function ensures that the agent’s operations are vision-dependent
and require active perception and navigation within the environment. For in-
stance, to locate a tree block, the agent must actively navigate towards the
direction of the forest, relying on visual cues to guide its exploration.

OctoGTA The OctoGTA environment is built on GTA-V [1] with the help of
the active GTA modding community. We integrated 19 functions and methodi-
cally crafted 25 tasks3, such as “help NPC drive their boat back to shore” and
“mediate a fight between two NPCs,” spanning across 5 groups (shown in Fig. 2
(b)). Each task is assigned to 5 different locations within the game world.

We have implemented a set of functions that enable the agent to interact with
the game world in a visually-aware manner. Similar to the design in Minecraft,
we get rid of functions like walkTo(location) that might trivialize the task of
reaching a particular building or landmark. Instead, we provide functions such

2 Detailed tasks are listed in the supplementary material.
3 We meticulously designed tasks to be friendly, ensuring they exclude any inappro-

priate or violent behaviors.
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Fig. 2: The Statistics of the OctoVerse Environment with Function Designs.

as goForward(distance) and turnPlayer(degree) (Fig. 2 (b)). For tasks like
mediating a fight between two NPCs, the essential function stopFight() only
works when the player is within 5 meters of the fighting NPCs. These design
choices ensure that the agent’s operations are vision-dependent and require ac-
tive perception and navigation within the environment.

4 Octopus: The Embodied Vision-Language Programmer

In this section, we present the procedure for training Octopus. Starting from
collecting training data within the OctoVerse environment, Octopus builds upon
a VLM architecture of Otter [31] and includes specialized RLEF modules to
handle vision-language programming tasks. Fig. 4 illustrates the entire Octopus
training pipeline.

4.1 Training Data Collection

We use the automatic training data collection pipeline described here for Oc-
toGibson and OctoMC, with the latter using customized prompts inspired by
Voyager [55]. For OctoGTA, we rely on human labor to hand-craft the train-
ing dataset due to the difficulty of obtaining textual environment messages in
the GTA environment. In the following parts, we use OctoGibson as the pri-
mary example to illustrate the data collection pipeline. Note that the primary
task in organizing training data is to form a succinct pairing: “vision input +
current/historical states → next step plan + executable code”.
Environment Info Collection As shown in Fig. 4 (a) and Fig. 3, we for-
mat an environment message for each state, encompassing attributes like
Observed Objects, Observed Relations, Inventory, and more. Specifically,
the simulator can provide us with an exact scene graph at each state, shaping
the content for the first two parts. The inventory info is also accessible. The task,
e.g., “cooking bacon” in Fig. 3, is represented by the Task Goal.
Automation with GPT-4 After preparing the environment message, we
crafted a structured system message to ensure that the robot not only un-
derstands its input but also maintains a consistent output format. A detailed
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Utility FunctionsSystem 
Message

Action FunctionsRole Explanation

Response Requirement

Environment Message

Observed Objects

Observed Relations

Inventory

Task Goal

Original Planning

Previous Action

Execution Error

Explanation

Current Planning

Action Code

Target States

GPT-4

Init State Fridge Open Bacon Out Fridge Close Action Fails Near Stove Bacon on Pan Cooked

Front View Left View Right View Back View

Environment Message Explanation

open(fridge) close(fridge)

Near Fridge

toggleOn(stove)
moveBot(fridge) easyGrasp(bacon) putOnTop(bacon,pan)

moveBot(stove)
putOnTop(bacon,pan)

Since our task goal is to cook bacon and the 
bacon is inside the fridge on a tray, the first step 
should be to approach the fridge, open it, and 
take out the bacon. Once the bacon is retrieved, 
we can proceed to cook it on suitable appliances.

1.Approach fridge. 2.Open fridge. 3.Retrieve the
tray containing the bacon from the fridge. 4.Place
the bacon on the stove. 5. Toggle on the stove to
cook the bacon.

