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I just shared you a hilarious TikTok video. 
Can you identify the most amusing part?

I just shared you a very creative video. 
Could you specify its creative segment?

I just shared you a magic video. Can you 
specify what period the magic take place?

Can you describe what happened during 
the entertaining segment of this video?

Can you describe what happened 
during the creative segment?

Why the segment is funny?

Please give this humorous short 
video a vivid and appropriate title.

Why do you think the video is creative?

Please give this video a title.

On a scale of 1 to 20, how would you 
rate the creativity of this video?

What happened during the magical 
segment in this video?

How can you tell that the video is 
extraordinary and showcases magic?

What method do you think the magician 
used to accomplish the magic trick?
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Fig. 1: Overview of FunQA. FunQA comprises three subsets of surprising videos: 1)
HumorQA, 2) CreativeQA, and 3) MagicQA. Each subset is associated with three com-
mon tasks: 1) counter-intuitive timestamp localization, 2) detailed video description, and
3) reasoning around counter-intuitiveness (see H1-3, C1-3, and M1-3). Furthermore,
we offer higher-level tasks tailored for each video type, such as attributing a fitting and
vivid title for HumorQA and CreativeQA (see H4, C4), etc.

Abstract. Surprising videos, e.g., funny clips, creative performances, or
visual illusions, attract significant attention. Enjoyment of these videos is
not simply a response to visual stimuli; rather, it hinges on the human
capacity to understand (and appreciate) commonsense violations depicted
in these videos. We introduce FunQA, a challenging video question
answering (QA) dataset specifically designed to evaluate and enhance
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the depth of video reasoning based on counter-intuitive and fun videos.
Unlike most video QA benchmarks which focus on less surprising contexts,
e.g., cooking or instructional videos, FunQA covers three previously
unexplored types of surprising videos: 1) HumorQA, 2) CreativeQA,
and 3) MagicQA. For each subset, we establish rigorous QA tasks
designed to assess the model’s capability in counter-intuitive timestamp
localization, detailed video description, and reasoning around counter-
intuitiveness. We also pose higher-level tasks, such as attributing a fitting
and vivid title to the video, and scoring the video creativity. In total, the
FunQA benchmark consists of 312K free-text QA pairs derived from 4.3K
video clips, spanning a total of 24 video hours. Moreover, we propose
FunMentor, an agent designed for Vision-Language Models (VLMs) that
uses multi-turn dialogues to enhance models’ understanding of counter-
intuitiveness. Extensive experiments with existing VLMs demonstrate
the effectiveness of FunMentor and reveal significant performance gaps
for the FunQA videos across spatial-temporal reasoning, visual-centered
reasoning, and free-text generation.

1 Introduction

The charm of surprising videos, being funny, creative, and filled with visual illu-
sions, offers enjoyment and attracts engagement from viewers. This type of media
elicits positive surprise1 [50], a captivating emotion that stems not merely from
perceiving surface-level visual stimuli, but rather, the innate ability of humans
to understand and find delight in unexpected and counter-intuitive moments [44].
However, despite significant advancements in today’s computer vision models,
the question remains: can video models “understand” the humor/creativity in
surprising videos? Consider the humorous video depicted in Fig. 1 (left) as an
example. We observe a woman in black holding two pot lids and clapping them
together. The remaining three individuals are responsible for avoiding the pot
lids. The first two people successfully dodge, but the third girl, in a panic, fails
to avoid any hits and gets struck three times. The embarrassed demeanor of the
third girl along with her final frustrated reaction, elicits laughter2. While humans
effortlessly recognize this as an unusual (and potentially entertaining) event, the
reasoning required to holistically understand the scene is complex: a model needs
to recognize that this is not a video depicting harm but rather girls engaging
in playful pranks together, and discern that the comedic element arises from the
stark contrast between the third girl being hit by the pot lids every time and the
first two girls skillfully avoiding them.
While there have been some efforts to enhance computer vision models’ perfor-
mance in Video Question Answering (VideoQA), these works have primarily
focused on the common, less surprising videos found in existing VideoQA datasets.
1 c.f., negative surprise, e.g., a surprising medical bill.
2 The hostility/superiority theory of humor posits that humor can arise from claiming

superiority over someone or something [2,17]; but alternate (more optimistic) theories
of humor exist, [1] offers a survey.

https://www.facebook.com/kiosgim/videos/3766868883332108
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Table 1: Comparison between FunQA and other existing benchmarks. Com-
pared to other datasets, FunQA revolves around the captivating realm of interesting and
counter-intuitive videos. The tasks within FunQA are specifically designed to challenge
the vision capabilities of models, requiring strong skills in producing an in-depth descrip-
tion, interpretation, and spatial-temporal reasoning. Here we clarify the abbreviation in
the table. For annotation type: denotes Manual Annotation and for Automatic
Annotation; Avg Len denotes video average length; # Clips means number of video
clips; VC for visual-centric, Des. for Description, Exp. for Explanation, STR for
Spatial-temporal Reasoning, MC means Multiple Choice QA, and OE shows Open
Ended QA with Average Word Count per response.