(robot, nextto, fridge_xyejdx_0, 1)

def act(robot, env, camera):
# Subtask 1: Approach the fridge
fridge=registry(env, "fridge_xyejdx_0") 
MoveBot(env, robot, fridge, camera)

…

Fig. 3: Data Collection Example for “Cook a Bacon” Task. GPT-4 perceives
the environment through the environmental message and produces anticipated plans
and code following the detailed system message. This code is subsequently executed
in the simulator, directing the agent to the subsequent state. For each state, we gather
the environmental message, wherein observed objects and relations are substituted
by egocentric images to serve as the training input. The response from GPT-4 acts as
the training output. Environmental feedback, specifically the determination of whether
each target state is met, is documented for RLEF training.

examination of this prompt can be found in the appendix. Experiments have
shown that a well-articulated prompt enables GPT-4 to effectively generate ex-
ecutable code. It is important to note that the combined length of the system
and environment messages can be extremely long, which may cause standard
GPT-4 8K models to struggle with producing meaningful outputs. To address
this issue, we employ the more robust GPT-4 32K model. As illustrated in Fig. 3,
when GPT-4 receives a consistent system and environment message, it gener-
ates comprehensive outputs that include current scenario analysis, planning, and
actionable code, supporting the training process in Section 4.3.

Error Management Notably, GPT-4 collects training data under the main
task of guiding the agent to complete tasks. However, GPT-4 is not infallible.
Errors can manifest in multiple ways, ranging from syntax errors to physical
challenges in the simulator. For instance, in Fig. 3, between states #5 and #6,
the action failed due to the long distance between the agent (holding bacon) and
the pan. Such setbacks reset the task to its previous state. If a main task remains
incomplete after 10 steps, it is deemed unsuccessful, and we terminate this task
for budget concerns. However, all data pairs without syntax errors, regardless of
the task’s completion status, are valuable for refining instructions and improving
the model’s performance.

Environmental Feedback GPT-4’s continual trial-and-error approach while
guiding the agent toward task completion serves a dual purpose: collecting vision-
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(a) Data Collection Pipeline

(b) Octopus Training Pipeline
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1

B

code
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… 0
1
…

def app(bot):
pan=registry(env, pan_2)
putOnTop(bot, pan)
donothing(env)

def app(bot):
table=registry(env, table)
moveBot(bot, table)
donothing(env)

Plan & code

S

AS
AS BS-

…IMG IMG IMG
#1 #2 #N

Fig. 4: How to train Octopus: data collection and training pipeline.

output pairs and generating a rich set of feedback data. The automatic annota-
tion of this feedback focuses on two levels: step-level and task-level judgments.
Step-level judgment assesses the alignment of post-execution states with their
target states. For instance, in Fig. 3, steps color-coded in green lead to positive
feedback. One can visualize the action sequence for task completion as a tree,
where each node indicates a step (subtask), encapsulating an action code. Ac-
companying each step is a binary value that denotes success or failure, giving
preference to the successful branch over its counterpart. Task-level judgment,
on the other hand, gauges the successful execution of the overall task. If the task
is not completed as intended, every state within that task is labeled as nega-
tive, regardless of the status of the subtasks. This collated feedback data serves
as a foundation for our Reinforcement Learning with Environmental Feedback
(RLEF) methodology, which we discuss in greater detail in Section 4.4.

4.2 Model Architecture

The Octopus architecture (shown in Fig. 4 (c)) is heavily inspired by the Ot-
ter model [31], integrates the MPT-7B Language Decoder [40] and CLIP
VIT-L/14 Vision Encoder [45]. Adopting design principles from Flamingo [4],
Octopus employs the Perceiver Resampler and Cross-Gated Attention
modules to enhance vision-language synergy. This architecture enables Octo-
pus to excel in tasks requiring understanding of both visual and textual data.
The Octopus is also compatible with other VLMs such as LLaVA [37].

4.3 SFT: Supervised Finetuning with Instructions

We train the Octopus model on our collected dataset from OctoVerse DE =
{(Xv,Ti,Tr)} using token-level supervised fine-tuning (SFT) [42,54]. The Per-
ceiver Resampler transforms images Xv into visual tokens that condition sub-
sequent layers via Cross-Gated Attention modules. The training objective is
next-token prediction, modeling the likelihood of a targeted response Tr as:

p(Tr | Ti,Xv) =

L∏
l=1

p(tl | Xv,Ti,Tr,<l). (1)
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Note that Ti denotes the instruction tokens and Tr,<l denotes the response to-
kens before the current predicted token tl. During inference, tokens are converted
into natural language via the language decoder’s text tokenizer.