Dataset Domain or Video Question Answer

Avg Len # Clips # QA VC Des. Exp. STR MC OE

TGIF-QA [20] Social Media 3s 72K 165K ✓ ✓ ✗ ✓ ✗ 2.1
MSRVTT-QA [64] Social Media 15s 10K 244K ✓ ✗ ✗ ✓ ✗ 1.0
ActivityNet-QA [72] Social Media 180s 6K 58K ✓ ✗ ✗ ✓ ✗ 1.9

NExT-QA [63] Daily life 44s 5K 52K ✓ ✓ ✓ ✓ ✓ 2.6
Social-IQ [73] Daily life 99s 1K 8K ✓ ✗ ✓ ✗ ✓ N/A

MovieQA [58] TV shows 203s 7K 6K ✗ ✗ ✓ ✓ ✓ N/A
TVQA+ [33] TV shows 8s 4K 30K ✗ ✗ ✓ ✓ ✓ N/A

SUTD-TrafficQA [65] Traffic 5s 10K 623K ✓ ✗ ✗ ✓ ✓ N/A
MarioQA [48] Games 5s 188K 188K ✓ ✗ ✓ ✓ ✗ 2.0
CLEVRER [71] Synthetic Videos 5s 20K 305K ✓ ✗ ✓ ✓ ✓ N/A

FunQA (Ours) Surprising Videos 19s 4K 312K ✓ ✓ ✓ ✓ ✓ 34.2

Examples of commonly employed VideoQA datasets include YouCook2 [76] which
contains video clips from 2K cooking videos, Howto100M [45] which consists of
only instructional videos. While there exist video datasets that explore the humor
in TV shows [5, 18] and include tasks such as predicting laughter tracks [53],
these tasks often heavily rely on audio and narrative cues, with visual clues
might playing a lesser role. Beyond datasets centered on factual queries, it is
worth noting that NExT-QA targets the explanation of video content, which is
widely employed for evaluating reasoning abilities. However, it was found in the
experiment (see Section 5.4) that VLMs such as GPT-4V(ision) already achieved
an accuracy of 80% on NExTQA. This demonstrates that with the development of
VLMs, the demand for datasets with deeper reasoning capabilities and presenting
greater challenges is increasing.
To revitalize the visual reasoning field and further improve model capabilities to
identify and understand visual commonsense violations in videos, we introduce
FunQA1, an extensive and carefully curated VideoQA dataset comprising 4.3K
surprising videos and 312K manually annotated free-text QA pairs. Unlike some
VideoQA datasets that feature open-ended questions but short answers (e.g., an
average of 2.6 words per answer in NExT-QA [63]), FunQA’s responses average
34.2 words in length. This significantly increases the demand for advanced
video comprehension capabilities in the model. Therefore, here we use free-
text QA to distinguish from open-ended QA. Our dataset consists of three
subsets: 1) HumorQA, 2) CreativeQA, and 3) MagicQA. Each subset
covers different sources and contents, but the commonality lies in their surprising
nature, e.g., the unexpected contrasts in humorous videos, the intriguing disguises
in creative videos, and the seemingly impossible performances in magic videos.

1 FunQA has been integrated in LMMs-Eval [34], where can easily obtain FunQA
dataset and evaluate multiple VLMs.
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Our experiments suggest that these surprising videos require different types of
reasoning than common videos, as existing VideoQA methods perform poorly on
the corpus. With FunQA, we hope to provide a benchmark that covers the popular,
important, and sophisticated genre of counter-intuitive/surprising videos.
In FunQA, we formulate three rigorous tasks to measure models’ understanding
of surprise: 1) Counter-intuitive timestamp localization: a model must
identify the specific time period within a video when an unexpected event takes
place. 2) Detailed video description: a model must generate coherent and
objective descriptions of the video content, evaluating models’ fundamental video
understanding capabilities. 3) Counter-intuitiveness reasoning: a model
must generate concrete explanations of why the video is surprising. These tasks
progressively assess the model’s ability to perceive, articulate, and reason about
the counter-intuitive elements present in surprising videos. We also propose
additional tasks that pose higher-level challenges, such as assigning an appropriate
and vivid title to the video.
In continuation of our efforts to enhance models’ comprehension of surprising
content, we introduce FunMentor, a specialized agent designed to boost counter-
intuitive reasoning in VLMs. Operating like a seasoned coach in a variety show,
FunMentor engages in detailed, multi-turn dialogues, honing the models’ re-
sponses to accurately grasp the essence of both amusing and astonishing content.
FunMentor actively steers VLMs with precise prompts, fostering fluent, logical,
and persuasive responses. Experiments have demonstrated its effectiveness in
augmenting VLMs’ ability to comprehend. To summarize our contributions:
1) New VideoQA Dataset: We build a large-scale dataset FunQA, which
complements the existing VideoQA dataset with intriguing videos.
2) Novel and Challenging Tasks: We design a number of novel tasks that
allow the model to explore previously untouched problems, such as timestamp
localization, and reasoning around counter-intuitiveness. These tasks push video
reasoning beyond superficial descriptions, demanding deeper understanding.
3) Novel Method FunMentor: We propose a novel agent refines the model’s
understanding of counter-intuitiveness through multi-turn dialogues with VLMs.
4) Comprehensive Evaluation: We have done an comprehensive evaluation of
cutting-edge baselines, giving the field an insight and future research direction.