Visual observations Xv = {x0
F , . . . , x

7
F , x

0
B , x

1
B} consist of 8 first-person view

(FPV) images and two bird’s-eye view (BEV) images for OctoGibson and Oc-
toGTA. OctoMC only takes 4 FPV images. The FPV captures the agent’s direct
observations, while the BEV provides a holistic understanding of the environ-
ment. The eight FPV images are captured every 45 degrees, ensuring a complete
360-degree perspective.

4.4 RLEF: Reinforcement Learning with Environmental Feedback

In OctoVerse, task progression can be visualized as a tree (Fig. 4 (d)), where
each node represents a sub-task with a binary value indicating success (1) or
failure (0). If a node (or sub-task) has a value of 1, it is a step in the correct
direction toward our end goal.
Tree-based Task Representation According to the environmental feedback
part in Sec. 4.1, environmental reward datasets DR = (X∗

v,T
∗
i ,T

i
r,T

j
r, c) are

organized, where Ti
r and Tj

r are responses sharing the same parent task T∗
i ,

and c indicates the preferred response leading to task completion. This ensures
the reward mechanism favors the successfully executed branch. Note that even
if a parental node does not have multiple responses, we can still assign feedback
according to the rule in Sec. 4.1.
Reward Model Configuration A single-modal CodeLLaMA-7B model with
an additional value head is fine-tuned on DR as the reward model rϕ. This text-
based model assesses state transitions (T∗

i → Ti,j
r ) to determine high-reward

transitions, assisting the agent in task execution and completion. The rationale
for using CodeLLaMA as the reward model is that evaluating rewards can be
purely dependent on the textual output. Furthermore, CodeLLaMA’s strong
programming skills make it well-suited for assessing the quality and effectiveness
of the generated code in the context of task completion.
Policy Model Development The supervised fine-tuned model serves as
the initial policy model πINIT with fixed parameters. A duplicate model, πRL

θ ,
is initialized and trained using Proximal Policy Optimization (PPO) [51] to
maximize response rewards. The loss function is:

L
(
πRL
θ

)
= −E(X∗

v,T
∗
i )∈DR,Tr∼πRL

[
rϕ(T

∗
i ,Tr)− β · DKL

(
πRL
θ (X∗

v,T
∗
i ) ∥ πINIT(X∗

v,T
∗
i )
)]

,
(2)

where β acts as a hyper-parameter to regulate the magnitude of the Kull-
back–Leibler (KL) penalty.

5 Experiments

5.1 Main Results on OctoGibson

Experimental Setup We first set up the OctoGibson to evaluate the per-
formance of Octopus and other related models. Specifically, we are utilizing the
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Table 3: Main Results on OctoGibson. We compare various models: standalone
language models, adapted vision-language planners, and our Octopus models, across
different evaluation settings. In cells displaying two values, the first represents the
task completion rate across the target validation task sets, while the second assesses
the conceptual accuracy of the model’s planning as judged by human evaluators. GT
denotes that the model input is directly parsed from the simulator, with information
on objects (O) or relations (R). Octopus shows consistent advance in task completion.

Model Vision
Model

Language
Model

Entire Goal Task

Seen Env Unseen Env Follow Reason All

GPT-4 - - 0.42 / 0.69 0.46 / 0.67 0.49 / 0.78 0.27 / 0.40 0.43 / 0.68
GPT-4V - - 0.40 / 0.62 0.60 / 0.67 0.42 / 0.67 0.53 / 0.53 0.45 / 0.63

LLaMA GT (O+R) LLaMA2-7B 0.07 / 0.11 0.13 / 0.13 0.11 / 0.16 0.00 / 0.00 0.08 / 0.12
CodeLLaMA GT (O+R) CodeLLaMA-7B 0.09 / 0.20 0.20 / 0.40 0.16 / 0.31 0.00 / 0.07 0.12 / 0.25
TAPA (task-level) OVD GT (O) CodeLLaMA-7B 0.09 / 0.36 0.13 / 0.33 0.11 / 0.36 0.06 / 0.33 0.10 / 0.35
TAPA (step-level) OVD GT (O) CodeLLaMA-7B 0.16 / 0.42 0.13 / 0.27 0.18 / 0.38 0.07 / 0.40 0.15 / 0.38