2 Related Work

Video Question Answering Benchmarks While the visual question an-
swering (VQA) task focuses on enhancing models’ ability in image comprehen-
sion [15,28,77], video question answering (VideoQA) shifts the attention towards
video comprehension. VideoQA is generally more challenging than VQA as it
requires a comprehensive understanding of visual content, utilization of temporal
and spatial information, and exploration of relationships between recognized
objects and activities [71]. To address the VideoQA task, the research community
has introduced various benchmarks. As depicted in Table 1 (the complete table
are shown in Appendix A), most commonly used VideoQA datasets are sourced



FunQA: Towards Surprising Video Comprehension 5

from human-centric videos like movies [58], TV shows [14, 32, 33], and social
media [6, 16, 20, 62, 63, 68, 73], and there are also object-centric datasets of game
videos [48], synthetic videos [71] and egocentric videos [12]. MovieQA [58] and
TVQA [32] are commonly employed by VideoQA methods, which put forward
tasks related to temporal and causal reasoning. However, they rely heavily on
dialogue comprehension and textual plot summaries, which severely limits the
challenge of visual reasoning. TGIF-QA [20] uses animated GIFs to challenge
spatial-temporal reasoning, but as most GIFs are short videos of 3 seconds, and
its tasks mainly focus on action description, TGIF-QA lacks complex reasoning
evaluation ability. When most datasets use multiple choice questions as QA tasks,
some methods, such as NExT-QA [63], try to join open-ended questions. NExT-
QA mainly focuses on daily life videos, but the open-ended answers are mostly
simple sentences containing only a few words. To sum up, most existing methods
focus on ordinary videos, lack of understanding of intriguing or unexpected videos,
and advanced reasoning tasks such as generating complete explanatory texts of
videos remain to be explored.
Video Question Answering Methods Earlier studies have explored various
models, including LSTMs and graph-based neural networks, to capture cross-
modal information [38,75]. With the advent of Transformers, video understanding
models, like ClipBERT [31] and CoMVT [57] emerged, focusing on understanding
specific frames within a video. Subsequent models like Violet [11], extended their
ability to encompass temporal and spatial information. However, these methods
have primarily been applied to short videos. For long videos, MIST [13] stands
out by achieving state-of-the-art (SOTA) performance and excelling in terms of
computation efficiency and interpretability. Furthermore, recent VLMs [35,37,47]
have showcased remarkable video understanding capabilities.
Counter-Intuitive Benchmarks While many current computer vision bench-
marks primarily focus on understanding commonsense content, there is a growing
interest in addressing the realm of counter-intuitiveness. Several emerging bench-
marks and models cater to this domain, such as Whoops [3], which emphasizes
weird, unusual, and uncanny images, OOPS [9], which centers on recognizing and
predicting unintentional events, and MemeGraphs [26], which revolves around
memes featuring humor and sarcasm. Furthermore, some works even challenges
models to comprehend complex multimodal humor in comics [19]. In the realm
of large language models, exemplified by GPT-4 [51], there is a particular focus
on showcasing their ability to provide explanations for funny pictures. However,
regarding videos, existing datasets exploring humor in TV shows or comedy tend
to heavily rely on audio and narrative cues [5,18,53], with visual clues playing a
comparatively lesser role.

3 The FunQA Dataset

In this section, we provide a detailed explanation of the design principles that
guided the creation of the FunQA dataset and its subsets. Additionally, we
introduce our novel VideoQA tasks tailored for FunQA, and FunQA data statistics
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Fig. 2: Statistics of FunQA Dataset. Figure (a) and (b) showcase vital statistics,
including the number of videos for different videos, splits, and QA pairs count for three
subsets. Figure (c) highlights the high-frequency time span of the answer for localization
questions in red. Figure (d) presents the percentage of consensus between annotators
for the same QA pair. The consensus is categorized into three levels High for consistent
understanding, Medium for partial agreement but with mutual acknowledgment, and
Low for complete disagreement.

in Figure 2. Toward the end we present our Construction Pipeline and Quality
Control, highlighting our efforts in maintaining data quality and objectivity.

3.1 Task Definition

To comprehensively evaluate the model’s ability to understand surprising videos,
we designed the following 4 types of tasks for each subset:
Counter-intuitive Timestamp Localization Task The localization task is
the base task to assess the model’s comprehension abilities. It involves localizing
counter-intuitive segments within the video, answers expressed in either seconds
or frames. This task serves as the basis for the subsequent two main tasks in the
three subsets, where the focus shifts to locating moments of humor, creativity,
and magical effects, respectively. Successfully completing this task demands the
model’s understanding of the video’s overall content, incorporating both temporal
and spatial information.
Detailed Description Task The description task aims to evaluate the model’s
information extraction capabilities, serving as a fundamental aspect of video
understanding. This task requires providing a free-text answer that describes the
selected moment. Furthermore, this task allows for analysis of how the model
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extracts information and generates answers for subsequent tasks. By examining
the model’s performance in this task, we gain insights into its ability to extract
relevant information and generate meaningful responses.
Counter-intuitiveness Reasoning Task The reasoning task is designed to
test the model’s ability to reason about the video, and in the three subsets,
this question is Why Humorous, Why creative, and Why counter-intuitive and
the answer is a free-text explanation. This task is very difficult and involves
the model’s deep reasoning ability; it requires the model to give a complete
explanation using information from the entire video and its own common sense.
Higher Level Tasks In addition to the three main tasks, we design higher-
level tasks to enhance the model’s inference abilities on counter-intuitive videos.
Title Task in HumorQA and CreativeQA requires generating a concise title
summarizing the video’s content. Creative Scoring Task in CreativeQA involves
rating the creativity of videos between 1 and 20 (provided officially). Magic
Method Task in MagicQA requires the model to explain clearly the rationale
behind the magic, and its purpose is to test the model’s ability to reason more
deeply. To ensure the accuracy of the answers, this task is only partially annotated
and appears only in the test set, details of which can be found in Appendix A.1.