EmbodiedGPT CLIP-ViT MPT-7B 0.04 / 0.36 0.27 / 0.53 0.13 / 0.38 0.00 / 0.40 0.10 / 0.40
Octopus (SFT Only) CLIP-ViT MPT-7B 0.11 / 0.33 0.27 / 0.47 0.16 / 0.38 0.13 / 0.33 0.15 / 0.37
Octopus (SFT + RLEF) CLIP-ViT MPT-7B 0.13 / 0.38 0.33 / 0.53 0.18 / 0.40 0.20 / 0.53 0.18 / 0.42

metrics of goal task completion score to check whether the task is completed in
the simulator and the plan score from human evaluation. We have 60 evaluation
tasks, with 45 from the seen environment, and 15 that are unseen during train-
ing. We also have 45 routine tasks and 15 require reasoning. Please note that
models like Octopus might not always accurately identify specific object names
as they appear in the simulator (e.g., “water_bottle_189”). To address this, we
implement a post-processing step for the generated code, substituting generic
object references with their exact names from the simulator with simple string
similarity matching. If multiple objects, we select the one closest to the agent.

For Blind LLMs, we provide them with all the environment information in
a textual format. Referring to Figure 3, we hope the Blind LLMs could per-
form as GPT-4 but internalize the system message. For TAPA utilizes the open-
vocabulary detection (OVD) technique [65] to recognize objects within images
and parse them into textual environmental messages, we still provide it with
ground-truth environmental messages as an oracle setting.

CodeLLaMA Improves Coding but not Planning. The first two rows
in Table 3 highlight the suboptimal task completion rate of the blind LLMs.
Among them, CodeLLaMA boasts pre-training on a large programming dataset,
resulting in a notable enhancement in code execution from our observation, with
92% of the written code being successfully executed compared to LLaMA’s 24%.
However, its prowess in planning remains limited. In contrast, the proposed Oc-
topus MPT-7B model displays superior planning and task completion metrics
while maintaining commendable coding abilities (72% of the written code can
be executed). We surmise that the coding requirements within the OctoGibson
environment might not be exceedingly intricate, rendering an advanced program-
ming language model, like CodeLLaMA, less crucial, albeit beneficial. For more
insight, although not shown in the table, our efforts to replace the MPT model
with CodeLLaMA encountered challenges of generating non-sense outputs, sug-
gesting that more refined code, or image-code paired data might be necessary
for a successful Octopus-CodeLLaMA integration.
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Explain: Since there is no previous action code 
or execution error, we can start planning from 
scratch. The task goal is to find a carboy. From 
the observed objects, we know that the carboy is 
currently inside the bottom cabinet. Therefore, 
the first step is to open the cabinet and check 
if the caray is inside.

Subtask:
(1) Open the bottom cupboard.
(2) Check if the carboy is inside the cabinet.

Code:
def act(robot,env,camera):
# Subtask 1: Open bottom cabinet

bottom_cabinet = registry(env,
"bottom_cupboard_no_top_vzzafs_0")

open(bot, bottom_cafeteria_counter_top)
donothing(env)

Inventory:None
Target States:
(a) ['bottom_caferua_top', 'openable', '1']

(a) TAPA (step) + CodeLLaMA

Explain: Since there is no previous action code or 
execution error, we can start planning from scratch. 
The task goal is to find a carboy. From the observed 
objects, we can see that the carboy is within the 
environment but it is not within the robot's reach. 
Therefore, the robot needs to move closer to the 
carboy before it can interact with it.

Subtask:
(1) Move the robot to the carboy.
(2) Grasp the carboy.

Code:
def act(robot,env,camera):
# Subtask 1: Move the robot to the carboy

reagent_bottle_189 = 
registry(env,"reagent_bottle_189")

MoveBot(env, robot, reagent_bottle_189, camera)
donothing(env)

Inventory:None
Target States:
(a) ['robot', 'nextto', 'reagent_bottle_189', '1']

Explain: Since there is no previous action code or 
execution error, we can start planning from scratch. 
The task goal is to find a carboy. From the observed 
objects, we know that the carboy is currently inside 
the bottom cabinet. Therefore, the first step should be 
to open the bottom cabinet to access the carboys.

Subtask:
(1) Open the bottom cabinet.
(2) Grasp a carboy.
(3) Check if the carboy is the one we are looking for.