3.2 Dataset Statistics

FunQA contains 4,365 counter-intuitive video clips and 311,950 QA pairs,
the total length of these videos is 23.9h and the average length of each clips
is 19 seconds. FunQA consists three fine-grained subsets, each one containing
well-designed tasks. The specific numbers of videos and splits can be seen in Fig.
2 (a). The specific number of QA pairs for each task can be seen in Fig. 2 (b).
For our localization task, the heat map for the three different types of videos can
be seen in Fig. 2 (c), which shows the high-frequency time span of the answer.
For the description and reasoning tasks, the average length of the words in their
free-text answers reached 34.24, which is much longer than existing VideoQA
datasets (e.g., 2.6 in NExT-QA [63]). FunQA has a well-established annotation
process and high annotation quality, the result of our annotation consensus
evaluation are illustrated in Fig. 2 (d). Impressively, over 90% of the annotations
demonstrate a high level of consensus, while only 1% exhibit low consensus. This
clearly underscores the objectivity and reliability of the FunQA dataset.

3.3 Dataset Construction Pipeline

FunQA dataset construction pipeline was in three stages: Pre-processing, Man-
ual Annotation, and Post-Processing. The whole process took about 900 hours
with over 50 highly educated undergraduates as part-time annotators. See Ap-
pendix A.1 for more details on the dataset construction.
Pre-Processing Initially, we crawled videos from YouTube. Then we per-
formed a two-stage manual cleaning and cutting process on the collection to
ensure counter-intuitive features and video quality and to exclude non-ethical
and sensitive content, resulting in video clips.
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Manual Annotation We annotated the videos according to the characteristics
of different task designs in Chinese. We screen and train the annotators to ensure
the accuracy and high quality of the annotation, and finally produce the original
annotated files. After the first round, we conducted a secondary round of 10% of
the tasks and performed Consensus Evaluation to ensure the objectivity.
Post-Processing Based on our carefully designed tasks and high-quality an-
notations, we expanded our dataset using GPT-3.5. Firstly, we automatically
translated the Chinese annotations into English. Subsequently, we generated more
QA pairs that were faithful to the original ideas but presented differently. This
not only made FunQA multilingual but also expanded its QA pair count to 312K.
Additionally, we created diverse sub-dataset, FunQA-MC (multi-choice QA) and
FunQA-DIA (dialogue QA). In addition, to focus on exploring the ability to
handle counter-intuitive reasoning, we released FunQA-MC-R (a multi-choice
version specifically containing counter-intuitive reasoning questions). More details
are given in Appendix A.2 and Appendix B.

Table 2: Consensus Evaluation Ex-
periment. This table shows the re-
sults from a random 10% sample of QA
pairs, cross-validated by annotators to as-
sess agreement with existing annotations.
‘Low,’ ‘Medium,’ and ‘High’ indicate the
strength of the consensus.

Consensus HumorQA CreativeQA MagicQA # Total
Low 1 1 2 4 (1%)
Medium 9 6 17 32 (8%)
High 199 111 194 504 (91%)

Table 3: Can FunQA be Solved Solely
Based on Images? The left two columns
show the average number of questions an-
swerable or not by humans using only 8
static, uniformly selected frames.

Dataset # Can # Cannot Cannot Rate
HumorQA 7.8 32.2 80%
CreativeQA 6.1 33.9 85%
MagicQA 2.6 37.4 94%

FunQA 16.5 103.5 86%

3.4 Quality Control

Minimal Errors and High Objectivity in FunQA We assure that every
annotation included in the final release of FunQA has been subjected to rigorous
multi-person, multi-round review processes. Furthermore, We did manual
consensus evaluation on released FunQA dataset, randomly sampling 10% of the
data from all three sub-datasets (HumorQA, CreativeQA, and MagicQA). As
shown in Table 2, we get the 91% high consensus.
FunQA Emphasis on Temporal Dynamics FunQA requires a strong em-
phases on temporal dynamics rather than solely on few frames of images. To
prove that, we did the quantitative human experiments - We randomly selected 40
videos from each of the three sub-datasets, totaling 120 videos. For each video, we
sampled 8 frames evenly. We enlisted 10 individuals who had not seen any FunQA
videos before. We had them view the sequence of 8 consecutive frames and then
watch the original video along with its annotations. They were asked to determine
whether they can understand and answer the counter-intuitive understanding of
the original video solely based on the images. Nearly 86% people thought that
FunQA cannot be solved only by images, as shown in Table 3.
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4 FunMentor

# 1 Real Fact 
Collection

# 2 Answer
Judgement

# 3 Suggestion 
Generation

Describe the 
items and 
appearing in 
the video

Is someone 
hurt?

Girls, trees, pot 
lids, …

···

No one get hurt.

The real reason 
this video is 

interesting lies 
in ……

1) Language Fluency, …
2) Detail Accuracy, …
3) Logical Reasoning, …
4) Humorous Insight, …
So I'm not satisfied with 
that the response u          

provided.

The following 
content may 
not appear in 
your answer: 
[A, B, etc]. The 
following 
content should 
appear in your 
answer: [D, E, 
etc]

VLM’s answer

FunMentor

1

2

3

(refined each round till FunMentor satisfies)

Fig. 3: FunMentor’s Refining Process.
FunMentor asks multi-round questions to
help VLMs to generate persuading answers.

This section presents the details of
FunMentor for counter-intuitiveness
understanding. FunMentor is an agent
that refines a VLM’s answer through
multi-turn dialogues, ensuring it gen-
erates answers that best explain the
given surprising content. The refining
process comprises three components:
Real Fact Collection Initially,
FunMentor poses a series of inquiries
to the VLM model it aims to assist,
focusing on fact-aware questions to
accurately comprehend the objective
content of the video (e.g., FunMentor
might ask: “Please describe the items
and characters appearing in each frame of the video”). This step is crucial because,
without this preliminary context, FunMentor would have no knowledge of the
video content and might be gullible to VLM’s humorous explanations of the
video. Thus, providing it with some factual clues is very important.
Answer Judgement FunMentor assesses VLMs’ responses based on several
key aspects: 1) Language Fluency, ensuring responses are grammatically fluent;
2) Detail Accuracy, verifying factual correctness in relation to the video’s con-
tent; 3) Logical Reasoning, checking for coherent logic and smooth transitions;
and 4) Humorous Insight, expecting responses to provide humor beyond a
mere description of the video. If not passed, FunMentor will try to generate some
feedback, which is explained below.
Suggestion Generation Upon receiving unsatisfactory responses, FunMentor
formulates constructive suggestions and tailored prompts, which are then sent
back to the VLMs for revision, anticipating their improved answers. This process
involves the agent analyzing the model’s initial response, blending pre-defined
prompts with the context of the original question, to generate specific feedback
instructions. For example, FunMentor examines the issues in the VLM’s response
and advises on what should and shouldn’t be included in the revised answer,
guiding the VLM towards a more accurate and relevant reply.
Fig. 3 shows the pipeline of FunMentor. More details as shown in Appendix C.

5 Experiments

In this section, we begin by introducing various caption-based and instruction-
based models for evaluation. We then delve into diverse metrics tailored for
FunQA tasks, with extensive details provided in Appendix D. Our comprehensive
experiments and deep analysis of the results are then presented. Additionally, we
conduct a comparative study contrasting FunQA with the previous VQA dataset,
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NExT-QA, which similarly features multiple-choice and open-ended questions.
This comparison underscores the unique attributes and importance of FunQA.

5.1 Model Zoo

We categorize the models capable of addressing the majority of VQA tasks
into two classes: Caption-based and Instruction-based. Caption-based models
generate suitable captions for videos by taking different prompts as input. For this
category, we evaluate mPLUG [36] and GIT [61]. Meanwhile, Instruction-based
models are capable of answering a wide array of questions. For this category,
we evaluate models VideoChat [37], Video-ChatGPT [47], mPLUG-Owl [69],
Video-LLaMA [74], Otter [35], Video-LLaVA [39] and LLaVA-NeXT [42]. For
Otter, we evaluate two versions: one is fine-tuned on the Dense Caption [27],
and another is fine-tuned on the FunQA training set. We evaluate the proposed
FunMentor based on Video-ChatGPT and Otter.

5.2 Evaluation Metrics

Timestamp Localization (H1, C1, M1) We employ the intersection of
unions (IOU) based on time span.
Description & Reasoning (H2-4, C2-4, M2-3) For all the free-text tasks,
we employ two approaches for evaluation. Firstly, we utilize traditional NLG
(Natural Language Generation) metrics. We use BLEU-4 [52], ROUGE-L [40],
CIDEr [59], and BLEURT [54] as our metrics. The first two rely on N-gram
overlap, which is only sensitive to lexical variations and cannot identify changes
in sentence semantics or grammar. The latter two are reference-based evaluation
metrics. Secondly, several works [7, 10, 22, 60] have shown promising results in
utilizing GPT as a metric for NLG. Therefore, we introduce GPT-4 to assist
in evaluating free-text similarity. We carefully design the prompts to make it
possible to give objective ratings as much as possible like a human being. More
details of GPT-4 prompts and evaluation criteria are provided in Appendix D.1.
Creative Scoring (C5) CreativeScoreMetric = 100×

(
1− |Predict−GT |

20

)
.