Code:
def act(robot,env,camera):
# Subtask 1: Open the bottom cabinet

bottom_cabinet = registry(env, 
"bottom_cabinet_no_top_qudfwe_0")

open(robot, bottom_cabinet)
donothing(env)

Inventory:None
Target States:
(a) ['bottom_cabinet_no_top_qudfwe_0', 'openable', '1']

(b) Octopus (SFT only) (c) Octopus (SFT + RLEF)
Explain: There is a need to find a carboy in the
environment. Based on the images provided, there appears to
be a carboy or similar object floating above the dining
table. The task will be to approach this object and identify
it to confirm if it is indeed the carboy.

Subtasks:
(1) Move to the dining table where the floating object is
located.
(2) Identify the object to confirm if it is the carboy.

Code:
def act(robot, env, camera):

# Subtask 1: Move to the dining table where the floating
object is located.

dining_table = registry(env, "breakfast_table_dnsjnv_0")
MoveBot(env, robot, dining_table, camera)
donothing(env)

Target States:
(1) Inventory: None
(2) Object Information:
(a) robot, nextto, “breakfast_table_dnsjnv_0”, 1

(e) GPT-4V Output(d) Vision Input for Vision-Language Models (e.g., b, c, e)

BEV-I BEV-II

EGO-0 EGO-45 EGO-90 EGO-135

EGO-180 EGO-225 EGO-270 EGO-315

Fig. 5: Qualitative Results on the task of find a carboy in OctoGibson environment.
We show that the models shown can write executable code, but the proposed Octopus
has stronger planning ability, especially after RLEF. We also explore the performance
of GPT-4V on the specific task.

Blind LLMs Struggle with Extended Input Content. Our observations
indicate that the step-level TAPA model, when supplied with a ground-truth ob-
ject list, achieves a notable enhancement in planning. The primary distinction
between it and the blind CodeLLaMA lies in the input length; the latter deals
with protracted, pairwise relation content, complicating the language model’s
ability to extract crucial data from the environment message. This scenario high-
lights the inherent limitation of blind LLMs: relying on language alone to convey
the entirety of environmental data can result in less informative input.

Octopus Demonstrates Superior Task Generalization. Table 3 under-
scores Octopus’s strong performance, evidencing its consistent edge over stan-
dalone language models in task completion. Its adeptness in adapting to previ-
ously unencountered environments underlines the inherent advantages of vision-
language models. A more detailed ablation analysis is provided later.

RLEF Enhances Octopus’s Planning Strategy. Table 3 shows Octopus’s
strong reasoning capabilities after the RLEF finetuning. An example can be
observed in Fig. 5(b-c), where, after refinement via RLEF, Octopus astutely
navigates to the cabinet housing the carboy instead of attempting a direct yet
distant capture. Quantitatively, Octopus exhibits enhanced adaptability to pre-
viously unseen reasoning tasks, reinforcing its prowess in logical task resolution.
When juxtaposed with other strategies, such as the embodied queries employed
by EmbodiedGPT, RLEF emerges as the more efficacious approach.
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(a) On Tuning Different Components (c) On Necessity of Vision Input
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Fig. 6: Ablation Study on model components, model size, and vision input. For bars
with different colors, the upper bar denotes the number of successful reasoning tasks,
and the lower is routine tasks.
5.2 Ablation Study

Tunning Different Components Fig. 6 (a) demonstrates that solely ad-
justing the connector (marked “fire” in Fig. 4 (a)) leads to success for merely 4
out of 60 tasks. Conversely, finetuning both the connector and language decoder
nudges the success rate slightly higher, with 5 tasks being accomplished.
7B v.s. 3B Model Size We embarked on experiments centered on model size
to discern the influence of the total parameter count on the efficacy of vision-
language models. As illustrated in Fig. 6 (b), downsizing the model manifests
in a noticeable performance drop. The congruency of results across both the
SFT and RLEF models underscores the importance of an apt model size when
sculpting vision-language models.
Significance of Visual Inputs in Task Performance In our standard con-
figuration, the vision component processes a sequence of image inputs, consisting
of eight circularly captured first-person view (FPV) images, complemented by
two bird’s-eye view (BEV) images. With the intent to investigate the impact of
visual inputs on task performance, we initiated an ablation study. In a modified
setup, the sequence of these visual inputs was deliberately randomized, aiming
to attenuate the strength of the visual signals. As illustrated in Fig. 6 (c), this
intentional disruption in visual input consistency led to a pronounced decline
in task performance. This result highlights the crucial role that clear and struc-
tured visual inputs play in the Octopus model, emphasizing that it significantly
leverages visual cues for effective planning and task execution.

5.3 Results on Minecraft and GTA Tasks

Results on OctoMC According to the OctoMC part in Sec. 3, we designed
40 tasks, each task is operated on 2 locations so a total of 80 tasks. We set aside
10 tasks as unseen tasks and 10 tasks as seen tasks, getting 60 training tasks
and 30 testing tasks in OctoMC. Similar to OctoGibson, the training data for
OctoMC is collected using GPT-4. The agent, guided by GPT-4, explores the
Minecraft environment and generates action plans and corresponding code based
on the provided system messages, environmental cues, and objectives.

Table 4 shows that the SFT model trained on OctoMC can complete most
tasks in both seen and unseen scenarios, demonstrating better performance com-
pared to OctoGTA. However, upon analyzing the failure cases, we find that the
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Table 4: Main Results for GTA and Minecraft Tasks. Despite limited training
data, the Octopus still shows its good ability in task completion. In cells displaying
two values, the first represents the task completion rate across the target validation
task sets, while the second assesses the conceptual accuracy of the model’s planning as
judged by human evaluators.

Model Vision
Model

Language
Model

OctoMC OctoGTA

Seen Task Unseen Task All Seen Task Unseen Task All

GPT-4 - - 0.70 / 0.85 0.60 / 0.80 0.65 / 0.83 0.55 / 0.80 0.50 / 0.60 0.54 / 0.76
GPT-4V - - 0.75 / 0.85 0.70 / 0.85 0.73 / 0.85 0.58 / 0.85 0.50 / 0.70 0.56 / 0.82

EmbodiedGPT CLIP-ViT MPT-7B 0.30 / 0.55 0.20 / 0.60 0.25 / 0.58 0.15 / 0.38 0.20 / 0.60 0.16 / 0.42
Octopus (SFT Only) CLIP-ViT MPT-7B 0.30 / 0.60 0.20 / 0.70 0.25 / 0.65 0.18 / 0.48 0.20 / 0.60 0.18 / 0.50
Octopus (SFT + RLEF) CLIP-ViT MPT-7B 0.40 / 0.60 0.20 / 0.70 0.30 / 0.65 0.18 / 0.53 0.30 / 0.70 0.20 / 0.56

model sometimes struggles with tasks requiring precise spatial reasoning. For
instance, when tasked with killing a pig, the agent may have difficulty finding
the creature with the exact angle and distance. While it shows that the agent re-
lies on visual information to navigate and interact with the environment, it also
means that even with correct planning, imprecise actions can lead to failure.
Results on OctoGTA According to the OctoGTA part in Sec. 3, we de-
signed 25 tasks. We set aside 5 tasks in the boat-related group (e.g., boat retrieval
and shore return) as unseen tasks for testing only, using 2 different locations.
We replicate the remaining 20 tasks for both training (8 different locations) and
testing (2 locations). As a result, we have 160 training tasks and 50 testing tasks
in OctoGTA. Unlike the training procedure for OctoGibson and OctoMC, the
training data for OctoGTA is entirely created by the authors, as it is challenging
to gather textual environmental messages in the GTA environment.

Table 4 shows that, despite having only 160 training tasks, the SFT model
can complete some tasks in both seen and unseen scenarios, and RLEF also
outperforms. However, upon careful examination of the failure cases, we find
that the model struggles with tasks that are not straightforward. For instance,
when a wall separates the player from the car, the player still finds it difficult to
decide to climb the wall, even if similar cases exist in the training data. Similar to
OctoMC, as illustrated in Sec. 3, when approaching certain locations, the code
involves functions like turnPlayer() and goForward() rather than a simple
walkTo(location). Consequently, even with correct planning, imprecise actual
actions can still lead to task failure.

6 Conclusion

This paper introduces Octopus, an embodied vision-language programmer de-
signed to bridge the gap between high-level planning and real-world manipula-
tion with programming. By open-sourcing our OctoVerse environments, dataset,
and Octopus architecture, we aim to foster collaboration and innovation within
the research community, paving the way for future developments in embodied
vision-language programming.
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