5.3 Results and Observations

In Table 4, we show the results of model zoo and our proposed method. For
clarity, we provided a list of dos and don’ts for comparing values in the table:
a. Values from different tasks with the same video type (e.g., H2 and
H3) are not comparable. We observe that the model output in reasoning tasks
may contain several words that match the ground truth (GT) while the meaning
might be incorrect, resulting in inflated results. Therefore, our comparison is only
based on qualitative analysis.
b. Same metric with different models (see vertically) is comparable.
c. Same task for different video types (e.g., H2 and C2) is comparable.
As an example, Fig. 4 illustrates the responses of VLM before and after applying
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Table 4: Main Results on FunQA Benchmark. The FunQA benchmark consists of
four task categories. H1, C1, M1 represent the counter-intuitive timestamp localization
task, where IOU is used as the metric. H2, C2, M2 represent the detailed video
description task, and H3, C3, M3 represent reasoning around counter-intuitiveness.
For the higher-level tasks, H4, C4 involve attributing a fitting and vivid title. The
responses for all these tasks in free-text format. We utilize the BLEURT (B.) and
GPT-4 metrics for evaluation. The scores for the traditional metrics (BLEU-4 and
CIDEr) are all close to zero. Here, we present only the BLEURT and GPT-4 scores,
with the full results available in the Appendix D.3). C5 represents scoring the video
creativity, and the metric is the Accuracy between the predicted score and the official
score. Here we clarify the abbreviation in the table: F denotes Frame-rate; L.M.:
GIT_LARGE_MSRVTT; L.V.: GIT_LARGE_VATEX; D.C. means finetuned on
Dense Caption; FunQA means finetuned on FunQA.

HumorQA CreativeQA MagicQA

Task H1 H2-Des. H3-Rea. H4-Title C1 C2-Des. C3-Rea. C4-Title C5-Score M1 M2-Des. M3-Rea.

Metrics IOU B. / GPT-4 B. / GPT-4 B. / GPT-4 IOU B. / GPT-4 B. / GPT-4 B. / GPT-4 Acc IOU B. / GPT-4 B. / GPT-4

- Caption-based Model

mPLUG [36] (4F) 0.0 19.9 / 3.9 25.7 / 6.0 22.1 / 11.2 0.0 14.9 / 3.0 24.2 / 6.9 20.8 / 18.8 0.0 / 0.0 0.0 19.7 / 4.0 21.2 / 8.1

GIT (L.M.) [61] (4F) 0.0 22.4 / 3.6 0.0 / 0.0 17.0 / 8.9 0.0 14.4 / 3.8 0.0 / 0.0 7.1 / 11.3 0.0 / 0.0 0.0 19.4 / 8.2 0.0 / 0.0

GIT (L.V.) [61] (4F) 0.0 33.3 / 4.0 0.0 / 0.0 25.9 / 10.0 0.0 20.5 / 4.2 0.0 / 0.0 10.5 / 12.0 0.0 / 0.0 0.0 29.8 / 8.6 0.0 / 0.0

- Instruction-based Model

VideoChat [37] (8F) 0.0 44.0 / 17.9 45.4 / 31.9 20.2 / 31.7 0.0 21.7 / 5.9 22.8 / 17.7 7.3 / 31.1 67.5 0.0 47.4 / 8.2 43.1 / 44.6

Video-ChatGPT [47] (100F) 0.0 39.9 / 24.3 40.1 / 24.9 36.5 / 41.2 0.0 45.8 / 6.6 45.2 / 9.1 30.9 / 48.8 85.4 0.0 50.8 / 11.2 43.3 / 40.4

mPLUG-Owl [69] (4F) 0.0 44.5 / 10,7 47.3 / 35.0 29.8 / 48.8 0.0 43.0 / 5.0 44.7 / 10.6 23.9 / 36.3 66.7 0.0 46.4 / 8.6 43.9 / 30.9

Video-LLaMA [74] (8F) 0.0 48.4 / 7.7 42.9 / 29.0 46.5 / 34.1 0.0 45.5 / 7.2 41.1 / 17.2 42.3 / 31.2 64.2 0.0 50.1 / 10.2 39.0 / 28.0

LLaVA-NeXT [42] (64F) 0.0 47.9 / 41.3 49.5 / 69.8 28.8 / 52.5 0.0 46.1 / 28.1 46.9 / 30.2 26.9 / 43.8 48.2 0.0 48.7 / 55.0 44.9 / 38.3

VideoLLaVA [39] (64F) 0.0 39.0 / 9.7 42.1 / 30.3 24.7 / 35.0 0.0 37.0 / 9.1 37.0 / 13.25 20.8 / 36.3 67.2 0.0 43.3 / 36.7 36.8 / 54.0

Otter (D.C.) [35] (128F) 0.0 30.2 / 7.7 32.3 / 28.3 21.7 / 20.0 0.0 28.7 / 1.7 32.9 / 7.9 17.7 / 36.3 45.0 0.0 32.5 / 2.1 27.3 / 36.8

Otter (FunQA) [35] (128F) 0.0 38.4 / 8.9 42.6 / 31.7 47.5 / 32.1 0.0 40.0 / 7.3 41.1 / 8.8 44.5 / 38.8 69.4 0.0 44.7 / 10.3 44.5 / 47.5

Video-ChatGPT [47] + FunMentor (Ours) 0.0 65.2 / 33.2 57.5 / 36.5 50.2 / 65.1 0.0 66.3 / 14.2 58.7 / 23.4 45.3 / 52.2 85.4 0.0 55.1 / 13.3 46.3 / 54.8

Otter (FunQA) [35] + FunMentor (Ours) 0.0 33.4 / 13.4 37.8 / 45.8 58.3 / 34.2 0.0 60.4 / 11.0 44.4 / 9.3 53.9 / 43.5 69.4 0.0 43.5 / 12.81 38.91 / 56.4

our method to the HumorQA dataset. Overall, the performance of the models on
the FunQA dataset is generally unsatisfactory. However, after fine-tuning VLM
with FunMentor, a notable improvement is shown in its ability to comprehend
counter-intuitiveness. We have made several key findings:
Timestamp localization task is the most challenging. Caption-based mod-
els focus mainly on captioning and often omit temporal information.

Table 5: Timestamp Localiza-
tion Task’s baseline. The result
uses IOU metrics.
Model H1 C1 M1

Random 29.4 32.6 21.1

TimeChat 8.4 14.6 6.0
UniVTG (CR) 59.6 39.1 37.9
LLaVA-NeXT (CR, 64F) 58.0 97.2 33.6

Table 6: Human Performance
on HumorQA. The average scores
using BLEURT / GPT-4. Full re-
sults are in Appendix D.
Task H2 H3 H4

Model SOTA 65.2 / 33.2 57.5 / 45.8 58.3 / 65.1
Human 70.0 / 83.6 63.1 / 84.4 67.3 / 79.1

Due to this, they are not equipped to deal with
our task that emphasizes temporal aspects,
so they are not scored. Similarly, Instruction-
based models, such as Otter, take visual infor-
mation from specific frames without temporal
context. Their outputs are thus confined to
individual frames, making them ineffective at
addressing temporal localization. In summary,
none of the current VLMs could solve H1, C1,
or M1 tasks since they do not have a sense of
time (refer to Appendix D.2). To enhance the
timestamp localization task analysis, we add
comparative baselines (as shown in Table 5):
Random Guess, a specialized time-sensitive
VLM (TimeChat [55]), and a novel method: clipping and rating (CR), previous
Video Temporal Grounding (VTG) tasks have utilized this method (UniVTG [41]).
We have also applied this approach to VideoQA. Results show that both UniVTG
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The humor in the video comes from the cat's appearance, which looks like a person, and the fact that
it is wearing a sock. The cat's actions and expressions are also humorous, as it appears to be trying to
play with the person while wearing the mask. The combination of these elements creates a lighthearted
and entertaining atmosphere throughout the video.

The video's humor comes from the cat's reaction to the person's actions. The cat is seen sitting on a bed,
and the person is seen putting a mask on the cat's face. The cat seems to be annoyed or confused by the
person's actions, which adds a humorous element to the video. Additionally, the person's actions and the
cat's reactions further emphasize the humor in the scene.

The video is funny because a white sock is cut with three holes and put on the cat's head as if the cat is
wearing a mask. The way a cat looks like a person with a mask on is unexpected and very funny. At the
same time, the cat struggles and freaks out after putting on the sock, adding to the humor of the video.

H3: What aspects contribute to the video's humor?
Ground Truth

with FunMentor

Video chatGPT

Fig. 4: VLM responses on before and after FunMentor. Here shows the answers
given by Video-ChatGPT [47] on HumorQA video before and after FunMentor. From
the GroundTruth, it is evident that three key elements contribute to the humor in
the video: “sock” , “mask” , and “cat resemble a human” . Initially, Video-ChatGPT
only identified the mask, failing to grasp the full essence of the video’s humor. However,
after the combination with FunMentor, Video-ChatGPT successfully recognized the
“looks like a person” and the “fact that it is wearing a sock” , thus demonstrating
a true understanding of what makes the video funny.

and VLMs employing the clipping and rating method have achieved significant
improvement. multimodal language model.
No clear winner across all tasks. Caption-based models excel in providing
detailed descriptions but struggle in tasks that require reasoning, resulting in a
notable performance gap between description tasks (e.g., H2) and reasoning tasks
(e.g., H3). On the other hand, instruction-based models demonstrate stronger
reasoning capabilities than caption-based models but tend to underperform in
description tasks. One possible explanation is that instruction-based models may
generate excessive information in their answers, including a significant amount
of incorrect information. We conducted experiments to compare machine versus
human performance on FunQA as shown in Table 6.
Performance varies greatly across different video types. Generally Cre-
ativeQA is the most challenging especially in reasoning. For instance, the GPT-4
scores of Video-ChatGPT and Otter on C3-Reasoning are notably low. One
possible reason is that humor and magic videos often depict daily life that models
have encountered previously, whereas creative videos that models have never seen
before, causing them unable to understand and generate reasonable answers.
Insufficient evaluation metrics for free-text tasks. Traditional metrics
yield near-zero scores on free-text questions (refer to the complete FunQA Bench-
mark results in the Appendix D), as they solely focus on short textual similarity.
While BLEURT scores are significantly higher, they still fall short in evaluat-
ing more complex similarities. Intuitively, GPT-4 is found to show preliminary
capabilities in assessing free-text in deep understanding, which will be detailed
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in Appendix D.1. However, there are still issues of instability, where the same
content can receive different scores.
Finetuned Otter performs well yet with limitations. Otter (FunQA)
shows obvious performance advantages over Otter (D.C.). As shown in Table 4,
Otter (FunQA) performs better in BLEURT and GPT-4. However, there are still
some limitations that Otter (FunQA) falls short of reaching SOTA scores. One
possible reason revealed is that the input of Otter is only 128 frames sampled
from the video, which is insufficient for comprehensive reasoning.
FunMentor demonstrates the powerful potential of agent-based fine-
tuning Our proposed FunMentor outperforms the previous best method by
10.8 for the GPT-4 score of H3 task, with improvements of 4.8 and 20.9 for Otter
(FunQA) and Video-ChatGPT, respectively. Additionally, the results reveal that
FunMentor achieves significant performance improvements for Video-ChatGPT,
particularly in the H2 and H4 tasks, while the improvement for H3 is relatively
modest. This indicates that counter-intuitive reasoning remains a challenging
aspect. The substantial performance enhancement by FunMentor highlights the
promising prospects of agent-based fine-tuning methods. In the context of VLM
requiring extensive training data, research in this direction holds the potential to
uncover the vast capabilities of VLM.

5.4 Comparison with Previous Benchmarks

We chose NExT-QA as our comparative benchmark, which is designed to empha-
size model reasoning abilities. NExT-QA also provides a multi-choice version of
the dataset (NExT-OE), similar to FunQA-MC.

Table 7: Model’s Performance in NExT-OE. This table illustrates that while the
previous SOTA model, HGA, excels in the classic WUPS metric, it underperforms with
GPT-4. See Appendix D.1 for a discussion on potential issues with WUPS.

Metrics WUPS GPT-4
HGA (SOTA on NExT-OE) 25.18 25.06
Otter (D.C.) 1.26 64.89
Otter (FunQA) 0.79 73.06

Traditional metrics are ineffective on VLMs’ response. Table 7 shows
the performance on NExT-OE of Otter and HGA [21] using different metrics.
We evaluated these models using both traditional evaluation metrics (specifically,
WUPS [43] that is employed by NExT-OE) and our novel evaluation metrics
based on GPT-4. Otter exhibits a notably low performance on the WUPS metric
that is drastically different than the GPT-4 score, primarily because WUPS is
ill-suited for evaluating sentence-based responses and fares poorly when assessing
phrases. Specific examples can be found in Appendix D.3.
NExT-QA is not a challenge for GPT-4. Our investigation into VLMs’
performance on NExT-QA and FunQA datasets, shown in Table 8, reveals key
insights. In the multi-choice format, GPT-4, even without video frames, scores
comparably to VLMs on NExT-QA but resembles random guessing on FunQA-
MC. Furthermore, while GPT-4V scores 80 and 61 on NExT-QA and FunQA-MC
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Table 8: Performance of VLMs in NExT-QA and FunQA. N.QA, F.MC, and
F.MC-R denote NExT-QA, FunQA-MC and FunQA-MC-R, which are multi-choice
datasets and we use accuracy as the metric. Regarding N.QE (NExT-OE) and FunQA,
which are open-ended answer datasets, we employ metrics based on GPT-4. ∗ indicates
that this model utilizes a Chat-box mechanism, and we employ GPT-3.5 to automatically
convert its output into multiple-choice answers; † signifies the GPT-4 model without
any visual information input; § denotes an sample version (10%).

Metrics Acc GPT-4

Dataset N.QA F.MC F.MC-R N.QE FunQA §

Random 20 20 20 - -
Otter (D.C.) ∗ 35 27 17 54 22
Otter (FunQA) ∗ 42 31 26 58 28
GPT-4 † 44 34 23 30 2
GPT-4V(ision) (4F) 80 61 39 79 5

respectively, it drops to 39 on FunQA-MC-R, which focuses on counter-intuitive
reasoning. This suggests that NExT-QA’s inferential questions are no longer
challenging for GPT-4, and the significant score difference in FunQA variants
underlines GPT-4V’s struggle with complex, non-intuitive questions.
FunQA is challenging for VLMs and GPT-4V. As Table 8 indicates,
GPT-4 scores well on NExT-OE even without video access. The contrast in
its performance on NExT-OE versus FunQA highlights FunQA’s complexity
in video reasoning. A significant performance disparity between GPT-4 and its
video-enhanced version, GPT-4V, on FunQA again underscores the value of video
content, corroborating findings from Table 3. Overall, FunQA stands out from
prior benchmarks with its focus on reasoning skills and high-quality QA pairs
deeply linked to video content, establishing itself as a robust benchmark in the
LLM era for assessing VLMs’ capabilities in counter-intuitive reasoning.

6 Limitations and Future Work

This paper has two limitations. 1) The current FunQA dataset primarily contains
video-level data and annotations. There is potential for enhanced video reasoning
through denser annotations, akin to PVSG [67], which might include detailed
spatial, temporal, and object-level annotations. 2) The initial annotations were
made in Chinese and later translated into English. While GPT was used to refine
and complete the Chinese text, ensuring comprehensiveness and correctness,
differences due to cultural differences between the languages might still persist.
Looking ahead, we plan to enrich FunQA with more detailed and varied annota-
tions. We aim to develop new metrics for a more accurate evaluation of models,
particularly for open-ended questions. Our goal is to steer models towards deeper
video reasoning. However, to ensure fair comparisons and prevent data leakage,
it is advised that future research does not utilize the FunQA testing set.
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